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Abstract

This paper aims to answer the question if deep neural networks can outperform elastic

distance based clustering. To compare the distance based algorithms, a replication study of

the experiments in Holder, Middlehurst and Bagnall (2024) is performed. Clustering metrics

such as normalised mutual information (NMI) and clustering accuracy are used to evaluate

algorithms based on nine elastic distance measures, along with an unsupervised Convolu-

tional Neural Network (CNN). For the distance based algorithms, a distinction is made

between k-means and k-medoids clustering algorithms and the differences are compared.

These algorithms are used on 61 univariate datasets from the UCR archive. Wilcoxon signed

ranked tests are performed to validate the significance of the methods. Results show that the

move-split-merge (MSM) distance along with the edit distance with real penalty (ERP) are

the best performing algorithms. Clustering algorithm k-medoids improves over k-means for

almost every distance function. Both of these results are in line with the results of Holder

et al. (2024). The CNN outperforms over half of the distance based algorithms, such as

Dynamic Time Warping (DTW) and Euclidean Distance, but falters in light of the MSM

and ERP distance algorithms. This is likely due to the use of smaller datasets and the

unsupervised setting of the neural network. Neural networks show a promising avenue for

time series clustering, but face challenges related to the unsupervised setting and need to be

improved to outperform top-distance based algorithms.

1 Introduction

Clustering is an indispensable technique in data analysis and it serves as a cornerstone for under-

standing patterns within datasets. As data storage capacities and processing power continue to

grow, real-world companies and institutions are now able to retain data over extended periods.

Consequently, many applications now store information as time series data, such as sales figures,

stock market prices, exchange rates and more. As more data is stored as time series, specific

analyses can be performed on these time series data, including data mining methods such as

clustering.

Time series clustering (TSCL) is an unsupervised method of grouping time series data. This

suggests that there are no labels tied to the time series data. There are various methods of

clustering, but this paper specifically delves deeper into two branches of the TSCL literature.

First of all, this includes partition based algorithms that can use a variety of distance functions.

These distance functions often entail a form of reorganisation of time series and can often enhance

clustering experiments. An extensive review of set distance functions and their evaluation is

given in Holder et al. (2024). For in their paper, they investigate nine different elastic distance

measures and evaluate them using several clustering metrics. These algorithms include well-

known distances, such as Dynamic Time Warping (DTW), and other commonly used measures,

including Time Warp Edit (TWE) and Move-Split-Merge (MSM). The algorithms that are paired

with these distances are clustering algorithms k-means and k-medoids, which are popular in the

literature. The point of interest for Holder et al. (2024) is to determine which algorithm, k-

means or k-medoids works best for TSCL, as well as which elastic distance of the nine that are

selected, results in the best clustering performance. One of the goals of this paper is to perform

similar experiments as Holder et al. (2024) and investigate the validity of their results.
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The other branch of TSCL this paper this paper explores is deep learning. Specifically, this

includes Unsupervised Deep Neural Networks (UDNN) that can be used for TSCL. This con-

cerns a different type of clustering that with the rising popularity of machine learning, becomes

interesting. Notably, neural networks, such as Convolutional Neural Networks (CNN) are of-

ten not associated with clustering, since clustering is an unsupervised procedure. On the other

hand, neural networks can also be used in this setting, through methods explained in Lafabregue,

Weber, Gançarski and Forestier (2022), who experiment with a large number of DNNs to exam-

ine which performs best. Since the partitional based clustering algorithms with elastic distance

functions have not been compared to current deep learning methods, this paper delves deeper

into the comparison of the two by using multiple clustering metrics, such as clustering accuracy

and normalised mutual information. This paper essentially combines ideas from Holder et al.

(2024) and Lafabregue et al. (2022).

The main research question can therefore be stated as follows: “Does Deep Neural Net-

work Time Series Clustering Outperform Partition-based Clustering with Elastic Distance Func-

tions?”. The subquestions that revolve around this question are:

• Do the results from the replication match the paper of Holder et al. (2024)?

• What methods are there to compare neural network time series clustering to partitional

clustering methods?

• What is the “best” deep neural network for time series clustering?

• What is the difference in the computation time for each of these experiments? Could one

method be preferred, but simply take too long for practical use?

This research is relevant when looking at the validation of the paper that will be replicated.

The results of Holder et al. (2024) show that the k-medoids models perform better, as well

as a worse performance of DTW and an overall improvement with the MSM distance. Since

DTW is a commonly used elastic distance function, verifying this conclusion can be beneficial

for further research and use of elastic distance functions in practice, as well as a motivation

for researchers to use methods more similar to MSM. Furthermore, in Lafabregue et al. (2022),

comparisons are made between deep neural networks and baseline models. However, this only

includes the Euclidean Distance, Dynamic Time Warping and Principal Component Analysis

with k-means. By comparing the time series clustering with elastic distance functions to a neural

network clustering, this paper aims to better understand the taxonomy of TSCL, determining

which method of TSCL leads to better results and should therefore lead to a conclusion on

which methods should be more widely used in this field. Other types of networks are also briefly

discussed and tested, to test the theory of Lafabregue et al. (2022) that a convolutional network

based architecture performs best. Lastly, the validity of Lafabregue et al. (2022) is also tested

concerning the performance of the neural network compared to the k-means DTW, since their

conclusion is that the neural network yields better results compared to “simple” algorithms and

distance measures.

The results found in this paper show that k-medoids based experiments perform better on

almost all elastic distance measures and MSM and edit distance with real penalty are the best
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performing distances to go with it. These methods also do not have significantly long runtimes.

These results match closely with the results found in Holder et al. (2024). When comparing

different neural networks, the CNN based architectures without clustering loss perform better

than a recurrent neural network. When CNN is then compared to the distance based algorithms,

CNN outperforms the “weaker” algorithms, but it does not outperform the MSM and ERP

measures, especially the k-medoids variants are significantly better. The reason why it cannot

outperform the better distance based measures might be contributed to data structure and

experiment set-up as well as lack of proper parameter tuning.

The remainder of this paper is structured as follows: Section 2 provides a review of the

literature on time series clustering and the innovations that have been made in this field. The

data will be specified in Section 3, while the methodology is explained in Section 4, including the

elastic distance functions, deep neural networks, and clustering metrics. In Section 5 the results

of the clustering experiments and evaluation are stated. Finally, in Section 6 the conclusions

regarding the results will be shared

2 Literature

2.1 Time Series Classification

Firstly, a distinction between time series classification (TSC) and time series clustering (TSCL)

must be made. Both fields of study share some similarities, such as the methods that are used,

which include elastic distance functions (Abanda, Mori & Lozano, 2019) and deep learning

(Ismail Fawaz, Forestier, Weber, Idoumghar & Muller, 2019) in TSC. However, both methods

differ in the goal of experiments and the results of them. The literature of TSC is quite extensive

and algorithms have been implemented well before the twenty-first century (Keogh & Kasetty,

2002). More recently however, new algorithms have been proposed in TSC by Bagnall, Lines,

Bostrom, Large and Keogh (2017), who also experiment with similar distance measures used in

this paper. In short, the two academic research fields share similarities, which can be used to

make advancements in both fields.

2.2 Time Series Clustering

Clustering has many different approaches and many algorithms that can be used. The taxonomy

of time series clustering can be seen in Figure 1 and can be divided into whole series analysis

and preprocessing. In the preprocessing field, the literature is dealing with feature extraction

(Räsänen & Kolehmainen, 2009) and principal components (Lafabregue et al., 2022) along with

other methods. The focus of this paper is on whole series analysis and that includes the compar-

ison of the partition based and deep learning branches of the taxonomy tree. More information

on the methods will be in Section 4.
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Figure 1: Taxonomy of Time Series Clustering1

Lastly, density-based and hierarchical TSCL are different branches that are not discussed in

this paper, but are known to work well in the TSCL literature (Ester, Kriegel, Sander, Xu et

al., 1996; Zhang, Ramakrishnan & Livny, 1996).

2.3 Elastic Distance measures

Aside from an algorithm for clustering such as k-means or k-medoids, distances between time

series are needed for the current study. The ways in which distances are used in k-means and k-

medoids are used will be highlighted in the Methodology. There exist multiple distance functions

to use, which all alter the way of how distance is defined between time series. All functions used

in this report are in Table 1, including relevant literature surrounding these functions. Every

distance function builds upon other ideas and distances. For example, DTW was proposed to

overcome Euclidean distance limitations such as non-linear distortions. Most of the functions

are also used in the experiments of Bagnall et al. (2017), who compare the functions in the TSC

field. Since they used these functions in TSC, Holder et al. (2024) thought of implementing

them for TSCL as well. They were not the first to do this, however they did make an overview

of the literature so far. In Bagnall et al. (2017) the DTW distance is seen as a benchmark model

and various other distances perform better than DTW in this paper, including elastic ensemble

(EE), which combines multiple of the distances used in this paper. In Holder et al. (2024),

MSM emerged as the top-performing distance measure, alongside TWE and ERP, which also

showed strong performance. The distances that are used in the paper will be further discussed

in Section 4.2.

1Source: https://www.aeon-toolkit.org/en/stable/examples/clustering/clustering.html
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Distance Function Acronym Literature

Euclidean Distance ED -

Dynamic Time Warping DTW Berndt and Clifford (1994)

Derivative Dynamic Time Warping DDTW Górecki and  Luczak (2013)

Weighted Dynamic Time Warping WDTW Jeong, Jeong and Omitaomu (2011)

Derivative Weighted Dynamic Time Warping DWDTW Jeong et al. (2011)

Longest Common Subsequence LCSS Paterson and Danč́ık (1994)

Edit Distance on Real sequences EDR Chen, Özsu and Oria (2005)

Edit distance with Real Penalty ERP Chen and Ng (2004)

Move-Split-Merge MSM Stefan, Athitsos and Das (2012)

Time Warp Edit TWE Marteau (2008)

Table 1: Distance functions used in this report

2.4 Deep learning

With the recent rise in the popularity of artificial intelligence, neural networks are now being

used in numerous fields, including TSCL. In this field, specifically unsupervised neural networks

are used, since clustering is an unsupervised procedure. One of the first to use the neural

network approach in TSCL are Wang, Yan and Oates (2017) who introduced the baseline for

deep learning experiments. This baseline consists of neural network with convolutional neural

networks (CNN) architecture, which provided promising results. A great overview of different

deep learning possibilities is given in Lafabregue et al. (2022). This includes recurrent neural

networks (RNN) (Bandara, Bergmeir & Smyl, 2020), CNN (Zhao, Lu, Chen, Liu & Wu, 2017)

along with many different archetypes and autoencoder set-ups. Another review of the different

methods that can be used, can be found in Alqahtani, Ali, Xie and Jones (2021). Interestingly,

the TSCL literature often does not favour neural networks that are supposed to work well with

time series data. In Bandara et al. (2020) for example, RNN and its derivative long short-term

memory (LSTM) variants are discussed. While LSTM is often used for time series analysis,

because of the properties it has, for TSCL, it is on par or sometimes worse than other methods,

as can also be read in Lafabregue et al. (2022). However, Bandara et al. (2020) concur that

LSTM could be improved if the notion of similarity between the time series is accounted for.

This could perhaps be possible with more intricate models.

Lastly, since TSCL is a unsupervised part of machine learning, employing neural networks

could work differently, since the majority of use cases for neural network are supervised. An

example of where a supervised algorithm is used in this field is exlplored by Tavakoli, Siami-

Namini, Adl Khanghah, Mirza Soltani and Siami Namin (2020), where they propose a two step

method that uses labelled data.

2.5 Contribution

This paper contributes to the literature in the following way: Unsupervised deep neural networks

(UDNN) are compared to TSCL with elastic distance functions. This has not been done in the

literature before, since Lafabregue et al. (2022) provided only comparisons with the DTW and
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ED measures. Aside from this contribution, this paper functions as a confirmation of the results

of Holder et al. (2024) and partly also the results of Lafabregue et al. (2022). In effect, these

results could lead to more clarity in which field more research is more beneficial and can provide

insights. Lastly, a subset of the data is taken, as will be explained in the following section. This

means that another contribution of this paper is to validate the results on this smaller database,

which includes smaller datasets. This could give insights into performance on specifically smaller

datasets.

3 Data

This paper will focus on the time series data originating from the University of California,

Riverside (UCR) archive (Dau et al., 2018). This archive comprises 128 datasets spanning

various domains and sizes, including some simulated datasets. The datasets are divided into

multiple categories such as “Household devices”, “Images” and “Spectograms”. Datasets with

missing values or unequal length are dismissed. The data is split into training and testing data

for every dataset, which are predetermined.

Along with the datasets with unequal length and missing values, more datasets will be

excluded from this paper compared to the analysis performed in Holder et al. (2024). This is

due to the size of some of the datasets, which entails either a large number of clusters or a sizeable

number of data points in the time series or a combination of both. Through an investigation of

runtime during experiments, a rather arbitrary threshold is set for determining which datasets

will be included. This involves datasets with at most 10 clusters and a time series length of at

most 1000, since run times beyond these thresholds become exponentially long. Applying these

conditions results in 61 datasets from the UCR Archive that will be used in experiments. The

average number of classes is 2.92. The average size of the training set is 256.2, while the length

of the time series is on average 270.37. The UCR archive contains multiple bigger datasets, but

these are dismissed in this research.

Next, the question of normalisation arises within this research, since Holder et al. (2024) opts

to look at both non-normalised and normalised data, while Lafabregue et al. (2022) use norm-

alised data. The comparison and tests can therefore only be performed on the normalised data.

However according to Rakthanmanon et al. (2013), normalised data is better for comparison in

this field of study.

Lastly, there exists some discourse surrounding the use of the UCR Archive datasets. Spe-

cifically, these are discussed in Hu, Chen and Keogh (2016), where they look at a set of different

datasets to perform their experiments on, since they believe that in realistic settings, results

derived from UCR archive are limited. Using predefined labels is also a point of discussion.

Namely, labels can be put different than what a clustering would come up with, while still

clustering accurately. But since the only goal is to compare these different measures, the UCR

Archive is a valuable and reliable source in this sense.

6



4 Methodology

In this section, the methods regarding the distance functions, performance measures and compar-

ison options are displayed, as well as the specific neural networks that are selected. Furthermore

specific details surrounding the initialisation and running procedures will be specified.

4.1 Clustering Algorithms

In this paper, the k-means and k-medoids clustering algorithms will be used, since they are used

in Holder et al. (2024) and they are the partition based methods that are known to work well

in the literature. In order to correctly replicate the paper, k-medoids must be added.

Defined in MacQueen et al. (1967), k-means clustering is a well known clustering algorithm

set on minimising the variance of each cluster. TSCL can be seen as partitioning a time series

set T = {x1,x2, . . . ,xm} where a time series x is a sequence of n observations (x1, x2, . . . , xn)

into k clusters: T = {T1, T2, . . . , Tk}. The variance of each cluster is then minimised, as seen in

this equation.

arg min
T

k∑
i=1

m∑
x∈Ti

∥x− µi∥
2 (1)

In this equation µi is the mean of a cluster, also defined as a centroid. The norm that is

taken in this equation is the L2 norm, also known as the Euclidean distance. This paper delves

deeper into different distance functions that can be used in this minimization along side the

general L2 norm. The question still remains what the k-means algorithm specifically does to

solve this minimisation problem.

Firstly, the algorithm needs to be initialised. This includes picking example cases that

characterize a cluster. This initialisation stage can be differently executed. Methods include

random partition and Forgy’s method, along with other more intricate methods, such as the

binary-split method (Linde, Buzo & Gray, 1980) and a more robust method called ROBIN

(Al Hasan, Chaoji, Salem & Zaki, 2009). The Random Partition method randomly assigns a

cluster to each observation, while Forgy’s method randomly chooses k observations from the

dataset and uses these as the initial means. Important to note is that the number of clusters k

is known beforehand in this research, since it is assumed to be equal to the number of classes in

the classification dataset for each of the datasets that are analysed. The topic of determining

the number of clusters in a data set is a different research subject that is not investigated in this

paper.

After the initialisation, an update step is performed, where now that the centroids have

been selected, the new centroid means are calculated to find the new centroids. This algorithm

terminates eventually, since this process is nonnegative monotonically decreasing. It could be

that this takes a considerable amount of time, so a stopping condition can be set.

The difference in k-medoids lies in the update step. Instead of calculating the mean for the

observations in the cluster, k-medoids picks the observation that has the minimal distance to

the other observations in the cluster. This means that only the distances between observations

are needed, compared to new average calculations.
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In these experiments, k-means and k-medoids will both be used with random initialisation.

The choice of initialisation is made through findings from Holder et al. (2024), who concluded

that among the investigated initialisation methods, no significant differences were found between

them.

4.2 Distance Functions

As mentioned, distance measures are needed to perform the update step in the k-means and

k-medoids algorithms. Since the simple Euclidean distance is not the only way of calculating

distances between time series, nine other functions will be discussed. The rest of the methodology

of the distance functions resembles the methods and techniques used in Holder et al. (2024).

It is important to note that specific algorithms that find the distances can be found in either

Holder et al. (2024) or in the specific originating literature in Table 1. The next subsections

elaborate more on each elastic distance.

4.2.1 Dynamic Time Warping and variations

The elastic measure that is most extensively used is Dynamic Time Warping (DTW). The idea

is to warp two series to align with each other better by using a warping path.

Consider the sequences a = {a1, a2, . . . , an} and b = {b1, b2, . . . , bn}. Let N(a,b) represent

the n× n pointwise distance matrix between a and b. A warping path through this matrix can

be defined as:

P = ⟨(e1, f1), (e2, f2), . . . , (es, fs)⟩ (2)

where the path is constrained to avoid backtracking. The objective is to find the path P ∗ of

length k that minimises the total distance:

D∗
P (a,b, N) =

k∑
i=1

N(ei, fi) = ddtw(a,b) (3)

While many potential paths exist, the primary focus is on the path P ∗ that defines the

Dynamic Time Warping (DTW) distance. This optimal path can be determined using a dynamic

programming approach, which can be made more efficient with techniques such as the Sakoe-

Chiba band (Sakoe & Chiba, 1978).

The first modification is Derivative Dynamic Time Warping (DDTW). The idea is to first

transform the series into a differential series. For a given series a, the differential series is

a′ = {a′2, a′3, . . . , a′m−1}. Here, a′i is the average of the slopes between ai−1 and ai, and ai and

ai+1. This modification involves computing the DTW distance of the differenced series:

dddtw(a,b) = ddtw(a′,b′). (4)

Next is Weighted Dynamic Time Warping (WDTW). WDTW introduces a weight penalty

based on the warping distance between points in the warping path. When constructing the

distance matrix N , a weight penalty w(|i− j|) for a distance of |i− j| is applied, such that:
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Nw
i,j = w(|i− j|) · (ai − bj)

2. (5)

Various weighting functions can be used, but a logistic weight function is suggested in (Jeong

et al., 2011). The problem is then analogous to other dynamic time warping problems, with a

modified N matrix:

dwdtw(a,b) = D∗
P (a,b, Nw). (6)

WDTW also has a derivative version, known as Weighted Derivative Dynamic Time Warping

(WDDTW), which is expressed as:

dwddtw(a,b) = dwdtw(a′,b′). (7)

4.2.2 Longest Common Subsequence

The next distance can be seen as different way of looking at DTW. Instead of aligning two time

series by warping points onto each other to form a path, the Longest Common Subsequence

(LCSS) distance creates a common series from the input sequences. As the name suggests, it

finds the subsequence that is obtained through edit operations, such as deletion, with a certain

cost. It does not provide a path from start to end, in the same way as DTW. Instead, LCSS

describes the edit operations. The LCSS algorithm would have to identify matches between

series and since this is a continous case, a distance treshold must be considered in the algorithm.

4.2.3 Edit distances

The previous distance LCSS was modified to introduce the Edit Distance on Real sequences

(EDR), which also has a distance threshold to determine when two elements of a series match.

Unlike LCSS, EDR assigns a constant penalty for elements that do not match, resulting in

deletions (or gaps) in the alignment.

Edit distance with real penalty (ERP) was developed to address gaps in sequences in a

different manner. While LCSS allows for gaps between elements, ERP assigns penalties to these

gaps using a specific parameter. The primary difference from EDR is in how the penalty is

determined. For ERP, the penalty is based on the distance to a predefined parameter rather

than a fixed value. Furthermore, a cost matrix is employed that accounts for matching costs,

incorporating a term for edit operations, such as inserting or deleting elements. ERP is therefore

seen as an combination of earlier methods, as it includes the penalty mechanism of EDR but

integrates it with a cost function linked directly to edit penalties. Additionally, ERP uses the

squared distance for pointwise comparisons in the distance computation.

4.2.4 Move-Split-Merge

Move-Split-Merge (MSM) is in theory quite similar to ERP. Unlike ERP however, where the

cost of an edit is based on the distance to a parameter, MSM focuses on the absolute difference

between values.
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As the name suggests, MSM has a split operation, which is where the main difference lies.

Namely, the cost of an edit is defined differently to ERP. The cost of this operation depends on

whether the value being inserted falls between the values being split. If it does, the cost is a

fixed constant; if not, it includes an additional cost based on the deviation from the surrounding

points. To summarize it, MSM uses a different cost system for insertions and deletions compared

to ERP.

4.2.5 Time Warp Edit

Lastly, Time Warp Edit (TWE) is used in experimentation. TWE uses a parameter called

stiffness, which controls the penalty applied to the distance between matched points. This

makes TWE similar to weighted warping measures, where no penalty is applied when stiffness

is zero. For deletion and insertion operations, TWE applies a constant stiffness penalty along

with an additional edit penalty. This approach ensures that the warping is considered only for

consecutive points within the same series.

Overall, TWE integrates the flexibility of warping with the specificity of editing into one

distance measure.

4.3 Extension: Deep Neural Networks

The extension of this paper regards the use of unsupervised deep neural networks (UDNN) for

TSCL. The paper of Lafabregue et al. (2022) delves deeper into this subject. As stated before,

this study aims to compare the best performing UDNN clustering methods from this paper to

the elastic distance functions based TSCL. To find the best performing model, Lafabregue et

al. (2022) tests a large number of different UDNNs. Each UDNN proposed in Lafabregue et al.

(2022) is constructed from three main components: architecture, parameter training method and

lastly clustering training method. The authors conclude that a model with CNN architecture,

reconstruction loss and no clustering loss performs best and this model will therefore be used

for comparison. However, to validate the results, five other models are introduced with differing

components. The remaining part of the section explains the components in more detail and the

differences between the possibilities, along with the models that will be tested.

First of all, there is the architecture of a UDNN. This refers to the number of layers and the

way the network is set up, including the hyperparameters in these layers. There are multiple ar-

chitecture types discussed in Lafabregue et al. (2022), including CNN, recurring neural networks

(RNN) and fully connected neural networks (FCNN). These architectures all consist of multiple

layers which include an input layer, followed by hidden layers and lastly the output layer. Each

architecture distinguishes itself by the way its hidden layers operate. Architectures such as

CNN and FCNN are feedforward networks, since information between layers can only go in one

direction, while archetypes such as RNN work with information that can be two-directional.

If the architectures are compared, CNN can deal with hierarchical data better than other

neural network archetypes, since they start with relatively simple patterns in the first layers and

then look at more intricate patterns and assemble patterns in the later layers. The convolution

part of the network can be seen as applying and sliding a filter over the time series. Specifically

1D-convolutions are used. This means that each layer applies a certain number of filters of a
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certain kernel size to the input sequence. FCNN archetypes could be described as “vanilla” neural

networks. As the name suggests, all neurons are fully connected. These models are particularly

good at distinguishing non-linearly separable data patterns. Lastly, RNN architectures, which

also includes the Long short-term memory (LSTM) network, are specifically useful when looking

at time series data or other sequenced data, since existing patterns can be more easily detected.

As mentioned in Section 2.4, RNN architectures are interestingly not always the best performing

choice for TSCL, while they do excel at finding patterns in sequenced data.

The two other architectures that are examined other than CNN are RNN and the mul-

tilayered perceptron (MLP), where the latter is an example of an FCNN.

The second component is the training of the encoder’s parameters. Since this study uses

unsupervised networks, meaning without labels, a different way of training must be examined.

For UDNNs it is common to not use the raw data, but transform it in the latent space using

an encoding function. Afterwards, patterns in this latent space are found and captured by a

decoding function. This process is often referred to as a proxy task, since this is a side objective

to train the UDNNs to learn a representation that will favor a good clustering. Autoencoders

(AEs) can be used as one of the methods for unsupervised training. To train this AE, the mean

squared error is minimised.

Lr =
1

n

n∑
i=1

(xi − g(f(xi)))
2 (8)

where f is the encoding function, g the decoding function and [x1, ..., xn] the data. This is

referred to as the reconstruction loss. Interestingly, this is one of the easiest ways to train the

encoder’s parameters, while it performs the best in the results of Lafabregue et al. (2022). There

exist multiple other methods to train the model explored in Lafabregue et al. (2022), including

generating realistic data to train the encoder. This paper will only include the reconstruction

loss in experiments.

The last ingredient is the possibility of specific training of parameters on clustering loss.

Previous training methods aim at capturing relevant patterns in the data. However, this does

not necessarily mean that a suitable clustering is prioritised. Therefore, Lafabregue et al. (2022)

introduce an optional complementary clustering loss. These losses include popular methods

such as deep embedded clustering (Xie, Girshick & Farhadi, 2016) and also losses specifically

designed for time series, such as the Deep Temporal Clustering Representation (DTCR). This

representation, introduced by Ma, Zheng, Li and Cottrell (2019) uses a three layer RNN encoder

and a single RNN decoder. The training objective consists of three parts: a reconstruction loss,

a real/fake loss and a k-means loss.

Despite there being various other clustering losses stated in Lafabregue et al. (2022), their

results show that the existing and explained clustering losses do not contribute significantly to

the performance of the clustering. To test this hypothesis, the DTCR is included as one of the

options in experiments, alongside the option of no clustering loss.

So in the end, this leads to six models that will be tested: CNN-None, CNN-DTCR, MLP-

None, MLP-DTCR, RNN-None and RNN-DTCR, where “None” refers to the absence of clus-

tering loss. To reiterate, this selection is just a small part of the possibilities presented in
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Lafabregue et al. (2022) and the idea is to validate the use of CNN-None.

The UDNN experiments work as follows in practice: The 61 datasets are selected from

the total archive. Each model is trained through both the training and clustering phases if

applicable. After the initial training phase, the trained model is used as a starting point for

subsequent clustering methods. The models are trained on the training set and then tested on

the test set, following the approach used by Ma et al. (2019). This means that the minimisation

of the losses, both the reconstruction loss and the clustering loss, is performed on the training

set, which leads to a model that performs the clustering on the actual test set. This ensures

that the learned latent space can be effectively applied.

4.4 Clustering Metrics and Comparison

To compare the clustering experiments in an organised and viable way, the following three

clustering metrics are used for each experiment. Note that these measures are also used in

Holder et al. (2024).

The first and arguably the most important metric that is used in the evaluation is clustering

accuracy (CL-ACC). As the name implies, clustering accuracy tests how accurate the clustering

is of the experiment. Since the data has predefined labels, the accuracy can be calculated and

summed up in the following equation:

CL-ACC(y, ŷ) = max
s∈Sk

1

|y|

|y|∑
i=1

1, if yi = s(ŷi)

0, otherwise
(9)

This equation validates if a cluster prediction ŷ is correct in the sense that it matches with the

best matching class value Sk. It is a maximization and to avoid calculating every permutation

to find the maximum, an optimization algorithm is implemented, which includes constructing a

cost matrix and assigning clusters using the Hungarian Algorithm (Kuhn, 1955) to validate the

correctness of the cluster assignment. The indicator function in the equation is true when the

cluster value is equal to the class value it is associated and zero otherwise.

The Rand index (RI) (Rand, 1971) looks at similarity between two sets of labels. The

following equation encapsulates the idea behind the Rand Index:

RI =
number of pairs in both sets

total pairs
(10)

This essentially boils down to a similarity measure between the cluster labels and the pre-

defined labels. A larger RI index indicates a better clustering. Since this method looks at the

partition of “correct” pairs, the value lies between 0 and 1. The clustering metric that will be

used is an altered form of the RI, which compensates for randomness, namely the adjusted rand

index (ARI). Instead of taking the actual values of the pairs of the labels, a contingency matrix

is set up, where pairwise comparisons are made between clusterings made by a random model.

Note that the value of the ARI can now also be negative, since the expected index can be larger

than the actual index (Wagner & Wagner, 2007). ARI eliminates any randomness that could be

present when comparing the labels. This is especially useful when comparing datasets with a

large number of clusters, since random equalities can occur more often. However, this research
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focuses on datasets with a smaller number of clusters, so one could argue that the ARI measure

is not necessary in this research and RI should be used. This is not the case, seeing that the

deep neural network extension of Lafabregue et al. (2022) also uses ARI in their analysis. In

order to conduct a comparison, ARI is chosen. A last thing to note is that RI and ARI do

not have permutation problem that needs be accounted for, since a direct comparison is made

between the sets.

Lastly, Normalised Mutual Information (NMI) is also a measure used to evaluate the sim-

ilarity between two clustering results by quantifying the shared information between two sets.

Mathematically, NMI between two clusters U and V is defined as:

NMI(U, V ) =
2 · I(U ;V )

H(U) + H(V )
(11)

where I(U ;V ) is the mutual information between clusters U and V , and H(U) and H(V )

are the entropies of U and V , respectively. Mutual information I(U ;V ) measures the amount

of information obtained about one cluster by knowing the other by using the marginal and joint

distributions of data items in U and V , while entropy quantifies the uncertainty or disorder

within each cluster. A higher value of the NMI indicates a better alignment between results.

There are different methods of defining NMI as Vinh, Epps and Bailey (2009) point out. Nev-

ertheless the key part is that the normalisation results in a stable range [0, 1] within which NMI

values can fall. Furthermore, Lafabregue et al. (2022) also use NMI when comparing clustering

results.

Comparing these metrics within experiments is the last step in obtaining the results. These

metrics can be compared between the methods using pairwise Wilcoxon signed-rank tests and

cliques resulting from a Holm correction (Benavoli, Corani & Mangili, 2016). For all tests that

will be performed, α = 0.05 will be used.

4.5 Practical Implementation and tuning

The authors Holder et al. (2024) have provided example code and a guide on how to replicate

the research. As stated before, due to long runtime, some of the datasets will not be used. In

Lafabregue et al. (2022), code is also provided for replicating the neural networks.

All experiments are run on an AMD Ryzen 7 4700U, 2000 MHz in Visual Studio Code with

Python.

5 Results

The results section is structured as follows. Firstly, the elastic distance measures will be com-

pared using the classification statistics mentioned in the methodology. This also includes a

comparison of the k-means and k-medoids. Lastly, the neural network alternatives will be com-

pared within this category and thereafter with the best performing clustering methods with

elastic distance functions, which will indicate which of the methods is preferred.
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5.1 Elastic Distances and algorithms

The evaluation of the elastic distances can be seen in Figure 2, where the k-means and k-medoids

results are evaluated and critical differences are shown.

(a) Accuracy k-means (b) Accuracy k-medoids

(c) ARI k-means (d) ARI k-medoids

(e) NMI k-means (f) NMI k-medoids

Figure 2: Critical difference diagrams for k-means and k-medoids clustering separately on 61
UCR datasets test data for three performance measures. Algorithms are listed on the sides with
their corresponding average ranks, where a lower rank is better. The horizontal lines connect
algorithms whose performance differences are not statistically significant. If two algorithms are
not connected by a line, their performance difference is statistically significant.

These critical differences show that k-means and k-medoids clusterers perform relatively sim-

ilar. Measures such as ERP, MSM, EDR and TWE perform perform generally better, although

the difference between these measures seems smaller with k-means compared to k-medoids,

where the latter shows a clearly better results for ERP. In Holder et al. (2024) MSM is the best

performing measure, while it seems to be overshadowed here by the ERP distance. The worst

performing experiments also coincide with the results of Holder et al. (2024), which include

LCSS, ED and variants of DTW. They are on the other hand not significantly worse than all

off the other measures.
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A comparison of the runtimes is also given in Table 2.

Distance k-Means k-Medoids

MSM 55.73 43.53

TWE 1329.88 293.31

ERP 492.49 95.16

WDTW 44.57 54.61

DTW 138.02 53.33

ED 0.07 21.94

DDTW 395.44 96.77

WDDTW 123.44 97.42

LCSS 389.79 98.18

EDR 381.92 91.60

Table 2: Average runtime of experiment on 1 dataset in seconds of k-means and k-medoids over
61 datasets. In bold are the algorithms that took the longest.

These results implicate that TWE is the the algorithm that has the longest runtime. This

means that although TWE is a well-performing measure, the long runtime could be something

to take into account when implementing in practice. Notably also, the k-medoids experiments

have a considerably lower runtime. This can be understood by referring to the explanation of

how k-medoids works, which is stated in Section 4.1. For k-medoids only the distances between

observations are needed, compared to new average calculations in k-means. This severely lowers

the runtime.

It is also important to consider the datasets Holder et al. (2024) use. Since this paper takes

roughly half of the datasets that are used in Holder et al. (2024), the results can also be compared

to these datasets specifically. Comparison of the accuracy can be seen in Table 3 for the same 61

datasets, while in Table 4 the accuracy of the full sample of Holder et al. (2024) is used. These

results confirm that k-medoids algorithms have a higher accuracy overall, compared to k-means,

as was also stated in Holder et al. (2024). It is interesting however to compare Table 3 and 4,

as can be seen that the accuracy is exceptionally different between the “full” sample and the

results that are found in this paper. These results indicate that datasets with a larger number

of clusters and bigger size could lead to a lower average accuracy. This would match with the

complexity of larger datasets and number of clusters. Especially the second criteria could lead

to these results, since correctly clustering a time series to one of two clusters seems intuitively

easier than to correctly cluster it when ten or more clusters are possible.

Then there exists a discrepancy in the results in Table 3. The results are similar, but not

exactly equal. For the k-medoids algorithm, ERP is in both the best performing measure in

accuracy. However, WDDTW performs the best in this paper’s results, while MSM performs

better in the results of Holder et al. (2024). This discrepancy might be explained by method

of implementation. Newer versions of packages such as Tensorflow, aeon and scikit are used in

experimentation, as well as a newer version of python.
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Accuracy results 61 datasets Accuracy results 61 datasets in Holder et al. (2024)

Distance k-Means (%) k-Medoids (%) Difference (%) k-Means (%) k-Medoids (%) Average difference

MSM 60.87 63.20 2.33 63.01 64.67 1.81

TWE 60.30 62.19 1.89 61.95 63.64 1.55

ERP 61.00 66.07 5.08 64.14 66.03 1.55

WDTW 60.44 61.72 1.28 62.07 62.66 1.29

DTW 60.05 61.58 1.09 61.49 62.82 1.34

ED 59.18 60.00 0.82 60.86 61.31 1.50

DDTW 60.60 61.18 0.58 55.01 59.90 -3.44

WDDTW 61.43 58.37 -3.06 57.21 57.88 -2.34

LCSS 58.16 60.30 2.15 57.97 60.35 -0.07

EDR 59.65 62.41 2.76 59.61 59.67 -1.39

Table 3: Accuracy averaged over 61 problems for k-means and k-medoids. The average difference
concerns the difference between the results of Holder et al. (2024) and results found in this paper
of the same 61 datasets. The best performing algorithm is in bold

Distance k-Means (%) k-Medoids (%) Average difference

MSM 54.16 55.69 7.11

TWE 52.85 55.63 7.00

ERP 50.89 54.83 10.68

WDTW 52.25 53.58 8.17

DTW 49.08 52.96 9.80

ED 51.78 51.50 8.00

DDTW 42.57 50.22 14.50

WDDTW 46.99 49.55 11.63

LCSS 45.76 49.88 11.41

EDR 45.20 49.70 13.58

Table 4: Accuracy results averaged over 112 problems from Holder et al. (2024). The average
difference concerns the difference between these results of Holder et al. (2024) and results found
in this paper of 61 datasets. The best performing algorithm is in bold

Next a comparison and critical difference diagram of the best performing models is given in

Figure 3. It can be seen that the k-medoids methods perform generally better on all performance

metrics. This concurs with the results in Table 3.
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(a) Accuracy (b) ARI

(c) NMI

Figure 3: Critical difference diagrams for best performing distance measure analysis

5.2 Neural Network

Firstly, a comparison is made between some of the possibilities within the neural network frame-

work that Lafabregue et al. (2022) set up. This includes the architectures mentioned in the

Methodology and the critical difference results, which can be seen in Figure 4.

(a) Accuracy (b) ARI

(c) NMI

Figure 4: Critical difference diagrams for chosen neural network based algorithms on the clus-
tering metrics

From Figure 4 it could be concluded that models without clustering loss training are pre-

ferred, since CNN and MLP architectures without clustering loss perform better than the coun-

terparts with DTCR. The scatterplots of the results, along with the p-values of the Wilcoxon

test are in Figures 5 and 6. It is noted that a small subset of clustering losses is experimented
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with on a small set of network architectures, so this does not dismiss the use in clustering loss at

all. Also the RNN architecture performs better with the DTCR clustering loss. Ultimately, the

models CNN and MLP without clustering loss perform the best of the UDNN models that are

examined. However they are not significantly better on all performance measures. Furthermore,

it can also not be said that CNN-None is the best model based on these results. However, this

is the model that will be used in further comparison, since this is the model Lafabregue et al.

(2022) stated as the best and it is still one of the better performing models in this experiment.

Figure 5: ARI scatterplot CNN with
and without clustering loss

Figure 6: NMI scatterplot CNN with
and without clustering loss

Now that the CNN model is confirmed to be one of the better models for TSCL, it can

be compared to interesting distance based clustering results. Figure 7 picks some of the best

performing models, which are also in Figure 3, the CNN model and DTW and ED measures.

The last two are chosen, since this paper aims to validate the claim of Lafabregue et al. (2022),

who conclude that CNN based models outperform DTW and ED based time series clustering.

(a) Accuracy (b) ARI

(c) NMI

Figure 7: Critical difference diagrams for interesting combinations of experiments
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It is apparent that CNN is not the best performing algorithm, also when looking at Figure

8, which shows the boxplot of the accuracy for these measures. The CNN algorithm looks

quite different from all other measures and is more evenly spread towards its mean, while also

obtaining some very low scores. It is important to note that the CNN algorithm does beat the

DTW and ED distance measures, even if it is only marginally.

Figure 8: Boxplot of clustering accuracy (y-axis) of 8 different algorithms

This can also be seen in Table 5, where the average performance of the best performing

algorithms for the three performance measures is stated. Interestingly, on average CNN performs

similar to k-means ERP, but it can also be viewed that the other methods outperform CNN.

CNN KMeans-erp Kmeans-msm Kmedoids-erp Kmedoids-msm

Accuracy 0.61 0.61 0.61 0.66 0.63

ARI 0.18 0.18 0.19 0.25 0.22

NMI 0.21 0.21 0.23 0.27 0.26

Table 5: Average performance measures for the best performing algorithms over 61 datasets

The question remains why a deep neural network could not outperform all elastic distance

based approaches. This could have multiple explanations. Firstly, there is the nature of the

unsupervised context. CNNs typically excel in supervised learning context and even with an

autoencoder set-up, the lack of a specific model trained for TSCL could have an impact on

the results. Secondly, there is the set-up of this experiment, specifically the datasets that are

chosen. These include the smallest datasets from the UCR archive with the smallest number

of training observations, compared to the larger datasets which also exist in the archive. The

amount of training is crucial for a neural network. The lack of extensive training possibilities

through smaller datasets could be a reason why CNN does not perform better.

On the other hand, methods such as MSM and ERP are specifically designed for time series

data and excel at capturing temporal relationships and distortions. These methods do not

require training and are less likely to fail due to the data’s specific characteristics.
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6 Conclusions

This study explored two primary approaches: elastic distance-based methods and unsupervised

deep neural networks, aiming to optimise clustering performance. Specifically, k-means and

k-medoids with nine elastic distances and a convolutional neural network were tested across 61

datasets from the UCR archive.

First, in addressing whether the results from the replication match those of Holder et al.

(2024), the findings confirmed several key insights from their study. Notably, k-medoids models

exhibited better performance than k-means and MSM and ERP measures consistently outper-

formed DTW and other examined measures. By taking a subset of the full database Holder

et al. (2024) use, it is interesting to see that the ERP measure performs better in general on

smaller datasets. The results are not exactly the same however, which might be explained by

version of software or other randomisation.

Secondly, all results are compared through three performance measures: clustering accuracy,

adjusted Rand index, and normalised mutual information. This selection is also used in Holder

et al. (2024) and is also obtained for the neural networks.

The following sub-question regards the identification of the “best” deep neural network for

time series clustering. The CNN-None model proves to be a fitting model compared to other

options. On the other hand, it cannot be said that it is significantly better than the MLP-None

and RNN-DTCR models.

The computation time comparisons revealed that the distance measure TWE has the longest

runtime. Another result showed that k-means has significantly longer runtimes than the k-

medoids algorithm.

The comparisons between the neural network and the best-performing elastic distance-based

algorithms showed that the CNN model cannot outperform the MSM and ERP distance meas-

ures. While it improves upon measures such as DTW and ED, it does not conclusively demon-

strate superior performance.

In summary, while UDNN models for TSCL are promising, especially with larger and more

diverse datasets, traditional elastic distance measures like MSM and ERP remain highly effect-

ive and reliable. For practical applications where robustness is critical, distance-based methods

should continue to be favoured. Future research could explore hybrid approaches such as imple-

menting k-medoids instead of k-means initialisation in the neural networks. In the literature,

there exists no combination of these two branches of TSCL so this could be interesting to com-

bine in a hybrid solution if possible. Furthermore, one could delve deeper into other medoids

type algorithms, since this algorithm performed best in this study. This could involve parti-

tioning around medoids, described in Leonard Kaufman (1990). As it stands now in this paper

however, unsupervised neural networks cannot outperform distance based algorithms in the field

of time series clustering.
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Appendix

Figure 9: Scatterplot of accuracy CNN with and without clustering loss

Figure 10: Visualisation of performance measures on neural network verus k-medoids
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Parameter Value

Batch Size 10

Number of Filters 40

Compared Length null

Depth 10

Number of Steps 10

Number of Steps for Pretraining 10

Kernel Size 3

Penalty null

Learning Rate 0.001

Number of Random Samples 1

Negative Penalty 1

Latent Dimension 320

Reduced Size 160

Table 6: List of default hyperparameters used in deep learning experiments
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