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Abstract

In this thesis, we evaluate if the inclusion of extra distortion measures in the convex

k-means algorithm, as described by Modha and Spangler (2003), leads to higher-quality

clustering. The proposed distortion measures are the Manhattan and Chebyshev distances

for numerical variables and the Jaccard distance for categorical variables and text clustering.

We use four datasets to assess the performance of the distortion measures. Three contain

numerical and categorical variables, the other dataset consists of text documents. We imple-

ment the convex k-means algorithm of Modha and Spangler (2003) with the added distortion

measures. First, we replicate the results presented in the original paper and then we present

the differences the alteration makes. The replicated results are very close to the original res-

ults for the numerical and categorical datasets, whereas we encounter difficulties obtaining

similar results for text clustering. We find that including the three proposed distance meas-

ures leads to a considerable increase in micro-p values for the datasets containing numerical

and categorical variables. However, for text clustering, the Jaccard distance performs poorly,

resulting in substantially lower micro-p values. Our findings support using the Manhattan,

Chebyshev and Jaccard distances for clustering data with numerical and categorical vari-

ables. We do not find convincing results to warrant the same motivation for the Jaccard

distance for text documents.
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1 Introduction

Clustering methods are crucial for research and applications in various disciplines, including data

mining, data science, artificial intelligence and machine learning (Ezugwu et al., 2022). Differ-

ent clustering techniques include Partitioning (K-means), Hierarchical, Density-based, Grid-

based, Soft, Model-based and Ensemble clustering (Oyelade et al., 2019). K-means clustering

is still considered the most popular clustering method, over 50 years after being introduced by

MacQueen (1967) (Sinaga & Yang, 2020). The technique is used to partition a dataset into

k disjoint clusters, where each data point is assigned to the cluster with the nearest centroid,

the cluster’s mean. It is favoured for its relatively simple implementation, efficiency and lim-

ited memory use (Morissette & Chartier, 2013). Naturally, there has been a lot of research

on improving upon the original k-means clustering technique after its invention. Some not-

able alterations and extensions are Mini-Batch k-means (Sculley, 2010), Unsupervised k-means

clustering (Sinaga & Yang, 2020), k-means++ (Arthur & Vassilvitskii, 2007) and the convex

k-means algorithm (Modha & Spangler, 2003).

Because k-means clustering aims to minimize the sum of the distances between data points

and the corresponding cluster centroid, the distance function used in the process is essential

to the results. In the original k-means clustering algorithm, and most of its applications, the

Euclidean distance is employed. In the alterations to the algorithm discussed by de Amorim

(2016), various distance functions are used: weighted squared distance, cosine distance, matching

dissimilarity distance and the Minkowski distance (which generalizes Manhattan, Euclidean and

Chebyshev distances). In the same paper, they note that the use of a Euclidean distance

function results in clusters with a bias towards circles or spheres, dependent on the dimensions.

Therefore, the additional use of other distance functions makes k-means clustering substantially

more flexible. However, as is also stated in the same paper, all distance functions result in a

certain type of clustering bias. The Manhattan distance, for example, leads to clusters which

are diamond-shaped, whilst the Chebyshev distance gives square-shaped clusters (in the two-

dimensional case). It depends on the dataset at hand which distance function leads to the best

results.

The original k-means clustering method is restricted to functioning only with numerical

data (Ahmad & Dey, 2007). It stands to reason that in datasets, more often than not we

also encounter categorical data. Different approaches to including categorical data in k-means

clustering have been developed after its invention. For example, Dorman and Maitra (2022) use

the Hamming distance instead of the Euclidean distance and replace the means with modes in

the objective function of the k-means algorithm. Alternatively, Chan, Ching, Ng and Huang

(2004) make use of the simple matching dissimilarity distance measure for categorical variables.

Cordeiro de Amorim and Mirkin (2012) transform categorical variables into numerical ones

and then apply the same distance function on both. Another interesting application field for

clustering which can not be dealt with by regular k-means clustering is text documents. As is

the case with data containing categorical variables, text document clustering requires different

distance functions. As stated by Hornik, Feinerer, Kober and Buchta (2012), the use of the

Euclidean distance results in large documents being overrepresented. Dhillon and Modha (2001)

suggest the use of the cosine distance to remove the influence of document sizes, as is done by
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Modha and Spangler (2003). Abuobieda, Salim, Binwahlan and Osman (2013) compare three

distance measures, the Normalized Google, cosine and Jaccard distances with regards to their

performance in text clustering. They conclude that the Jaccard distance performs the best.

Pandit, Gupta et al. (2011) also state that the Jaccard distance works well for text document

clustering.

In this thesis, we evaluate whether the use of alternative distortion measures can improve the

results of the convex k-means algorithm, as proposed by Modha and Spangler (2003). The ori-

ginally proposed distortion measures are the Euclidean distance for numerical variables and the

cosine distance for categorical variables. We generalize the Euclidean distance to the Minkowski

distance as a distortion measure for numerical variables, as described by Cordeiro de Amorim

and Mirkin (2012). For categorical variables, we add the Jaccard distance, which is also done

by Kongsin and Klongboonjit (2020). The main research question which we aim to answer in

this thesis is therefore:

Can we attain higher micro-p values with the convex k-means algorithm when we also employ

the Minkowski distance (for p = 1 and p→∞) for numerical variables and the Jaccard distance

for categorical variables and text clustering?

As a first step, we replicate the results presented by Modha and Spangler (2003). Then,

we consider multiple combinations of distortion functions, using the Minkowski distance with

values of p equal to 1, 2 or ∞ (Manhattan, Euclidean and Chebyshev distances) for numerical

variables and using the cosine and Jaccard distances for categorical variables. For text clus-

tering, we use the cosine and Jaccard distances. We use the same datasets as used by Modha

and Spangler (2003). They contain data on the prevalence of heart disease, annual income,

credit card applications and news articles. We want to see if we can improve upon the original

algorithm by implementing more distance functions. As mentioned in the introduction, different

distance functions are well-suited for different types of data. The proposed algorithm is not

meant for a specific type of data and in the original paper, it is applied to varying types of

datasets. Therefore, considering a wider variety of distance functions could be a valuable con-

tribution to the original algorithm. We include the Minkowski distance because this will make

the algorithm more flexible towards different data shapes. The motivation behind including the

Jaccard distance is its potentially superior performance for document clustering. In general,

expanding the tools used in the convex k-means algorithm is a straightforward extension to the

original paper. The original algorithm is limited to the two distortion methods chosen by the

authors, whereas other distortion methods also show very promising results. We are interested

in exploring whether the additional distortion methods can outperform the original combination

of the Euclidean and cosine distances in the convex k-means algorithm.

Our replication for the numerical and categorical datasets yields results which closely re-

semble the original results. On the other hand, it proves to be more complicated to replicate the

results for text clustering. Our replicated results differ from the original results considerably.

Regarding our extension, we find promising results in favour of the Manhattan, Chebyshev and

Jaccard distances for numerical and categorical features. In 12 of the 15 clusterings performed
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Table 1: Variables for the Heart Disease dataset

Numerical variables Categorical variables

Age Sex
Resting blood pressure Chest pain type
Serum cholesterol Fasting blood sugar above 120 mg/dl
Maximum heart rate Resting ECG results
ST depression induced by exercise relative to rest Exercise-induced angina

Slope of the peak exercise ST segment
Major vessels (0-3) coloured by fluoroscopy
Normal, fixed defect or reversible defect

for the non-text datasets, the best results are found using a combination of distance measures

which deviates from the original combination of the Euclidean and cosine distances. For text

clustering, the results are not convincing. The Jaccard distance results in substantially lower

micro-p values for all three clusterings performed.

This thesis proceeds as follows. In Section 2, we give an overview of the datasets used to

run the algorithm. Then, in Section 3 we present the methodology used in the paper. This is

a combination of both the original methodology used by Modha and Spangler (2003) and the

new methodology we introduce as an extension. Section 4 contains the replication and extension

results and we conclude our research in Section 5, where we also present some ideas for future

research.

2 Data

We use the same data used by Modha and Spangler (2003). They use four datasets from the

UCI Machine Learning Repository: Heart Disease (Janosi & Detrano, 1988), Adult (Becker &

Kohavi, 1996), Statlog (Australian Credit Approval) (Quinlan, n.d.) and Twenty Newsgroups

(Mitchell, 1999). From now on, we will refer to the Statlog dataset as Australian, following

the notation of Modha and Spangler (2003). The datasets Heart Disease and Australian are

relatively small, whereas the Adult and Twenty Newsgroups datasets are much larger.

The dataset Heart Disease contains 303 observations, n = 297 after removing observations

with missing values. Each data point contains 13 attributes, 5 of which we consider to be

numerical and 8 categorical, see Table 1. The observations are divided into two classes: those

belonging to people with a heart disease and those without.

The dataset Adult contains 48842 observations, n = 47621 after removing observations with

missing values. The dataset contains 14 attributes, 6 are numerical and the remaining 8 are

categorical, see Table 2. The observations are grouped based on whether their annual income is

above or below $50,000.
The dataset Australian contains n = 690 observations and there are no missing values. There

are 14 attributes, 6 of which are numerical and 8 categorical. Due to the confidentiality of the

data, as the dataset concerns credit card applications, the attributes have no descriptions or

meaningful names. The dependent variable is also not specified, but once again the data points

are split into two classes.

The dataset Twenty Newsgroups contains 20,000 text documents. The documents are taken

from 20 online newsgroups, with 1000 documents per newsgroup. From the dataset Twenty
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Table 2: Variables for the Adult dataset

Numerical variables Categorical variables

Age Work class
Final weight Education
Education number Marital status
Capital gain Occupation
Capital loss Relationship
Hours per week Race

Sex
Native country

Newsgroups, we use the following 10 newsgroups:

comp.sys.mac.hardware comp.windows.x misc.forsale rec.autos

rec.sport.baseball sci.crypt sci.space soc.religion.christian

talk.politics.guns talk.politics.mideast

So for the 10 newsgroups we use, we get a total of 10000 documents, n = 9961 of which are

left when leaving empty documents out of consideration. The empty documents are signalized

by checking the number of lines specified in the document, i.e. there might still be text in

empty documents, but it is stated in the document that it does not have content. Modha and

Spangler (2003) do not explicitly state what classes they use for validating the clusters, but

the most straightforward choice is to use the original newsgroups as classes. This also aligns

with the fact that they use a minimum of 10 clusters, which corresponds to the number of

newsgroups. Thus, the classes used in this thesis are the original newsgroups. Because this

dataset consists of text, the number of variables is much higher when compared to the other

three datasets, which contain exclusively numerical and categorical variables. The reason for the

high number of variables is that the variables are constructed from 1-, 2- and 3-word phrases,

which we describe more elaborately in Section 4.2. This also means the degree of complexity is

a lot higher, especially when combined with the relatively large number of instances.

3 Methodology

The methodology which we apply in this thesis is largely based on the methodology applied

by Modha and Spangler (2003). We mostly use the same notation and introduce new notation

where necessary. If we deviate from the original notation, we state this when using it for the

first time. The part of the methodology which corresponds to that used by Modha and Spangler

(2003) is not described as extensively as it is in the original paper. In the original paper, the

distortion measure for numerical variables is the Euclidean distance and the distortion measure

for categorical variables and text clustering is the cosine distance. We generalize the numerical

distortion measure to the Minkowski distance (for p = 1, 2 and ∞) and add the Jaccard distance

as a second categorical and text document distortion measure. We discuss the data model

in Section 3.1 and present the used distortion measures in Section 3.2. The corresponding

generalized centroids are given in Section 3.3. Then, the convex k-means algorithm is discussed

in Section 3.4 and the method to determine the optimal feature weighting in Section 3.5. Lastly,
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we introduce the metrics we use to assess the quality of the attained clustering in Section 3.6.

3.1 Data model

Consider a dataset in which each observation can be seen as a tuple of m component feature

vectors. We then denote a data object as x = (F1,F2, . . . ,Fm), where Fi is a component feature

vector for i ∈ {1, . . . ,m}. For this component feature vector, we use that Fi ∈ Fi, with Fi the

corresponding feature space. We only consider ai such that ai ≥ 1, with ai the dimensions of

the corresponding feature space Fi. Note that we use ai, whereas Modha and Spangler (2003)

denote the feature space dimensions as fi. We consider four such feature spaces in this thesis:

• Euclidean feature space: Fi is Rai . It can also be a compact submanifold of the aforemen-

tioned feature space.

• Spherical feature space: Fi is defined as the intersection of the ai-dimensional unit sphere

with the non-negative orthant of Rai .

• Binary vector feature space: Fi is a space of binary vectors y ∈ {0, 1}ai . Every dimension

represents the absence (0) or presence (1) of a feature.

• Natural feature space: Fi is Nai : each feature vector only contains non-negative, whole

numbers.

3.2 Distortion measures

We define a variety of distortion measures to find the distortion between x = (F1,F2, . . . ,Fm)

and x̃ = (F̃1, F̃2, . . . , F̃m). We define Di, i ∈ {1, . . . ,m} as a distortion measure between Fi

and F̃i. For the definitions of the distortion measures, we define Fi = (f1, f2, . . . , fai) and

F̃i = (f̃1, f̃2, . . . , f̃ai). We continue with the definitions of the Minkowski, cosine and Jaccard

distances. Lastly, we present the weighted distortion measure as used by Modha and Spangler

(2003).

Minkowski distance

The Minkowski distance is used with regard to the Euclidean feature space. It is defined as

Di(Fi, F̃i) =

 ai∑
j=1

|fj − f̃j |p
 1

p

, p ∈ N,

and the special cases which we consider in this thesis are the Manhattan distance (p = 1),

Euclidean distance (p = 2) and Chebyshev distance (p → ∞). The Euclidean distance is the

distortion measure used in the original paper. We generalize this to also include p = 1 and

p→∞. For p→∞, this yields the following distance function:

Di(Fi, F̃i) = lim
p→∞

 ai∑
j=1

|fj − f̃j |p
 1

p

= max
1≤j≤ai

|fj − f̃j |.

5



Cosine distance

The cosine distance is used for the spherical feature space and is defined as

Di(Fi, F̃i) = 2(1− FT
i F̃i),

following the definition of Modha and Spangler (2003).

Jaccard distance

The Jaccard coefficient is a metric to determine the similarity of two sets and the Jaccard distance

is defined using the Jaccard coefficient (Levandowsky & Winter, 1971). To accommodate the

usage of binary vectors, we rewrite the definition of the Jaccard coefficient. The definition of

the Jaccard coefficient for sets is

J(Si, S̃i) =
|Si ∩ S̃i|
|Si ∪ S̃i|

.

Equivalently, we define the Jaccard coefficient for binary vectors as

J(Fi, F̃i) =
FT
i F̃i

FT
i Fi + F̃T

i F̃i − FT
i F̃i

.

The corresponding Jaccard distance is defined as

Di(Fi, F̃i) = 1− J(Fi, F̃i) = 1− FT
i F̃i

FT
i Fi + F̃T

i F̃i − FT
i F̃i

.

For two zero vectors, we define the Jaccard distance as zero.

The feature vectors in the natural feature space are not binary, so we need to transform the

feature vectors to binary vectors before applying the Jaccard distance. Let Fi denote the original

natural feature vector, then this vector can be transformed into a binary feature vector as follows.

Let Gi denote the new, binary feature vector. Then each vector element gj , j ∈ {1, . . . , ai} is

defined as

gj =

1 if fj ≥ 1,

0 if fj = 0.

The motivation behind this transformation is that we are only interested in which features are

common among different data points. The frequency of the features within the data points is

not relevant for the Jaccard distance. Note that, in this thesis, this feature space is used for

text documents. This means that we are only interested in the phrases text documents have in

common, not the frequency of the phrases within the documents.

Weighted distortion measure

Following Modha and Spangler (2003), we define a weighted distortion measure based on m

distortion measures {D1, D2, . . . Dm}, defined for the component feature vectors of x and x̃. The

m distortion measures are selected from the distortion measures described in this section. The

same distortion measure can be used for various component features. Consider non-negative
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feature weights {α1, α2, . . . , αm} which sum to 1, with α = (α1, α2, . . . , αm). The weighted

distortion measure between x and x̃ is defined as

Dα(x, x̃) =

m∑
i=1

αiDi(Fi, F̃i).

Under the assumption of convex distortion measures, Dα is a convex combination of convex

functions, making Dα convex, too. The feature weighting α is adjustable.

3.3 Generalized centroids

We denote the generalized centroid cu for given cluster πu as

cu = (c(u,1), c(u,2), . . . , c(u,m)),

with c(u,j) ∈ Fj , j ∈ {1, . . . ,m}. It is the solution to the following minimization:

cu = argmin
x̃∈F

∑
x∈πu

Dα(x, x̃). (1)

Due to the property ofDα being component-wise convex, we can split (1) intom separate convex

minimization problems:

c(u,j) = argmin
F̃j∈Fj

∑
x∈πu

Dj(Fj , F̃j), j ∈ {1, . . . ,m}. (2)

We present the closed-form centroid formulas for the Manhattan, Euclidean, Chebyshev, cosine

and Jaccard distances. For the Jaccard distance, the derivation of the closed-form centroid

formula is also given.

Manhattan distance

From Leisch (2006):

c(u,j) = median({Fj | x ∈ πu}),

where the median of the j-th component, c(u,j), is found by ordering the j-th component feature

vector elements in dimensions {1, . . . , aj} of all data points x ∈ πu and selecting the middle

value for every dimension. Using Fj = (f1, f2, . . . , faj ), we can formally denote the i-th element

of c(u,j) as

ci(u,j) = median({fi | x ∈ πu}), i ∈ {1, . . . , aj}.

Euclidean distance

From Modha and Spangler (2003):

c(u,j) =

∑
x∈πu

Fj

|πu|
.
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Chebyshev distance

From Cordeiro de Amorim and Mirkin (2012):

c(u,j) =
minx∈πu Fj +maxx∈πu Fj

2
,

which is the midrange of the data points x ∈ πu.

Cosine distance

From Modha and Spangler (2003):

c(u,j) =

∑
x∈πu

Fj

||
∑

x∈πu
Fj ||

.

Jaccard distance

The centroid under the Jaccard distance is computed as

c(u,j) = mode({Fj | x ∈ πu}), (3)

where the mode of the j-th component, c(u,j), is determined by identifying the most frequent

values of the j-th component feature vector elements in dimensions {1, . . . , aj} across all data

points x ∈ πu and, for every dimension, selecting the value appearing most frequently. Formally,

again using Fj = (f1, f2, . . . , faj ), we can denote the i-th element of c(u,j) as

ci(u,j) = mode({fi | x ∈ πu}), i ∈ {1, . . . , aj}.

We proceed with the proof for equation (3). See Section 3.2 for the definition of the Jaccard

distance between two binary vectors.

Consider a cluster πu. We want to prove that the centroid c(u,j) using the Jaccard distance

is given by equation (3). This is equivalent to showing that the mode minimizes the sum of

the Jaccard distances from the centroid to all data points, see equation (2). Our notation

for this proof differs from the general notation used in this thesis. We define binary vectors

Vi = (vi1, . . . , viaj ) for i ∈ {1, . . . , n}, where vij ∈ {0, 1}, ∀i, j. Denote the mode vector M =

(m1, . . . ,maj ), where each mi is the most frequent value in dimension i across all vectors Vi.

The sum of Jaccard distance from a set of vectors {V1, . . . ,Vn} to the centroid is given by

n∑
i=1

Dj(Vi, c(u,j)) =
n∑

i=1

(1−
VT

i c(u,j)

VT
i Vi + cT(u,j)c(u,j) −VT

i c(u,j)
),

which is minimized through the maximization of

n∑
i=1

VT
i c(u,j)

VT
i Vi + cT(u,j)c(u,j) −VT

i c(u,j)
=

n∑
i=1

∑aj
k=1 vikck∑aj

k=1(vik + ck − vikck)
= T, (4)

where ck is the k-th element of centroid c(u,j) (for the remainder of this proof, we denote the
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centroid as c). We first consider the case where we set all ck = 0. For all k for which mk = 1,

we show we can achieve an improvement for our maximization by picking ck = 1. We evaluate

the change in the value of T (see equation 4):

∆T =
∑

i:vij=1

1

|Vi|+ |c| −VT
i c
−

∑
i:vij=0

VT
i c

(|Vi|+ |c| −VT
i c+ 1)(|Vi|+ |c| −VT

i c)
,

and, as we are maximizing, we want ∆T ≥ 0, which is equivalent to

∑
i:vij=1

1

|Vi|+ |c| −VT
i c
≥

∑
i:vij=0

VT
i c

(|Vi|+ |c| −VT
i c+ 1)(|Vi|+ |c| −VT

i c)
. (5)

We now use VT
i c ≤ |Vi| + |c| − VT

i c, which can be seen if we interpret the first term as the

intersection and the second as the union of two sets, which is how the Jaccard distance is defined.

Thus, we can give the following upper bound to the right-hand side of (5):

∑
i:vij=0

|Vi|+ |c| −VT
i c

(|Vi|+ |c| −VT
i c+ 1)(|Vi|+ |c| −VT

i c)
=

∑
i:vij=0

1

|Vi|+ |c| −VT
i c+ 1

.

Clearly, it holds that
1

|Vi|+ |c| −VT
i c
≥ 1

|Vi|+ |c| −VT
i c+ 1

,

and because, by definition of the mode, we know that the set {i : vij = 1} is larger than or equal

to its complement {i : vij = 0}, we see that (5) holds. Thus, setting the value of all elements

of the centroid to 1 for the dimensions in which the mode is 1 never decreases T . Through a

similar derivation, we find that setting the value of the centroid elements to 1 for dimensions

with mode 0 yields a decrease in T . As we are maximizing T and no further increase is possible,

we conclude that choosing the elementwise mode (see equation 3) as the centroid under the

Jaccard distance is optimal.

3.4 The convex k-means algorithm

Our objective is to distribute the dataset {x1,x2, . . . ,xn} such that we attain k disjoint clusters

{π1, π2, . . . , πk}. We assess the quality of a partitioning π = {π1, π2, . . . , πk} with the sum of

the individual cluster distortions. We denote this by

qα(π) =

k∑
u=1

∑
x∈πu

Dα(x, cu). (6)

The objective of the algorithm is to find the set of k disjoint clusters {π†
1, π

†
2, . . . , π

†
k} which

minimizes (6) for a fixed α. We use the convex k-means algorithm as introduced by Modha

and Spangler (2003) to find the clusters, see Algorithm 1. Denote the set of clusters at the end

of iteration t by πt = {π1, π2, . . . , πk} and associated centroids by ct. We denote the minimum

increase percentage to continue the algorithm by β. In this thesis, we use the value β = 0.0001

(a 0.01% increase). The heuristic we use to determine our initial clustering is the same as is
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used by Modha and Spangler (2003), based on Dhillon and Modha (2001). This heuristic uses

the generalized centroid c̄ for the entire dataset and adds normally distributed random noise to

the generalized centroid for every cluster to generate the corresponding initial centroid. After

initializing the centroids, every data point is assigned to the cluster with the nearest centroid.

The random noise we add is drawn from a multivariate normally distributed random variable

with mean vector 0 and a covariance matrix in which only the diagonals are non-zero. The

diagonals are based on 0.25 ∗ abs(c̄), in which 0.25 is the degree of deviation we set for our

implementation and abs(c̄) gives the vector with the absolute values of the elements of c̄. This

means that the i-th diagonal is assigned the value of the i-th element of 0.25 ∗ abs(c̄).

Algorithm 1 The convex k-means algorithm

1: t← 0 ▷ We use t to keep track of number of iterations
2: Initialize: π0, c0 ▷ Start with a random initial clustering and associated centroids
3: while True do
4: For each data point xi, i ∈ {1, . . . , n}, determine which generalized centroid has the

smallest distance to xi. Find the new clustering using the generalized centroids from the
previous iteration ct for u ∈ {1, . . . , k}:

πt+1
u = {x ∈ {xi}ni=1 : D

α(x, ctu) ≤ Dα(x, ctv), 1 ≤ v ≤ k}

5: Update generalized centroids to ct+1 using the new clusters πt+1

6: if qα(πt)−qα(πt+1)
qα(πt) < β or t+ 1 > tmax then

7: π† ← πt+1

8: c† ← ct+1

9: return (π†, c†)
10: else
11: t← t+ 1
12: end if
13: end while

3.5 Determining the optimal feature weighting

We consider a number of clusters k ≥ 2 and use a fixed initial clustering. We denote the

generalized centroid for all data points by c̄ = (c̄1, c̄2, . . . , c̄m), with

c̄l = argmin
c̃∈Fl

n∑
i=1

Dl(F(i,l), c̃), l ∈ {1, . . . ,m}.

We denote the set of possible feature weightings by

∆ =

{
α :

m∑
l=1

αl = 1, αl ≥ 0, l ∈ {1, . . . ,m}

}
.

Furthermore, we use the following notation for the centroid of a cluster u:

c†u(α) = (c†(u,1)(α), c†(u,2)(α), . . . , c†(u,m)(α)), u ∈ {1, . . . , k}.

To allow for the comparison of the amount of distortion achieved by the algorithm using different
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feature weightings, we use the metric

Ql(α) =

(
Γl(α)

Λl(α)

)nl/n

, l ∈ {1, . . . ,m},

with

Γl(α) =
k∑

u=1

∑
x∈π†

u(α)

Dl(Fl, c
†
(u,l)(α)), l ∈ {1, . . . ,m}

and

Λl(α) =

n∑
i=1

Dl(F(i,l), c̄l)− Γl(α), l ∈ {1, . . . ,m},

representing the average within-cluster distortion and the average between-cluster distortion for

the l-th component feature vector, respectively. nl is the number of data points with a non-zero

feature vector for the l-th component. We also define

Q(α) = Q1(α)×Q2(α)× · · · × Qm(α).

We minimize this function with regards to α and the resulting optimal feature weighting is

denoted by α†.

3.6 Assessing the quality of the clustering

To allow for a meaningful comparison of the clustering results achieved by the usage of different

distance functions, we use the same metrics as Modha and Spangler (2003): macro-precision

(macro-p), macro-recall (macro-r), micro-precision (micro-p) and micro-recall (micro−r). These
metrics are used for comparing clusterings for a fixed k. The metrics use precision and recall,

representing the degree to which the achieved clustering matches the actual classification of the

data. We assign all points from a cluster to the class with which the cluster shares the most

data points.

Consider a ground truth classification with c classes {w1, . . . , wc}. We use the following

notation:

• at, t ∈ {1, . . . , c}: The number of data points correctly classified into class wt.

• bt, t ∈ {1, . . . , c}: The number of data points incorrectly classified into class wt.

• ct, t ∈ {1, . . . , c}: The number of data points incorrectly excluded from class wt.

Then, we use the following definitions for precision and recall, respectively, for t ∈ {1, . . . , c}:

pt =
at

at + bt
and rt =

at
at + ct

.

We use these definitions for macro-p, macro-r and micro-p (which is equivalent to micro-r in

our case, see Modha and Spangler (2003)):

macro-p =
1

c

c∑
t=1

pt, macro-r =
1

c

c∑
t=1

rt and micro-p =
1

n

c∑
t=1

at.
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Table 3: Original and replicated results for the dataset Heart Disease for a fixed feature weighting

Original results Replicated results
k α̃ Q(α̃) micro-p Q(α̃) micro-p
2 (.5, .5) 34.64 .741 43.85 .720
4 (.5, .5) 11.21 .733 11.52 .722
6 (.5, .5) 7.69 .711 7.37 .712
8 (.5, .5) 5.20 .711 5.09 .721
16 (.5, .5) 2.38 .767 2.08 .744

4 Results

In this section, we present the results attained with the convex k-means algorithm as described

in Section 3. Because we extend upon Modha and Spangler (2003), we first replicate their most

important results. The initially chosen clustering is a very relevant factor for the clustering

results. As noted in Section 3.4, we make use of a Gaussian initial clustering method. This means

that the initial partitioning is partially random. As Modha and Spangler (2003) do not specify

their exact settings for the creation of this partitioning, we attempt to reduce the randomness

by using multiple seeds for the Normal distribution. We then use the average values of Q(α†),

micro-p, macro-p and macro-r across all seeds per feature weighting. For the algorithm using

a fixed feature weighting for numerical and categorical data, we use 25 seeds. For the optimal

feature weighting for numerical and categorical data and for the fixed feature weighting for text

clustering, we use 5 seeds due to the increased complexity. Lastly, for optimal feature weighting

for text clustering, we use 2 seeds, because the clustering process is even more complex. The

fact that this part of the algorithm is a random process indicates that 100% replicability might

not be achievable, especially because Modha and Spangler (2003) do not provide details on

their implementation of the initial clustering method. In this section, note that we employ the

term optimal to refer to the best result found within the specified computational and heuristic

limitations, both when discussing optimal feature weightings and the optimal combination of

distance functions. This matches the terminology used by Modha and Spangler (2003).

The remainder of this section is split into two subsections. In Section 4.1, we present the

results for the first three datasets, which contain numerical and categorical variables. In Section

4.2, we give the results found for the Twenty Newsgroups dataset, containing text documents.

We present our results for the replicated part from Modha and Spangler (2003) and give the

results we find using our extended methodology.

4.1 Numerical and categorical data

We first present the results for the following three datasets: Heart Disease, Adult and Australian.

The set of feature weightings employed for the results is equivalent to the one used by Modha

and Spangler (2003):

∆ = {(α1, α2) : α1 + α2 = 1, α1, α2 ≥ 0},

with α1 the weight for the numerical feature space and α2 the weight for the categorical feature

space. We use 101 feature weightings from this set as input, i.e. the weightings we use are

{(0.00, 1.00), (0.01, 0.99), . . . , (1.00, 0.00)}.. As this thesis aims to both replicate and extend

upon the original results, we split the results accordingly. In Section 4.1.1, we give the replication

12



Table 4: Original and replicated results for the datasets Heart Disease, Adult and Australian in
determining the optimal feature weighting

Original results Replicated results
k α† Q(α†) micro-p α† Q(α†) micro-p micro-p∗ micro-p−

Heart Disease
2 (.09, .91) 20.49 .804 (.09, .91) 20.68 .801 .831 .706
4 (.08, .92) 6.35 .815 (.09, .91) 6.55 .797 .813 .715
6 (.08, .92) 3.77 .803 (.09, .91) 3.79 .788 .800 .696
8 (.10, .90) 2.77 .800 (.11, .89) 2.65 .795 .809 .702
16 (.12, .88) 1.15 .793 (.15, .85) 1.24 .788 .815 .716

Adult
2 (.14, .86) 68.69 .759 (.15, .85) 68.69 .759 .759 .759
4 (.10, .90) 9.90 .761 (.12, .88) 14.59 .799 .821 .761
6 (.09, .91) 5.08 .812 (.13, .87) 6.45 .786 .814 .766
8 (.11, .89) 2.75 .820 (.14, .86) 4.21 .805 .810 .762
16 (.09, .91) 1.17 .819 (.15, .85) 1.31 .808 .814 .783

Australian
2 (.09, .91) 38.68 .829 (.10, .90) 38.90 .821 .821 .643
4 (.09, .91) 10.31 .762 (.09, .91) 9.82 .789 .827 .648
6 (.08, .92) 5.63 .832 (.10, .90) 5.50 .804 .821 .659
8 (.10, .90) 3.89 .836 (.16, .84) 3.46 .756 .823 .665
16 (.08, .92) 1.17 .829 (.12, .88) 1.25 .797 .837 .710

results and in Section 4.1.2, we give the results of our extension.

4.1.1 Replication results

We replicate the most important results from Modha and Spangler (2003). For the dataset Heart

Disease, we present the results for a fixed feature weighting and those found when determining

the optimal feature weighting. For the other two datasets, we only present the results for the

optimal feature weighting, as that is the main focus of Modha and Spangler (2003). We also use

the results for the optimal feature weighting in the later comparison across different distance

functions. The replication results for a fixed feature weighting for the other two datasets can be

found in Appendix B.

Table 3 gives the replicated results for the dataset Heart Disease for a fixed feature weighting

and Table 4 gives the results for the optimal feature weighting for the three datasets. The

variables micro-p∗ and micro-p− represent the best and worst achieved micro-p, respectively,

across all feature weightings (taking the average over all seeds). We see no extreme differences

when comparing our results to those achieved by Modha and Spangler (2003), so our algorithm

seems to perform very similarly to the original algorithm. The same conclusion holds for the

fixed feature weighting for the datasets Adult and Australian, as shown in Appendix B. For both

the fixed and optimal feature weighting clusterings, our values of Q(α) are close to the original

values but not consistently higher or lower. The same holds for the micro-p values for the fixed

feature weighting clusterings. However, for the optimal feature weighting, our micro-p values

are lower than the originally found values in 12 of the 15 cases. Especially for the Australian

dataset, the micro-p values are substantially lower on average. The micro-p values are generally

reasonably close to the micro-p∗ and far from the micro-p− values, as is the conclusion of Modha

and Spangler (2003). Thus, we conclude that the metric Q(α) is useful in finding a good feature

weighting in our implementation, too, with good referring to the corresponding micro-p value.
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Table 5: Extension results for the datasets Heart Disease, Adult and Australian

Euclidean and cosine
distances

Optimal combination of distance functions

k micro-p macro-p micro-p macro-p α†
Numerical
distance
function

Categorical
distance
function

Heart Disease
2 .801 .801 .818 .823 (.09, .91) Chebyshev Cosine
4 .797 .797 .814 .823 (.18, .82) Chebyshev Jaccard
6 .788 .805 .813 .821 (.10, .90) Chebyshev Jaccard
8 .795 .805 .809 .815 (.15, .85) Chebyshev Jaccard
16 .788 .791 .813 .814 (.20, .80) Chebyshev Jaccard

Adult
2 .759 .380 .772 .608 (.29, .71) Chebyshev Cosine
4 .799 .723 .799 .723 (.12, .88) Euclidean Cosine
6 .786 .710 .810 .750 (.18, .82) Manhattan Cosine
8 .805 .736 .811 .756 (.19, .81) Manhattan Cosine
16 .808 .747 .812 .760 (.23, .77) Manhattan Cosine

Australian
2 .821 .827 .821 .827 (.10, .90) Euclidean Cosine
4 .789 .794 .806 .815 (.03, .97) Chebyshev Jaccard
6 .804 .810 .804 .810 (.10, .90) Euclidean Cosine
8 .756 .781 .808 .816 (.03, .97) Chebyshev Cosine
16 .797 .807 .834 .836 (.03, .97) Chebyshev Cosine

Figure 1a is our replication of the first graph in Figure 1 from Modha and Spangler (2003).

It shows the value of Q(α) for different numerical feature weightings for the Heart dataset for

k = 8. It closely resembles the original graph and this further solidifies the similarity between

our implementation of the algorithm and the original implementation.

All in all, the differences between the original and the replicated values are small enough

to assume they are caused by a combination of randomness and possible small implementation

differences. We do not know if Modha and Spangler (2003) use a variety of seeds or focus on one

seed and we also do not have specific information on their cluster initialization technique. We

expect that our implementation is, therefore, slightly different than the original. There might

also be other small changes in the implementation of the algorithm. Modha and Spangler (2003)

do not provide the programming code or specific details, so small differences in the outcome are

not unreasonable.

4.1.2 Extension results

We continue with the extension results for the first three datasets. In Table 5, we compare the

micro-p and macro-p values found for the optimal feature weighting with the original distance

functions (Euclidean and cosine distances) to the values found for the distance functions giving

the highest micro-p value. We also state which distance functions give the best results and give

the corresponding feature weights. The feature weights belonging to the Euclidean and cosine

distances can be found in Table 4. A complete overview of the results for all combinations of

distance functions is given in Appendix B. The original distance function combination is only

optimal in 3 cases. This means that for the other 12 cases, we achieve an improvement in

micro-p values by including the extra distance functions. We also see that the corresponding

macro-p values are in all cases higher than the original macro-p values. The same observation
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Figure 1: The graphs showing the values of Q(α) for different numerical feature weightings using
original and optimal distance functions, for the dataset Heart Disease and k = 8

(a) Products for different weights for dataset Heart Disease, k = 8 with original distance functions

(b) Products for different weights for dataset Heart Disease, k = 8 with optimal distance functions
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holds for the macro-r values for all clusterings except k = 8 for the Adult dataset, though the

macro-r values are not presented in the table. The average improvements in micro-p values for

the datasets Heart Disease and Australian are larger than those found for the Adult dataset,

with respective average percentual increases in micro-p values of 2.5%, 2.7% and 1.2%.

In general, all distance functions seem relevant for the algorithm when considering these

datasets. The Manhattan and Euclidean distance both make part of the optimal combination

3 times, whereas the Chebyshev distance occurs in 9 optimal combinations. For the categorical

distance functions, we see the cosine distance appearing 10 times and the Jaccard distance 5

times. These results are promising and strengthen our notion that including multiple distance

functions can be advantageous.

An observation which stands out is the dominance of the combination of the Chebyshev and

Jaccard distances for the Heart Disease clusterings. This combination is optimal for all k except

2, where this combination gives a micro-p value equal to .817, very near to the .818 found by the

optimal combination of distance functions. On the other hand, the Jaccard distance is only part

of one optimal combination for the Adult and Australian datasets. This indicates that different

datasets abide well under the use of different distance functions, which corresponds to what is

suggested in our introduction.

Another interesting insight concerns the optimal feature weightings. For the Heart Disease

and Adult datasets, these tend to contain a higher weight for the numerical feature space under

the optimal combination of distance functions when compared to the feature weights under the

original combination, as seen in Table 4. Especially for the Adult dataset, the numerical feature

weights show a substantial increase, with the exception of k = 4, as the original distances are

optimal for this clustering. This indicates that, for these datasets, the numerical features are

more informative using the additional distance functions and contribute more to the resulting

clustering. For the Australian dataset, the opposite observation holds. For the clusterings

with an optimal combination deviating from the original, the categorical feature weights are

considerably higher. Thus, in those cases, the categorical features are more informative.

Figure 1 shows the graphs for Heart Disease with k = 8 under the original distance functions

and the optimal combination. The minimum of the graph in Figure 1b is shifted towards the

right compared to the graph in Figure 1a, which aligns with the higher numerical feature weight.

4.2 Text documents

We continue with the results for text clustering. For the text clustering, we need to make several

assumptions. Modha and Spangler (2003) do not give much information on how they preprocess

the text documents before performing the clustering algorithm, even though the preprocessing

method influences the clustering results greatly. They refer to a list of standard stopwords from

Frankes and Baeza-Yates (1992), Figure 7.5. It is not explicitly mentioned whether or not they

use these stopwords or if they make use of a different list, we assume they use the list of standard

stopwords and do the same. They mention that sometimes stemming is used but do not state

whether they use this technique. For our implementation, we do not apply stemming. As in the

original paper, we eliminate the 1-word, 2-word and 3-word phrases which are present in less

than 0.64%, 0.32% and 0.16% of the documents, respectively.
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Table 6: Statistics for 1-, 2- and 3-word phrases in the Twenty Newsgroups dataset

Original statistics
Replicated statistics
(method 1)

Replicated statistics
(method 2)

i fi ni fi ni fi ni

1 2583 9961 4703 9961 3563 9944
2 2144 8639 3494 9961 695 7836
3 2268 4664 6264 9961 746 4667

When we preprocess the text documents following these steps, we find the statistics as given

in Table 6 under replicated statistics (method 1). We use the following notation: i represents

the length of the phrases, fi is the number of phrases of length i we keep after preprocessing

and ni is the number of documents containing at least one phrase of length i which is kept after

preprocessing. It is evident that using this method, we are left with considerably more phrases

and a dataset which is not sparse at all. Not only does this make clustering the data more

complex, but it also gives us very different results than Modha and Spangler (2003) present.

Therefore, we explore whether we should expand our preprocessing procedure using other steps

which are commonly used in text clustering.

We investigate the phrases and the text documents. By looking at the structure of the news

articles in the dataset, we find that there is generally a lot of information about the news article

in the first lines of the documents. For example, many documents contain a line stating to which

newsgroup it belongs, which is the class we want to assign it to after clustering. Most documents

also contain a line stating how many lines of text it contains. However, our objective is to cluster

the documents based on their text content and not on the properties given in the first lines of

the documents. We therefore decide to only use the content of the news articles. By looking at

the text documents, we see that the content starts after the last occurrence of ”writes:”, or in

its absence, after ”Lines:”. All 9961 news articles contain at least one of the two phrases. We

trim each news article accordingly, prioritizing ”writes:” and only in its absence using ”Lines:”

as a starting point. Schubert, Lang and Feher (2021) also use the Twenty Newsgroups dataset

without headers, as do Pedregosa et al. (2011).

Upon investigation of the phrases, we find many phrases which are not very informative for

clustering. For example, many phrases start or end with a bracket, or contain other interpunc-

tions or special characters which are not related to the phrase at hand. This way, one word

can be divided into multiple phrases if it is combined with different special characters across

the texts. This is disadvantageous for the clustering procedure, as we want to treat the same

word as one phrase to accurately group the texts. The same can be said about capitalized and

non-capitalized words. We also see many digits occurring as or within phrases, which do not

seem very informative. Bianchi, Terragni and Hovy (2020) use the same dataset and remove all

digits and punctuation in their data preprocessing. Ahmed, Tiun, Omar and Sani (2023) discuss

text clustering algorithms and note that it is good practice to leave out special characters. We

follow their examples and remove all digits, punctuation and special characters from the news

articles. We also convert all texts to lowercase for uniformity, as is also done by Yin and Wang

(2016).

These extra preprocessing steps result in the replicated statistics for method 2 as shown in
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Table 7: Original and replicated results for the dataset Twenty Newsgroups for a fixed feature
weighting

Original results Replicated results

k α̃ Q(α̃) micro-p Q(α̃) micro-p

10 (.33, .33, .33) 24.01 .593 126.75 .399
15 (.33, .33, .33) 16.20 .616 76.95 .439
20 (.33, .33, .33) 13.39 .602 56.78 .449

Table 6. Clearly, the resulting dataset is a lot more sparse than with method 1 and the number

of distinct phrases has also gone down considerably. The number of 1-, 2- and 3-word phrases

is still quite different from the numbers mentioned by Modha and Spangler (2003). This is not

unexpected, as they do not provide many details on their preprocessing methods. The extra

preprocessing actions we use are widely employed in existing literature and are even applied

to the same dataset in other papers. Therefore, we consider the more extensive preprocessing

method to be the most applicable for our research and use the resulting dataset as input for

the algorithm for both the replication and the extension part. The set of feature weightings we

explore is again identical to the one Modha and Spangler (2003) employ, containing 31 convex

combinations of the points {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. We now continue with the replication

results in Section 4.2.1 and the extension results in Section 4.2.2.

4.2.1 Replication results

The replication results for a fixed feature weighting are shown in Table 7 and those for the

optimal feature weighting can be found in the top section of Table 8. The differences in the

replication results under a fixed feature weighting are considerable, especially when taking into

account the similarity of our results for the other datasets. Our implementation of the algorithm

is outperformed by that of Modha and Spangler (2003) on all fronts. The biggest differences are

visible in the value of Q(α). The micro-p values are also substantially lower. The results for the

optimal feature weighting show the same trend. The values of the optimal feature weightings also

show differences to a higher degree than what we find for the first three datasets. Interestingly,

we see a more important role for the 2-word phrases in our results. This is likely related to the

difference in phrase dictionaries caused by the data preprocessing.

Following our difficulties in mirroring the preprocessing steps used in the original paper, the

relatively large differences in results are not an unexpected finding. Our implementation is likely

fundamentally different from that of Modha and Spangler (2003), due to the left-out details in

their description. Apart from the probable difference in the preprocessing method, we also do not

know for certain which classes they assign the different news articles to. This clearly influences

the micro-p values greatly, too. Another possible cause is the higher degree of randomness

caused by the fewer number of seeds used. Due to the computational expense of clustering

a dataset with this number of instances and variables, with dimensions of around 10,000 ×
5,000, performing the algorithm for a large number of seeds is not feasible. Therefore, we might

experience the repercussions of the randomness of the initialization process more heavily for this

dataset. Our implementation yields acceptable results, with micro-p values which are in the
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Table 8: Original, replicated and extension results for the dataset Twenty Newsgroups in de-
termining the optimal feature weighting

Original results Replicated/new results
k α† Q(α†) micro-p α† Q(α†) micro-p macro-p macro-r

Cosine distance
10 (.50, .25, .25) 21.06 .686 (.67, .33, .00) 110.61 .416 .411 .416
15 (.75, .00, .25) 14.38 .656 (.58, .33, .08) 64.70 .521 .564 .522
20 (.75, .00, .25) 11.03 .664 (.58, .33, .08) 45.40 .549 .630 .549

Jaccard distance
10 (.00, .08, .92) 293.82 .182 .298 .182
15 (.00, .08, .92) 247.52 .190 .444 .190
20 (.00, .50, .50) 202.68 .199 .467 .199

direction of the original values, but the original algorithm leads to better cluster results.

4.2.2 Extension results

We continue with the extension results for the Twenty Newsgroups dataset, shown in the bottom

section of Table 8. Because the generalized centroid under the Jaccard distance (see Section

3.3) has a zero value for each feature vector element, we cannot initialize the clusters with

the usual method. All data points would be assigned to one cluster with a zero vector for all

feature spaces as centroid. Thus, we initialize the clusters differently for this dataset under the

Jaccard distance. To avoid all clusters having the same centroid, we pick random data points

as centroids of the initial clusters and then assign all data points to the cluster with the closest

centroid. This way, we ensure the initial clusters are well-defined. The Jaccard distance metric

is vastly outperformed by the cosine distance in every case, with very low micro-p values for

the Jaccard distance clusterings. The macro-p values of the Jaccard distance clusterings for

k = 15, 20 are the only metrics with decent values and are close to the values achieved with

the cosine distance. Upon inspection of the optimal feature weightings found under the Jaccard

distance, we see single words are excluded in the clustering process. This is interesting given

the fact that the first feature vector is assigned the highest weight for all three clusterings under

the cosine distance.

The main reasons for the poor performance of the Jaccard distance clusterings seem to be

the alternative cluster initialization process and the sparsity of the dataset. As mentioned,

we initialize the clusters completely at random. Simply assigning random data points as the

initial centroids does not seem to be the optimal setup for good clustering results. This stands to

reason, as this initialization method gives no guarantee that the initial clusters will be sufficiently

dispersed. Furthermore, the sparsity of the dataset causes difficulties for the algorithm when

it attempts to construct new clusters. Because there are many data points with zero feature

vectors for the 2- and 3-word phrases (see Table 6), finding a new non-zero centroid proves to be

complicated. We can see this in the number of iterations the algorithm takes until completion,

too. Under the Jaccard distance, the algorithm usually finishes within three iterations and

always within four. Contrastingly, we see upward of 20 iterations using the cosine distance.

This indicates that the Jaccard distance can barely construct new clusters which lower the

objective value and, thus, the initial clustering is of utmost importance for the results.
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5 Conclusion

The choice of a distance function can have a big influence on the results of a k-means clustering

algorithm. In this thesis, we evaluated the effect of expanding the existing convex k-means

algorithm as introduced by Modha and Spangler (2003), through the addition of three distance

functions: the Manhattan, Chebyshev and Jaccard distance. In particular, we were interested

in seeing if the additional distance functions would lead to higher micro-p values. Because

we extend upon the algorithm of Modha and Spangler (2003), we first replicated their results

before examining the effect of our extension. The replication of the results for the numerical

and categorical datasets was successful, as we obtained very similar values to the original paper.

However, it turned out to be more challenging to replicate the results for text clustering, mainly

due to the limited specification Modha and Spangler (2003) provide regarding the preprocessing

method, and the values we obtained were substantially different from the original values. Upon

extending the algorithm, we found that the inclusion of the three additional distance functions

increased the micro-p values by a substantial margin for the datasets containing numerical and

categorical data, especially for the Heart Disease and Australian datasets. However, the Jaccard

distance underperformed in text clustering, yielding much lower values of micro-p compared to

the cosine distance. In conclusion, higher micro-p values are certainly attainable through the

inclusion of additional distortion measures, as can be seen in the convincing results we attained

for the Manhattan, Chebyshev and Jaccard distances for numerical and categorical data.

Our findings support the notion that it is useful to take into account multiple distortion

functions when working with k-means clustering, as it can give considerable improvements in

the quality of the resulting clustering. Further research could be done on the reasons behind

the compatibility of certain datasets and distance functions. We see clear differences in the

performance of the distance functions for the different datasets, but we have not yet explored

the exact reasons why. Because running the k-means algorithm for every combination of distance

functions is computationally expensive, it would be very useful to be able to predict beforehand

which distance functions are likely to yield the best results. Another interesting topic for research

is the cluster initialization process. It is well known that the initially chosen clusters can influence

the quality of the clustering greatly. We attempt to take away some of this randomness by

using different seeds for the initialization but, once again, this is computationally expensive.

Therefore, it would be a very welcome addition if we either a) develop an initialization process

which structurally outperforms the random process we employed in this thesis, or b) invent a

metric with which the quality of the initial clustering can be assessed, such that we do not

have to run the entire algorithm to know which seed will give the best results. In particular, it

could be very valuable to invest more time into improving the initialization technique for text

clustering with the Jaccard distance. As mentioned in the results, the initialization seems to

be a major bottleneck for this clustering. Lastly, another limiting factor for the performance

of the convex k-means algorithm is the method through which the optimal feature weighting is

determined. The current implementation requires iterating through all combinations of feature

weightings. A substantial improvement could be made if we could determine this optimal feature

weighting more efficiently, rather than having to run the algorithm for all possible combinations.
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A Programming code

We implement the convex k-means algorithm in Python. The code takes the following paramet-

ers as input:

• The numerical distance functions to apply

• The categorical distance functions to apply

• The datasets to use

• The numbers of clusters

• The number of seeds to use

• A boolean stating whether we are looking for an optimal feature weighting or performing

the algorithm for a fixed feature weighting

• A boolean stating whether we wish to generate a plot

The code consists of three classes: main.py, datasets.py and convexKMeans.py. We use main.py

to set the input parameters and set up the framework for running the algorithm. Datasets.py

contains functions to prepare the datasets for clustering. ConvexKMeans.py contains the im-

plementation of the algorithm and the majority of the code is found in this class. A ZIP file

containing our code and an explanation as to how to replicate our results is available.

B Additional results

Table 9 shows the replication results for a fixed feature weighting for the datasets Adult and

Australian. Tables 10, 11 and 12 show the results for the optimal feature weighting for all

combinations of distance functions for the datasets Heart Disease, Adult and Australian, re-

spectively.

Table 9: Original and replicated results for the datasets Adult and Australian for a fixed feature
weighting

Original results Replicated results

k α̃ Q(α̃) micro-p Q(α̃) micro-p

Adult

2 (.5, .5) 154.44 .759 150.85 .759

4 (.5, .5) 24.80 .769 35.94 .769

6 (.5, .5) 13.68 .761 13.39 .765

8 (.5, .5) 10.49 .770 8.87 .769

16 (.5, .5) 2.68 .800 3.03 .788

Australian

2 (.5, .5) 107.29 .646 103.64 .650

4 (.5, .5) 30.16 .648 34.10 .648

6 (.5, .5) 13.35 .686 14.96 .668

8 (.5, .5) 10.75 .690 7.74 .694

16 (.5, .5) 2.75 .738 2.79 .730
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Table 10: Results for the optimal feature weighting for all combinations of distance functions
for the dataset Heart Disease

micro-p macro-p macro-r α† Numerical distance
function

Categorical distance
function

k = 2
.791 .790 .789 (.16, .84) Manhattan Cosine
.801 .801 .799 (.09, .91) Euclidean Cosine
.818 .823 .813 (.09, .91) Chebyshev Cosine
.779 .779 .775 (.20, .80) Manhattan Jaccard
.742 .741 .739 (.14, .86) Euclidean Jaccard
.817 .827 .809 (.01, .99) Chebyshev Jaccard

k = 4
.771 .795 .762 (.19, .81) Manhattan Cosine
.797 .797 .796 (.09, .91) Euclidean Cosine
.804 .815 .802 (.16, .84) Chebyshev Cosine
.779 .805 .769 (.16, .84) Manhattan Jaccard
.779 .803 .768 (.11, .89) Euclidean Jaccard
.814 .823 .808 (.18, .82) Chebyshev Jaccard

k = 6
.774 .780 .769 (.18, .82) Manhattan Cosine
.788 .805 .779 (.09, .91) Euclidean Cosine
.812 .817 .807 (.23, .77) Chebyshev Cosine
.766 .778 .760 (.18, .82) Manhattan Jaccard
.766 .777 .758 (.13, .87) Euclidean Jaccard
.813 .821 .807 (.10, .90) Chebyshev Jaccard

k = 8
.780 .792 .772 (.15, .85) Manhattan Cosine
.795 .805 .790 (.11, .89) Euclidean Cosine
.798 .799 .794 (.20, .80) Chebyshev Cosine
.790 .800 .783 (.15, .85) Manhattan Jaccard
.778 .784 .773 (.13, .87) Euclidean Jaccard
.809 .815 .803 (.15, .85) Chebyshev Jaccard

k = 16
.795 .803 .790 (.18, .82) Manhattan Cosine
.788 .791 .785 (.15, .85) Euclidean Cosine
.803 .805 .801 (.16, .84) Chebyshev Cosine
.806 .808 .803 (.16, .84) Manhattan Jaccard
.782 .784 .779 (.13, .87) Euclidean Jaccard
.813 .814 .810 (.20, .80) Chebyshev Jaccard
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Table 11: Results for the optimal feature weighting for all combinations of distance functions
for the dataset Adult

micro-p macro-p macro-r α† Numerical distance
function

Categorical distance
function

k = 2
.759 .380 .500 (.26, .74) Manhattan Cosine
.759 .380 .500 (.15, .85) Euclidean Cosine
.772 .608 .548 (.29, .71) Chebyshev Cosine
.759 .380 .500 (.16, .84) Manhattan Jaccard
.759 .380 .500 (.14, .86) Euclidean Jaccard
.759 .380 .500 (.10, .90) Chebyshev Jaccard

k = 4
.763 .503 .576 (.25, .75) Manhattan Cosine
.799 .723 .679 (.12, .88) Euclidean Cosine
.780 .850 .556 (.15, .85) Chebyshev Cosine
.762 .500 .575 (.20, .80) Manhattan Jaccard
.763 .555 .527 (.09, .91) Euclidean Jaccard
.763 .678 .508 (.08, .92) Chebyshev Jaccard

k = 6
.810 .750 .686 (.18, .82) Manhattan Cosine
.786 .710 .665 (.13, .87) Euclidean Cosine
.771 .790 .534 (.24, .76) Chebyshev Cosine
.770 .681 .658 (.22, .78) Manhattan Jaccard
.768 .720 .573 (.10, .90) Euclidean Jaccard
.765 .862 .513 (.09, .91) Chebyshev Jaccard

k = 8
.811 .756 .681 (.19, .81) Manhattan Cosine
.805 .736 .700 (.14, .86) Euclidean Cosine
.768 .839 .520 (.16, .84) Chebyshev Cosine
.776 .635 .651 (.22, .78) Manhattan Jaccard
.770 .680 .578 (.14, .86) Euclidean Jaccard
.766 .858 .514 (.05, .95) Chebyshev Jaccard

k = 16
.812 .760 .676 (.23, .77) Manhattan Cosine
.808 .747 .676 (.15, .85) Euclidean Cosine
.784 .764 .575 (.19, .81) Chebyshev Cosine
.792 .714 .676 (.16, .84) Manhattan Jaccard
.784 .703 .629 (.14, .86) Euclidean Jaccard
.773 .780 .536 (.12, .88) Chebyshev Jaccard
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Table 12: Results for the optimal feature weighting for all combinations of distance functions
for the dataset Australian

micro-p macro-p macro-r α† Numerical distance
function

Categorical distance
function

k = 2
.818 .830 .806 (.20, .80) Manhattan Cosine
.821 .827 .811 (.10, .90) Euclidean Cosine
.758 .714 .756 (.01, .99) Chebyshev Cosine
.775 .778 .766 (.20, .80) Manhattan Jaccard
.789 .800 .776 (.08, .92) Euclidean Jaccard
.794 .792 .795 (.00, 1.00) Chebyshev Jaccard

k = 4
.772 .782 .763 (.19, .81) Manhattan Cosine
.789 .794 .779 (.09, .91) Euclidean Cosine
.798 .805 .798 (.02, .98) Chebyshev Cosine
.733 .736 .720 (.20, .80) Manhattan Jaccard
.751 .759 .744 (.11, .89) Euclidean Jaccard
.806 .815 .803 (.03, .97) Chebyshev Jaccard

k = 6
.770 .792 .753 (.20, .80) Manhattan Cosine
.804 .810 .797 (.10, .90) Euclidean Cosine
.798 .815 .793 (.03, .97) Chebyshev Cosine
.766 .789 .749 (.17, .83) Manhattan Jaccard
.730 .759 .713 (.13, .87) Euclidean Jaccard
.803 .808 .800 (.01, .99) Chebyshev Jaccard

k = 8
.802 .810 .792 (.17, .83) Manhattan Cosine
.756 .781 .738 (.16, .84) Euclidean Cosine
.808 .816 .804 (.03, .97) Chebyshev Cosine
.794 .798 .793 (.00, 1.00) Manhattan Jaccard
.765 .779 .751 (.10, .90) Euclidean Jaccard
.795 .798 .784 (.05, .95) Chebyshev Jaccard

k = 16
.818 .820 .814 (.16, .84) Manhattan Cosine
.797 .807 .784 (.12, .88) Euclidean Cosine
.834 .836 .836 (.03, .97) Chebyshev Cosine
.803 .804 .797 (.16, .84) Manhattan Jaccard
.794 .805 .782 (.11, .89) Euclidean Jaccard
.813 .814 .810 (.00, 1.00) Chebyshev Jaccard
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