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1 Introduction

Albert Einstein is widely quoted as saying, “The intuitive mind is a sacred gift, and the rational

mind is a faithful servant.” However, in contemporary econometric research, this perspective

is undergoing a reversal. Since the introduction of the first simple econometric variable selec-

tion algorithm, the stepwise regression, the practice of variable selection has shifted from ra-

tional economic reasoning and intuition towards complex statistical models (Desboulets, 2018).

Nowadays, most explanatory variable selection in simple and complex models tends to be guided

more by minimizing a loss function or a metric than by economic intuition. In forecasting, the

shift toward econometric rationality is driven by the pursuit of improved in-sample and out-of-

sample results, wherein model selection aims solely to enhance accuracy (Berrevoets et al., 2024;

Chernozhukov et al., 2018). Major economic institutes and government agencies increasingly rely

on black-box mechanisms to uncover and exploit the benefits of increasingly high-dimensional

data. For instance, researchers at the ECB are using random forest models to forecast inflation

(Chinn et al., 2023; Lenza et al., 2023), and researchers at the IMF are using neural networks

to forecast tail risk (Sakurai & Chen, 2024).

The shift to machine learning methods is emphasized by the current combinatorial explosion

in empirical econometric practice, where the (baseline) control set is enriched with larger sets of

interactions and other complex transformations. This is done to leverage higher computational

power and model flexibility to achieve potential efficiency gains (Wüthrich & Zhu, 2023). Al-

though modern machine learning models are designed to identify only those covariates with the

most potent predictive ability, these approaches, often driven by regularization, induce model

sparsity well, provided a sparse linear form can effectively capture the outcome. Empirically,

this is often the case, resulting in more accurate forecasts with smaller variances (Belloni et al.,

2014a). However, as regularization introduces bias, these machine learning models need to be re-

fined to exploit the potential information in high-dimensional data and provide better-informed

answers to causal questions, such as the inference of causal or treatment effects, while minimiz-

ing their side effects (Belloni & Chernozhukov, 2011). Hence, there is a continuous strong drive

to further develop high-dimensional causal econometric models in the academic and practitioner

fields.

A recent approach in this discussion is the ‘Post-Double Selection’, which employs a double

selection step for asymptotically valid inference on treatment effects in a high-dimensional en-

vironment (Belloni et al., 2014a). Empirical results demonstrate significant reductions in bias

through the use of a regularization model that includes a double (sparsity-inducing) selection

step. The methodology relies on conducting two preliminary Lasso regressions: one of the out-

come variable on the control set and another of the treatment on the control set. The main

objective is to choose sufficient confounding controls (or simply controls) such that conditioning

on these selected controls renders the treatment variable exogenous (Belloni et al., 2017). A final

Ordinary Least Squares (OLS) regression of the outcome variable on the treatment and the se-

lected controls from the preliminary step substantially reduces bias in estimating the treatment

effect compared to a single selection step and similar variants. Following this methodology, the

Post-Double Selection provides valid uniform inference across a broad range of models.

At first sight, the Post-Double Selection method appears to be yet another data-driven
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mechanism where minimizing a loss function yields an ’optimal’ set of controls, and the economic

intuition behind control selection is discarded. However, in the literature, there is precedent for

reintroducing economic intuition into the model. Researchers are even recommended to “always

augment the union of the selected controls with an ‘amelioration set’ of controls motivated by

economic theory and prior knowledge” (Wüthrich & Zhu, 2023). For the purpose of this thesis,

following Desboulets (2018), economically intuitive variables are defined as raw variables with

a clear economic interpretation and are typically expected to act as confounding variables for

the relevant causal problem. The addition of economically intuitive controls ex-post for the

final OLS regression is reasoned by arguing that combining a formal, rigorous approach with

complementary economic intuition can significantly enhance the estimation of treatment effects,

especially when the treatment is exogenous to the controls (Belloni et al., 2014a). Furthermore,

even when this assumption does not hold, the amelioration set is seen as a potentially significant

addition for ensuring valid inference by conditioning on the necessary controls, thereby making

the treatment plausibly exogenous (Belloni et al., 2017).

In the existing literature, the inclusion of the amelioration set is typically limited to an ex-

post addition to the final OLS regression (Belloni et al., 2014a; Gillen et al., 2014; Wüthrich

& Zhu, 2023). However, this simplistic approach disregards proper selection criteria and lacks

robustness. Under unfavourable conditions, the ex-post addition of the amelioration set could

even worsen causal inference. If the controls in the amelioration set are not described by the

Data Generating Process (DGP), this could lead to increased variance. Additionally, multicol-

linearity may arise if the controls in the amelioration set are strongly correlated with previously

selected controls, thereby increasing the standard deviations of parameter estimates. Whilst the

treatment effect is not directly affected, the precision of any post-hoc economic interpretation

based on the coefficient estimates is affected.

Empirically, the necessity for an amelioration set is especially high in problems with noisy

data, where the true effects of fundamental variables are overshadowed by noise. In such a set-

ting, perfect recovery of the real representation of the DGP, even asymptotically, cannot longer

be assumed (Wainwright, 2019). As a result, the Post-Double Selection method could yield a

subset in which complex transformed variables dominate over economically intuitive variables,

potentially better fitting the noisy data. If these controls are chosen through a spurious relation-

ship, their addition could prevent the detection of important confounding variables within the

Post-Double Selection and cause bias by missing underlying trends (Belloni et al., 2016). In this

context, the amelioration set can mitigate the bias due to the missing confounding variables,

albeit against a higher variance. This thesis, therefore, aims to provide an integrated alternative

to the ex-post addition of the amelioration set by applying lower penalization to economically

intuitive variables within Post-Double Selection Lasso regressions. This leads to the following

research question:

To what extent can integrated amelioration set penalization be used in Post-Double

Selection to reduce bias and improve inference in a high-dimensional dataset with

many controls?

With respect to existing literature, the main findings of this thesis are interesting for several

reasons. First, different implementations of data-dependent and data-independent amelioration
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set penalties are proposed, producing competitive inferential results for treatment effects in

approximately sparse models. These methods are more robust than those currently described in

the literature as the information on the amelioration set is integrated throughout the selection

procedure instead of added ex-post, exploiting available information to fine-tune the penalization

weights. Additionally, the methods accommodate both homoscedastic and heteroscedastic error

distributions and are tested across various levels of residual system noise. Second, several data-

dependent and data-independent amelioration set penalties are evaluated through Monte Carlo

simulations, yielding a better treatment effect estimation than Post-Double Selection under

certain conditions. This differential is particularly significant when the treatment variable and

its confounding variables are highly correlated and the relationship is subject to low residual

noise levels. This finding is applied in an empirical replication examining the effect of abortion

on crime rates, which features such a data structure (Donohue & Levitt, 2001). The most basic

amelioration set penalty, which removes penalization of the amelioration set in the Post-Double

Selection, acts as a hybrid between regular Post-Double Selection and Post-Double Selection with

the ex-post added amelioration set: an intermediate number of economically intuitive controls

and an intermediate total number of controls are selected, yielding a methodology that provides

a solid middle ground between economic interpretation and econometric robustness.

The thesis is structured as follows: Section 2 provides a brief overview of the current lit-

erature on Post-Double Selection. Section 3 covers the relevant methodological background

necessary to understand the methods used in this research. Section 4 discusses the data used in

the research. Next, Section 5 describes and explains the steps required to perform valid usage

of the Post-Double Selection and the amelioration set penalties. Section 6 presents the results

of the Monte Carlo simulations and offers a practitioner’s recommendation for using the ameli-

oration set penalties. Section 7 applies these findings to an empirical case. Finally, Section 8

presents the conclusions drawn, the limitations of the research, and ideas for future research.

Notation. Support(.) represents the number of non-zero elements in a vector. The average

expectation operator is defined as En[f ] := En [f(.)] :=
∑n

i=1 f(.)/n. The norms used are the

ℓ2-norm, denoted by ||.||2, the ℓ1-norm, denoted by ||.||1, and the ℓ∞-norm, denoted by ||.||∞,

representing the maximal element of a vector.

2 Related Literature

On a fundamental level, this thesis builds directly on the existing literature of machine learning

for causal inference, first introduced by Belloni, Chernozhukov and Hansen (2013). In this

seminal paper, the Post-Double Selection method is introduced with the Lasso estimator as

a means of achieving approximate sparsity. An extension paper provides a formal proof for

uniformly valid inference on treatment effects after selection in a setting with high-dimensional

controls (Belloni et al., 2014a). Further papers extend the double-Lasso method to various

applications, such as high-dimensional panel models (Belloni et al., 2016), high-dimensional

approximately sparse quantile regression models (Belloni et al., 2019), and principled variable

selection (Urminsky et al., 2019). Advancements generalize the impact of regularization bias and

overfitting of the parameter of interest using Neyman-orthogonal moments and efficient data-
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splitting, in a method known as debiased-ML, of which the Post-Double Selection is a specific

case (Chernozhukov et al., 2018, 2022). All of these papers mention ℓ1-regularization, specifically

the Lasso estimator, as a good means to approximate sparsity. This thesis will primarily focus

on the original methodology of the Post-Double Selection and extend the literature by providing

a robust improvement to the control selection.

2.1 Data-Driven Penalization

The ℓ1-regularization parameter plays a critical role in the Lasso estimator, balancing the tradeoff

between variance and bias. Too many unnecessary controls may be included if the penalty is

not conservative enough, leading to higher variance. Conversely, a penalty that is too conser-

vative can increase omitted variable bias. Bickel et al. (2009) first proposed a choice for the

Lasso penalty based on Gaussian error assumptions and data dimensionality. Building on this,

Belloni and Chernozhukov (2013) introduced data-independent penalty loadings for Post-Lasso

under Gaussian errors, and Belloni et al. (2012) introduced data-driven penalty loadings accom-

modating non-Gaussian errors. Finally, Belloni, Chernozhukov and Hansen (2013) developed

an algorithm to estimate the residual variance in the data, providing a framework for optimal

penalty loadings under non-Gaussian, heteroscedastic errors. The thesis will extend the meth-

odology for non-Gaussian homo- and heteroscedastic errors by accommodating beliefs based on

economic intuition, adding an extra dimension to the estimation of penalty loadings.

In addition, an important feature of data-driven penalties is their co-dependence in determ-

ining optimal loadings: each loading is fit to its control based on all available information.

Therefore, an adjusted loading for one control will affect the loading of another. Therefore, this

thesis provides a useful insight into the behaviour of data-driven penalty loadings under beliefs,

which are not necessarily data-driven but do translate to lower penalization.

2.2 Practisioner’s Recommendations

Considering the existing literature on Post-Double Selection, the theoretical focus of Post-Double

Selection is often overshadowed by diverse empirical applications. 1 Belloni et al. (2014a) stands

out as one of the few theoretical papers that proposes practical recommendations for using causal

inference estimators across data conditions. They analyze the performance of Post-Lasso and

Post-Double Selection estimators against the infeasible Oracle benchmark across various com-

binations of first and second-stage R2 values 2 and coefficient designs, to guide the appropriate

use of Post-Double Selection in causal inference analysis. The authors find that Post-Lasso

performs poorly across all combinations of R2 and designs, managing only to control bias when

the treatment is uncorrelated with the control (first-stage R2 = 0). Post-Lasso also gener-

ally performs better in a scenario where the confounding variables in the first-stage differ from

those in the second-stage regression, occasionally even outperforming Post-Double Selection

under conditions of low first- and second-stage R2. This situation arises when fundamental

1See for instance, Qiu et al. (2020) for an epidemiological application on the transmission of Covid-19, Dhar
et al. (2022) for an economic application on adolescent gender attitudes, and Hangartner et al. (2021) for a
psychological application on hiring discrimination.

2Referring to the correlation between the treatment variable and the design matrix, and between the outcome
and the design matrix, respectively.
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variables are significantly distorted by noise and the identities of the confounding variables are

uncertain. Amelioration penalties aim to precisely address this challenge by providing supple-

mentary information to better capture confounding variables under low first- and second-stage

R2. Otherwise, the Post-Double Selection estimator performs similarly to the Oracle across all

combinations of R2 and achieves its best performance under high first-stage R2 when the iden-

tities of the confounding variables are well known. This thesis aims to extend recommendations

for practitioners by conducting an updated analysis using amelioration penalties across different

designs and error distributions. In addition, this thesis will consider varying DGPs where the

confounding variables in the first stage are not the same as those in the second stage.

2.3 Bayesian Lasso

The idea of imposing a lower level of penalization for controls that are considered fundamental

can be explored through the lens of the Bayesian Lasso, introduced by Park and Casella (2008).

The paper suggests that the behaviour of the Lasso estimator can be interpreted through a

Bayesian posterior distribution, assuming that the priors on the regression parameters follow

independent LaPlace distributions. More specifically, the Lasso penalty estimates are equivalent

to the mode of the posterior distributions. The shape of the LaPlace distribution, peaking

sharply at the origin, produces a similar shrinkage effect as regularization with ℓ1-penalty, and

in practice, the solutions of both methods should be identical. Therefore, the results of this thesis

can be extended to Bayesian statistics by translating adjusted penalties in the amelioration set

into different shaped priors for their respective Bayesian counterparts. For instance, the prior for

a variable that is believed to be economically intuitive, under discrete amelioration set penalties,

can be modelled as a discrete posterior distribution with P(X = 0) = 1. Although this thesis

is not directly related to the Bayesian Lasso, exploring this connection could be an interesting

topic for future research.

3 Theoretical Framework

This section provides an overview of the relevant theoretical background necessary to understand

the choices made for the penalties in the amelioration set. First, the theory behind approxim-

ately sparse models and its contextualization to causal inference is presented. Next, the Lasso,

Post-Lasso, indirect Post-Lasso, and Post Double Selection estimators are introduced alongside

the relevant penalties to ensure validity. Lastly, a brief theoretical check is conducted on the reg-

ularity conditions of the Post Double Selection, to ensure inferential validity of the amelioration

set penalties.

3.1 Approximately Sparse Models

In an econometric model where the number of regressors p is relatively large compared to the

number of observations n, conducting a simple OLS regression is impossible. However, if a small

subset of regressors s ⊂ p can approximately capture the main features of the regression, identi-

fying this subset and performing regression using only these regressors offers a feasible approach

to OLS regression (Belloni & Chernozhukov, 2011). This intuition behind a model that can be
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approximated by a small subset of its regressors describes the structure of an ‘Approximately

Sparse Model’ (ASM) and motivates the consideration of regularization techniques to identify

s. Formally, a model is approximately sparse if p≫ n and s≪ p.

The following model is introduced to provide intuition into the approximation of a high-

dimensional model through an ASM (Belloni, Chernozhukov & Hansen, 2013):

yi = f(zi) + εi, εi ∼ N (0, σ2), i = 1, . . . , n, (3.1)

where yi is the outcome variable, zi is a vector of primary regressors that are significant drivers

of the regression function, and εi are i.i.d. errors. The regression function f(zi) is unknown,

implying that the exact relationship between zi and yi is also unknown. To approximate the re-

gression function, the design matrix X = [x1, ..., xn]
′ is introduced, where each xi = P (zi). Here,

P (zi) represents an unknown mapping of zi, possibly involving simple and complex transform-

ations (constants, splines, interactions, exponents), or even creating an ambiguous relationship.

The resulting approximation of the approximately sparse model through the design matrix is as

follows:

yi = x′iβ0 + ri + εi, i = 1, . . . , n, (3.2)

where β0 represents the coefficients and ri the approximation errors. Assuming there exists a set

of unknown regressors s such that a linear combination of these regressors produces sufficiently

low approximation errors, the model is considered approximately sparse. This equivalence is

characterized by a linear combination of regressors with support(β0) = s ≪ p, resulting in

relatively small ri. However, identifying the specific elements of β0 is challenging, and researchers

typically introduce a high-dimensional design matrix where p≫ n in an effort to uncover these

complex underlying relationships.3 In practice, pursuing the sparse identification of a high-

dimensional model is only beneficial if it is believed that yi can be well-approximated using a

much smaller subset of regressors (Belloni & Chernozhukov, 2011).

3.2 Approximately Sparsity for Inference

This approach of identifying the driving regressors in models with high-dimensional controls

using approximately sparse models can be extended to causal inference (Belloni et al., 2014a).

Consider the following partially linear model:

yi = d′iα0 + g(zi) + ui, E[ui|zi, di] = 0, (3.3)

di = m(zi) + vi, E[vi|zi] = 0, (3.4)

where yi is the outcome variable, di is the treatment variable, α0 is the coefficient of interest

capturing the treatment effect, zi are the controls, and ζi and νi are zero-mean errors. The

functions g(·) andm(·) are unknown and describe the relationships of the controls on the outcome

variable and the treatment variable, respectively. Similar to f(zi) in (3.2), the unknown nature

and potentially complex structure of these functions hinder the ability to identify the relevant

3Consider the empirical case in Section 7, where a baseline control set of seven regressors expands to include 284
non-multicollinear controls. In the end, however, only an average of 10 controls were selected in the Post-Double
Selection.
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controls in the partially linear model. However, if the relevant controls in g(zi) and m(zi) are

correctly identified and assuming sufficiently low approximation errors, the exogeneity of di could

be assumed. In practice, uncovering the identities of zi is challenging, and sparse approximations

provide a method to approximate g(zi) and m(zi). Consider the following sparse approximation

of the partially linear model (Belloni et al., 2014a):

yi = d′iα0 + x′iβg0 + rgi︸ ︷︷ ︸
g(zi)

+ui, (3.5)

di = x′iβm0 + rmi︸ ︷︷ ︸
m(zi)

+vi, (3.6)

where x′iβg0 and x′iβm0 are the sparse approximations for g(zi) and m(zi), and rgi and rgm are

the respective approximation errors. Conditional on sufficiently small approximation errors and

other regularity conditions, some of which are discussed in Section 3.6, valid causal inference

can be performed on the treatment effect α0 (Belloni et al., 2014a). Therefore, the challenge

remains to find a feasible and valid method to construct such an approximately sparse model

given a high-dimensional design matrix.

3.3 One-stage Lasso Estimation

The Lasso estimator provides a simple, theoretically guaranteed, and computationally feasible

solution to induce sparsity through ℓ1-regularization. The estimator shrinks some coefficients and

sets others to zero without requiring prior knowledge of the structure of the DGP (Tibshirani,

1996):

β̂L = min
α∈R,β∈Rp

En

[(
yi − diα− x′iβ

)2]
+
λ

n
∥β∥1, (3.7)

where ∥β∥1 =
∑p

j=1 |βj |, and λ is a specified penalty vector. Note that λα = 0 in all relevant

Lasso estimations to restrict the penalization and ensure the selection of the treatment variable.

Although ℓ1-regularization helps Lasso reduce overfitting, the shrinkage of coefficients to zero

can introduce significant bias. The Post-Lasso estimator attempts to alleviate Lasso’s shrinkage

bias by performing an OLS regression on the variables selected from an initial Lasso selection.

This estimator is found to perform at least as well as a single Lasso estimation but with lower

bias on the treatment effect (Belloni & Chernozhukov, 2013):

β̂PL = min
α∈R,β∈Rp

En

yi − diα−
p∑

j=1

xi,jβj

2 : βj = 0 if β̂L,j = 0, ∀j. (3.8)

The Indirect Post-Lasso is an adaptation of the Post-Lasso, conditioning on the indirect effect of

di on xi,j in the first-stage estimation to reduce the possibility of missing confounding variables.

Next, an OLS is performed on the union of the controls selected in the first stage and the
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treatment variable (Belloni & Chernozhukov, 2011):

β̂d = min
β∈Rp

En

[(
di − x′iβ

)2]
+
λ

n
∥β∥1, (3.9)

β̂IPL = min
α∈R,β∈Rp

En

yi − diα−
p∑

j=1

xi,jβj

2 : βj = 0 if β̂d,j = 0, ∀j. (3.10)

This estimator should intuitively recognize the confounding variables better, shrinking the OVB

more effectively than the Post-Lasso. However, if the correlation between di and xi,j is negligible,

and the correlation between yi and xi,j is high, the treatment effect might become difficult to

identify. Therefore, the single-stage Lasso might benefit from a second-stage estimation to

address this pitfall.

3.4 Two-stage Lasso Estimation

Although the Lasso estimator is restricted to estimating a single model at a time, it can be used

sequentially to accommodate partial linear models. For instance, the Post-Double Selection

estimator, which sparsely approximates the partial linear model described in (3.3) and (3.4),

is based on a two-stage estimation: a first-stage Lasso estimation of di on xi,j followed by a

second-stage Lasso estimation of yi on xi,j . A final OLS regression is then performed of yi on

di and the union of the selected variables from the first- and second-stage Lasso estimations

(Belloni et al., 2014a):

β̂x = min
β∈Rp

En

[(
yi − x′iβ

)2]
+
λ

n
∥β∥1. (3.11)

Let Î1 denote the controls selected by (3.9) and Î2 denote the controls selected by (3.11). Let

the union be Î. The final OLS regression is as follows:

β̂PD = min
β∈Rp

En

yi − p∑
j=1

xi,jβj

2 subject to βj = 0 if j /∈ Î = {Î1 ∪ Î2}. (3.12)

This procedure is essentially an adaptation of Frisch-Waugh’s ”partialling out,” in which yi

and di are cleaned of the effects of the confounding xi,j ’s through their inclusion in the OLS.

After di is cleaned such that it is exogenous to the xi,j ’s, the true treatment effect of di on yi

can be observed (Heij et al., 2004). Note that for the estimated treatment effect α̂0 to equal

α0 in the finite-sample, sufficient relevant confounding variables should be included in the final

regression to ensure sufficiently low approximation errors rgi and rmi, such that exogeneity can

be assumed for the treatment variable.

The main strength of the two-stage Post Double Selection estimation over a single-stage Lasso

or Post-Lasso lies in the additional estimations of di on xi,j and yi on xi,j . Intuitively, there

are two scenarios in which the two-stage estimation will outperform the one-stage estimation.

First, if di and xi,j are strongly correlated but yi and xi,j are not, the single-stage estimation

might fail to capture this relationship and not condition on the confounding xi,j due to the low

correlation with the outcome variable, whereas the two-stage estimation would account for this
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through the first-stage estimation. Second, if both yi and xi,j , as well as di and xi,j , are strongly

correlated, the single-stage estimation might fail to distinguish the treatment effect from xi,j ,

whereas the two-stage estimation would account for this through the second-stage estimation

by estimating yi on xi,j without conditioning on di.

3.5 Lasso-Penalization

So far, in the theoretical framework, the regularization behaviour of the Lasso estimator has

only depended on the value of λ. However, under non-Gaussian, non-heteroscedastic error

conditions, equivariance needs to be regulated through an additional parameter, Ψ. In this

section, the theory behind the penalty choices is provided to ensure correct ℓ1-regularization in

the Lasso estimator, along with a brief introduction to Ω, the parameter that will regulate the

amelioration set penalization. Additionally, it is important to note that for the Lasso to behave

correctly, all regressors in the design matrix should be normalised.

3.5.1 λ-Penalty: Regularization

In the context of forecasting, cross-validation is a popular method for choosing λ, but its fo-

cus on minimizing prediction error is not suitable for causal inference (Belloni et al., 2014b;

Wüthrich & Zhu, 2023). Instead, the main function of λ should be to dominate the ’effective

noise’ in the system through regularization while maintaining the regularization bias as small as

possible (Belloni & Chernozhukov, 2011). Furthermore, λ directly regulates the sparsity in the

Lasso function: a higher penalty generally results in more sparsity due to the added cost of an

additional non-zero β-coefficient.

The following definitions will improve clarity in the derivation of the optimal λ: the criterion

function of the Lasso estimator is defined as Q̂(β) = En

[
(yi − x′iβ)

2
]
, and the score, S, is defined

as the gradient of the criterion function evaluated at the true parameter value β0: S = ∇Q̂(β0)

(Newey, 1994). The derivation proceeds as follows:

S = ∇Q̂(β0) (3.13)

= ∇En

[(
yi − x′iβ0

)2]
(3.14)

= 2 · En

[
yi − x′iβ0

]︸ ︷︷ ︸
εi

· ∂
∂β0

(
En

[
yi − x′iβ0

])
(Chain rule) (3.15)

= −2En [xiεi]
sym.
= 2En [xiεi]

d.
= 2σEn [xigi] , (3.16)

where gi is an i.i.d. N (0, 1) distributed random variable, and σ describes the standard deviation

of the residuals. The final equivalence describes the convergence in the distribution of the re-

siduals to normality, although σ remains unobserved in the problem and can only be estimated

by σ̂. 4 Therefore, En [xigi] can be estimated through simulations using only the design matrix

and random sampling from the standard normal distribution. In addition, note that λ dominat-

ing the effective noise can be conservatively simplified to λ having to dominate the most noisy

4An iterative procedure allows for a refined estimation of σ using Post-Lasso iterations (Belloni &
Chernozhukov, 2011). This procedure will be elaborated on in Section 5.
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regressors across all observations, choosing a confidence level of (1− α):

λ > c ·Λ for Λ := n ∥S∥∞ = 2n ∥En [xiεi]∥∞ , (3.17)

for a constant c > 1, such that the optimal feasible λ is estimated as follows: 5

λ̂ ≥ 2cn ∥En [xiεi]∥∞
d.
= 2cnσ̂ ∥En [xigi]∥∞ , (3.18)

The standard Lasso-estimation can be rewritten as:

β̂Λ = min
β∈Rp

Q̂(β0) + 2cσ · ∥En [xigi]∥∞ · ∥β∥1 (3.19)

= min
β∈Rp

Q̂(β0) + cσ ·Λ(1− α|X) · ∥β∥1. (3.20)

The latter notation is useful as the Λ(1 − α|X), also called the X-dependent penalty term,

remains constant given a fixed regressor matrix. Using this penalty term over an alternative,

data-independent Lambda, is recommended because the former adapts to the design matrix X

by construction and is less conservative than the latter (Belloni & Chernozhukov, 2011). This

is due to the stricter asymptotic bounds of the data-driven penalty. The data-driven penalty

parameters, c and α, are asymptotically required to converge to 1 and 0, respectively, with

probability 1. Non-asymptotically, Belloni and Chernozhukov (2011) found that in finite-sample

experiments, c = 1.1 and α = 0.10 are sufficient. Although the cross-validated λ also relies on

the data, its focus on regularization for forecasting performance does not align with minimizing

the bias on a treatment variable (Chernozhukov et al., 2016).

3.5.2 Ψ-Penalty: Equivariance

The previously mentioned β̂Λ is only valid under the assumption of homoscedastic, normally

distributed errors and normalised data. However, to handle data with heteroscedastic, non-

Gaussian errors, a correction is introduced via Ψ: (Belloni et al., 2014a)

β̂Ψ = min
β∈Rp

Q̂(β0) + 2c · ∥En [xiεi]∥∞ · ∥Ψ̂β∥1, (3.21)

where Ψ̂ = diag(ψ̂1, . . . , ψ̂p) is a diagonal matrix of penalty loadings designed to impose equivari-

ance in the ℓ1-regularization penalty term allowing for valid heteroscedastic treatment, and

∥Ψ̂β∥1 =
∑p

j=1 |ψ̂jβj | (Chernozhukov et al., 2016). The following derivation shows the neces-

sary Ψ to ensure the correct behaviour of (3.21). The derivation starts at an equivalent form of

5Belloni and Chernozhukov (2011) found that the combination of α = {0.05, 0.1} and c = 1.1 produces strong
results. Belloni, Chernozhukov and Hansen (2013) and Belloni et al. (2014a), amongst other applications of the
Post Double Selection estimator, continue to use those values.
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(3.18) with the inclusion of Ψ (Chernozhukov et al., 2015):

λ̂Ψ

n
≥ 2c ∥En [xiεi]∥∞ = 2c

∥∥∥∥∥ 1n
n∑

i=1

xiεi

∥∥∥∥∥
∞

(3.22)

λ̂√
n
≥ 2c

∥∥∥∥∥
1√
n

∑n
i=1 xiεi

Ψ

∥∥∥∥∥
∞

(3.23)

where En

[
1√
n

∑n
i=1 xiεi = 0

]
, such that V

(
1√
n

∑n
i=1 xiεi

)
= En

[
1
n

∑n
i=1 x

2
i ε

2
i

]
. Therefore, by

setting Ψ = En

[
1
n

∑n
i=1 x

2
i ε

2
i

]
, the RHS of (3.23) is standardized, such that λΨ

d.
= 2cnσ ·

∥En [xigi]∥∞. Under the correction Ψ, the Lasso estimator exhibits correct behaviour under

heteroscedastic, non-Gaussian errors, similar to (3.18)

3.5.3 Ω-Penalty: Amelioration set

The amelioration set penalties are introduced through a (p× 1) vector Ω that acts as a scaling

parameter of λ. Let Î3 denote the indices of the amelioration set, such that:

Ω =

ωi ∈ [0, 1] , i ∈ Î3

1, otherwise

β̂Ω = min
β∈Rp

Q̂(β0) +
λ · Ω
n

∥Ψ̂β∥1, (3.24)

where Ω = [ω1, . . . , ωk, 1, . . . , 1], and ωi ∈ {0, 1} accommodates the scaling of ‘k ’ a priori selected

regressors Xamel = [x1, . . . , xk] for X = [x1, . . . , xk, xk+1, . . . , xp], with k ≪ p. The regressors

excluded from the Xamel set with ωi = 1 will not receive different treatment compared to (3.21).

However, note that although in the formula it appears their behaviour remains unchanged, the

lower penalization of the amelioration set will still affect their bias compared to before: a lower

penalization of Xamel in the ℓ1-regularization will result in a lower tendency for these coefficients

to be zero and will exhibit lower downside regularization bias compared to the non-amelioration

set. If ωi = 0 is imposed, there is no induced regularization bias, but instead, there will be an

upward bias as the downside bias weighing of the regularized regressors will push the estimate

of the non-regularized regressor upwards. 6 The specific values of Ω under different ‘beliefs’ will

be further explored in the methodology.

The amelioration set penalties can be linked to ASMs, where beliefs supplied through dif-

ferent values of ωi can help uncover the ’true’ structure of the partially linear models in (3.3)

and (3.4). Elements within the amelioration set are considered fundamental and assumed to be

included in the structural representation of the model, but they are not always selected in the

sparse approximations. This can be due to several reasons, some of which are outlined in the

introduction. However, the simple amalgamation of the amelioration set ex-post to guarantee

their inclusion in the final OLS regression, as described in the literature, is not robust to an

imperfect amelioration set that does not reflect the structural representation. By integrating

6I want to thank my supervisor Stan Koobs for his intuitive explanation of the ‘weights’ of the regularized
versus non-regularized regressors and their push-and-pull mechanisms.
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the amelioration set penalties within the Lasso-estimations and approaching their selection with

increased scrutiny, this extended methodology should be more robust for the valid inclusion of

the amelioration set penalties than the vanilla Post-Double Selection.

3.6 Conditions

Valid inferential results for approximate sparse treatment effects in ASMs depend on the ap-

proximate sparsity and rate conditions established in Belloni et al. (2014b), among others.

Under noisy conditions, consistency in variable selection is only achieved for n > p in sparse

high-dimensional models, among other conditions (Wainwright, 2019). In this thesis, the latter

condition is violated, so perfect confounding variable selection cannot be assumed. Furthermore,

the empirical literature has found the control selection behaviour of the Lasso estimator to be

imperfect, causing significant omitted variable bias (Wüthrich & Zhu, 2023). This paper does,

however, reach the same conclusion as (Belloni et al., 2014b), recommending the inclusion of an

amelioration set motivated by economic theory to offset potential omitted variable bias in the

finite sample due to imperfect Lasso behaviour.

Therefore, this thesis will not assume perfect confounding variable selection or inference

in the finite sample with the Post-Double Selection or with the inclusion of amelioration set

penalties. Instead, the focus will be on how well the amelioration set penalties mitigate the

persisting effects of noise in the Post-Double Selection and to what extent the addition of the

penalties helps in establishing valid inferential results. From an analytical viewpoint, discussing

whether the amelioration set penalties, as an alternative to ex-post inclusion, will similarly

adhere to the conditions is an interesting theoretical addition. The conditions will be given for

the partially linear model in (3.3) and (3.4). The approximate sparsity condition (ASC) is as

follows:

m(zi) = x′iβm0 + rmi, ∥βm0∥0 ≤ s, (En

[
r2mi

]
)1/2 ≤ C

√
s/n, (3.25)

g(zi) = x′iβg0 + rmi, ∥βg0∥0 ≤ s, (En

[
r2gi

]
)1/2 ≤ C

√
s/n, (3.26)

for a sparse model with support s ≥ 1 and an absolute constant C ∈ R. The rate condition

(RC) regulates that s2log2max(p, n)/n ≤ δn for δn ∈ Rp, and that the size of the amelioration

set should follow ŝ3 ≤ C(max(1, ŝ1, ŝ2)), for ŝi = ∥Ii∥0 , i ∈ {1, 2, 3}.
The ASC requires that the approximation errors of m(zi) and g(zi) be sufficiently small

using a small subset s of the full control set p, where the growth of the approximation errors

is bounded by s/n. The amelioration set penalties on k regressors are conjectured to reflect

the true sparsity s, such that their inclusion can improve the estimated sparsity ŝ to better

resemble s. If incorrect, the Lasso estimator should discard the information supplied through

the amelioration set by not selecting controls in k, leading to no real change. Therefore, the

condition should not be violated in either case as long as the sparse approximation does not

result in a significantly worse approximation error. Monte Carlo simulations illustrate this effect

of the amelioration set penalties on the ASC: a higher level of precision in the amelioration set

penalties leads to a better sparse approximation, where the chosen controls converge to the real

structural representation.

The introduction of the amelioration set penalties should not affect the first growth condition
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in the RC. The second condition is tailored for the Post Double Selection with the ex-post

addition of the amelioration set, requiring that the growth rate of the cardinality of the set ŝ3

should not exceed that of the control set selected in the Post Double Selection, ŝ1 and ŝ2. Due

to the integrated nature of the penalties for the amelioration set, this condition can be ignored,

as such an ex-post amelioration set is not applied. Regardless, the size of the amelioration set

penalties will be maintained lower or equal to the expected number of confounding variables in

the DGP in both the Monte Carlo simulations and the empirical case.

4 Data

Monte Carlo simulations will accommodate the exploration of the amelioration set penalties

under different conditions, such as varying error distributions, different first- and second-stage

R2 values, and different DGPs. A complete description of the testing conditions is given in

Section 5. In addition, the findings of the theoretical exploration are applied in a re-examination

of an empirical case covered in Belloni et al. (2014a), specifically the effect of abortion on

crime rates (Donohue & Levitt, 2001), to uncover the impact of the amelioration set penalties

on the estimated treatment effect and any differences in variable selection and the economic

interpretations of coefficient estimates.

In their research, Donohue and Levitt (2001) evaluate the causal impact of abortion rates

on three different types of crime: property, violence, and murder. The original set of controls

includes lagged prisoners per capita, lagged police per capita, unemployment rate, per-capita

income, poverty rate, welfare generosity, concealed weapons laws, and beer consumption per

capita. Belloni et al. (2014b) find that estimating the causal impact is challenging due to

non-random state-level abortion rates and the potential influence of other confounding factors

related to both abortion and crime rates, providing a strong motivation for the use of Post

Double Selection. They expand the set by including state-specific effects, time-specific effects, a

set of control variables to account for time-varying state-level factors, and a variety of complex

transformations, yielding the following model:

ycit − ycit−1 = αc(acit − acit−1) + z′citkc + gct + ηcit, (4.1)

where ycit is the crime rate and acit is the abortion rate for crime type c ∈ {property, violent,
murder}, αc is the treatment effect of abortion on crime, gct represents time effects, ηcit is the

error term, and zcit is an enriched set of the original controls, including higher-order terms,

interactions with controls, a quadratic time trend, initial level differences, and within-state

differences.7 The zcit term can be considered a high-dimensional control set that can be reduced

to an ASM, for which it is assumed that an approximation using only a small number of controls

yields a small enough approximation error.

The resulting data includes the same state-level information as reported by Donohue and

Levitt (2001), excluding Alaska, Hawaii, and Washington, D.C., resulting in a sample of 48 cross-

sectional observations on yearly state-level data from 1985 to 1997 (12 time series observations),

yielding a total of 576 observations. The control set comprises 284 variables for each of the

7The full set of variables and transformations can be found in Belloni, Chernozhukov and Hansen (2013).
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three types of crimes. This implies that for determining the state-specific effect, there are

n = 12 observations for p = 284 controls, making it a case where n ≪ p, and hence a good

opportunity to evaluate the performance of Ω. In this empirical context, the amelioration set

has been previously defined in the literature as the original set of 7 controls (Belloni et al., 2014a).

Therefore, this same set will be used in this empirical re-examination. Given the economically

intuitive nature of the amelioration set, its inclusion in the Post Double Selection will yield more

straightforward and meaningful economic interpretations compared to more complex terms.

5 Methodology

In this section, the setup of the Monte Carlo simulations under different data properties is

described, the varying designs of Data Generation Processes are introduced, the necessary pro-

cedures for a valid Post Double Selection are outlined, different data-independent and data-

dependent amelioration set penalties are introduced, and the metrics for evaluating their per-

formance are presented.

5.1 Monte Carlo Simulations

Given the theoretical focus of this paper and the difficulty in measuring the specific effect of the

amelioration set penalties on the complex interactions within the control selection, Monte Carlo

simulations are used. Each estimation is run for 1,000 simulations to ensure a sufficiently large

sample for valid Monte Carlo properties.

5.1.1 DGP Setup

Following Belloni, Chernozhukov and Hansen (2013), the structure of the DGP is based on the

partially linear models (3.3) and (3.4):

yi = d′iα0 + x′iβ0 + ui, ui ∼ N (o, σ2u) (5.1)

di = x′iη0 + vi, vi ∼ N (o, σ2v) (5.2)

for a fixed design matrix X = [x1, . . . , xp] containing p = 200 regressors across n = 100 observa-

tions, x ∼ N (0,Σ) with Σkj = (0.5)|j−k| for j, k ∈ {1, . . . , p}, and the treatment effect α0 = 1.

The design matrix is normalised such that En[x
2
ij ] = 1 for j ∈ {1, . . . , p}, ensuring the equivari-

ance condition is met for the Lasso to produce valid control selection under homoscedastic errors.

Each simulation draws new xi’s, ui’s, and vi’s from their respective distributions.

By construction, this partially linear model cannot be estimated using OLS, making it an ideal

testing ground for evaluating the sparsity approximation abilities of Post-Double Selection and

its extensions in finite samples. Three distinct DGP designs are considered to evaluate control
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selection in finite samples. 8 Design 1 is a Linear decay:

β0 =

(
1,

1

2
,
1

3
,
1

4
,
1

5
, 0, 0, 0, 0, 0, 1,

1

2
,
1

3
,
1

4
,
1

5
, 0, . . . , 0

)′
, (5.3)

η0 =

(
1,

1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9
,
1
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, 0, . . . . . . . . . . . . , 0

)′
. (5.4)

Design 2 is a Quadratic decay:

β0 =

(
1

1
,
1
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,
1

32
,
1
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,
1

52
, 0, 0, 0, 0, 0, 1,

1

22
,
1
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,
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,
1
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)′
, (5.5)

η0 =
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,
1
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)′
. (5.6)

and Design 3 is an extended Quadratic decay:

β0 =

(
1

1
,
1
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,
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,
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,
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,
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1
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)′
, (5.7)

η0 =

(
1,

1
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,
1
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,
1
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,
1
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,
1
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,
1
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,
1
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,
1
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,

1
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, . . . . . . . . . . . . ,

1

2002

)′
. (5.8)

The three designs are chosen for their different extents of approximating a sparse representa-

tion. Design 1 has the clearest representation, with a sparse design that uses sizable coefficients

in s. Design 2 has a similarly sparse representation but with significantly lower coefficients in s.

Design 3 deviates slightly from Design 2, including continuously decreasing, yet possibly signi-

ficant, coefficients throughout the full structural representation. For Design 3, the approximate

sparsity condition s ≪ p is violated. Due to their structures, it is expected that in Design 1,

the vanilla Post-Double Selection will capture the exact number of confounding variables; in

Design 2, the estimator will capture only some of the confounding variables; and in Design 3,

the estimator will capture too many. Therefore, the amelioration set penalties are expected to

produce the greatest gains in the latter two designs.

5.1.2 Error Distribution

The amelioration set penalties are evaluated under both homoscedastic and heteroscedastic

error terms, as in practice, perfect homoscedasticity is not assumed. Under the assumption of

homoscedasticity, σu = σv = 1 and σuv = 0. Under the assumption of heteroscedasticity, the

following specification is considered (Belloni, Chernozhukov & Hansen, 2013):

σd =

√
(1 + x′iβ0)

2

1
n

∑n
i=1 (1 + x′iβ0)

2 , σy =

√
(1 + α0di + x′iβ0)

2

1
n

∑n
i=1 (1 + α0di + x′iβ0)

2 , (5.9)

where averages of σd(xi) and σy(di, xi) both converge to one. Any other heteroscedastic design

can also be employed as long as their averages converge to one, ensuring a fair comparison to

the homoscedastic case.

8The DGP designs are inspired by a combination of those used in Belloni and Chernozhukov (2011) and Belloni
et al. (2014a).
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5.1.3 Partial R2 Parameterization

Recalling from the introduction, in a system with significant noise, it seems plausible that

the true effects of fundamental variables are masked, and sparsity-inducing methods tend to

spuriously choose controls that are primarily correlated with the noise instead of the outcome

variable. To evaluate the effectiveness of using amelioration set penalties to mitigate spurious

selection, they are tested under varying levels of noise. More specifically, the DGPs of the

different designs are scaled such that the ratio of the explainable model variance to the total

variance (also called the R2 of a model) can be specified through a process called ‘partial R2

parametrization’ (Cinelli & Hazlett, 2020). The parameters cy and cd are analytically determined

for the intended R2 in both specifications of the partially linear model, such that the following

holds:

R2
d =

V(x̃i′cdη0)
V(x̃i′cdη0 + vi)

(5.10)

R2
y =

V(d′iα0 + x̃i
′cyβ0)

V(d′iα0 + x̃i
′cyβ0 + ui)

=
V((x̃i′cdη0)′α0 + x̃i

′cyβ0)

V((x̃i′cdη0)′α0 + x̃i
′cyβ0 + ui)

, (5.11)

where resulting values of cy and cd are specified in Appendix A. The R2 ∈ {0, 0.2, 0.4, 0.6, 0.8}
values do not necessarily have to be equal, allowing for a 3-dimensional grid to show the beha-

viour of the different amelioration set penalties across varying levels of noise.

5.2 Post-Double Selection

This section describes the practical methodology for practitioners to correctly initialize and

make necessary adjustments to the Post-Double Selection method. 9

5.2.1 Λ-Simulations

The data-dependent λ-penalty introduced in (3.18) relies on the value of Λ(1 − α|X), where

Λ := 2n ∥En[xigi]∥∞ is estimated through the interactions of vectors in the design matrix xi

and gi ∼ N (0, 1). Λ(1− α|X) is determined as the (1− α)th percentile of the simulations. The

’hdm’ package recommends 5000 simulations, but preliminary tuning showed that 3000 iterations

produce negligible differences while significantly reducing computation time.

5.2.2 σ-Estimation

The other important element in determining λ to ensure correct Lasso functioning is the estim-

ation of σ̂, such that the property ∥En [xiεi]∥∞
d.
= σ ∥En [xigi]∥∞ can be used. The difficulty

lies in that σ is unobserved; hence, an iterative procedure is needed to refine the estimations.

This iterative procedure, based on the data-driven penalty, is also crucial for the validity of the

asymptotic properties of the post-double-selection estimator (Belloni & Chernozhukov, 2011).

9Note that there is already an R package called ’hdm’, written by one of the authors based on the original
paper by Belloni et al. (2014a). However, due to its inflexibility in adjusting the penalties within the pre-made
function —a requirement for this thesis’ analysis— the code was replicated, with some elements copied and others
adjusted (Chernozhukov et al., 2016). See Appendix F for a full description of the various functions used in the
code.
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The Lasso penalty is directly dependent on the value of σ̂; therefore, each iteration producing a

different estimate affects the λ of the next iteration. This continues until a local optimum σ̂ is

found, and further iterations do not affect the estimate.

The original paper initialises the iterative procedure with a conservative estimate of yi on a

constant. However, this method is adjusted to use a better-informed preliminary OLS regression

to estimate σ̂I0 =
√
En[(yi −X ′β)]. The full iterative procedure to estimate σ̂ using Post-Lasso

iterations is given in Appendix B.

5.3 Amelioration Set Penalties

The concept of incorporating beliefs in approximating sparse representations is complex to sim-

ulate in Monte Carlo simulations and is underrepresented in the literature. Hence, the following

methodology presents an experimental approach to generating ’beliefs’ on which controls should

be included in the amelioration set. The primary challenge is avoiding data-snooping bias, where

one assumes beliefs that should not be known ex-ante. The goal is to specify a sparse DGP with

a relatively small number of known confounding variables and many irrelevant controls, assum-

ing approximate sparsity, and to create a sparse approximation based on ’beliefs’ that must be

specified ex-ante.

Logically, if the parametric model is known, it is easy to provide correct information to

the estimator, but this would be an invalid practice. Conversely, purposefully providing the

estimator with incorrect information will deliberately make the estimator perform worse than

it otherwise would. 10 Therefore, the resulting methodological setup is experimental. First, the

methodology of varying levels of belief accuracy is explained, followed by the different proposed

penalization methods.

5.3.1 Generating Ω-beliefs

Recall that the true number of confounding variables in an ASM is denoted by s, and the

elements that are ’believed’ should receive a lower penalization are denoted by k. Let k̂ be the

number of controls out of k that actually receive a lower penalization through their reduction

in Ω. The following setup is proposed for p = 200 under three levels of precision, reflecting the

a priori precision of the extent of the knowledge of k on s:

Figure 1 shows the three levels of precision: high (kh), medium (km), and low (kl), in compar-

ison to s. These levels of precision correspond to the density of precision in the beliefs. A higher

level of precision increases the probability of selecting confounding variables. In comparison, a

lower level of precision maintains the same probability of selecting confounding variables but

also increases the probability of selecting irrelevant controls. This approach reflects the prac-

titioners’ methodology: having focused knowledge about which factors drive the DGP versus

casting a wider net when such knowledge is lacking.

10Consider as an intuitive example trying to determine the treatment effect of an economic policy on inflation.
A researcher might have economic intuition about several important confounding controls that should be included
and therefore incorporates these beliefs into the Lasso estimations. However, whether these controls are truly
confounding will probably be unknown, and therefore, they will not cause data snooping. When one has parametric
knowledge, the lower penalization on controls known to be confounding would be considered data-snooping. There
is a very fine line to thread in this experimental setup to avoid data snooping.
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Figure 1. The domain of the amelioration set under varying levels of precision, given p = 200

Note that k̂ < k, as not all elements that are believed to receive a lower penalization can be

chosen, allowing for more variety in sets of beliefs across the Monte Carlo simulations and hinder-

ing perfect selection of s, regardless of the precision level, therefore reducing the data-snooping.

This selection mechanism is implemented as follows: each element in k̂i is independently drawn

from ki for i ∈ {h,m, l} using a Bernoulli distribution with a probability of 0.5. Therefore, the

expected precision of choosing a correct confounding control for k̂h is 1/2, for k̂m is 3/8, and for

k̂l is 1/4.

5.3.2 Data-Independent Penalties

The first choice for Ω is the data-independent ‘discrete’ penalty, which depends only on the

identities of k̂ and does not consider other available information in the data. One supporting

argument for this penalty is that it counteracts Lasso’s potentially spurious reliance on control

selection based on correlation with noise. Instead, the penalty is based entirely on the discrete

belief regarding whether a control should or should not be included in the amelioration set,

guided by economic intuition.

The Discrete penalty, denoted by ΩD, assigns a penalty of zero if the control is an element

of k̂ and a penalty of one otherwise. This penalty serves as a baseline comparison to existing

literature by providing a robust alternative to the ex-post addition of the amelioration set for

the final OLS regression in the Post Double Selection by integrating the amelioration set within

the Lasso-estimations and forcing their selection.

A second data-independent penalty is introduced through the ‘half-discrete’ penalty, denoted

by ΩHD. This penalty functions similarly to ΩD but assigns a penalty of one-half if the control

is an element of k̂. It serves as a robustness check to determine whether the complete removal of

penalization is necessary for the amelioration set or if a partial penalty, such as one-half, yields

similar results. Exploring the effects of scaling the Discrete penalty to other values within its

domain is an interesting idea for future research.

ΩD =

0, i ∈ k̂

1, otherwise
ΩHD =

0.5, i ∈ k̂

1, otherwise
(5.12)

18



5.3.3 Data-Dependent Penalties

Data-dependent penalties are introduced to improve ΩD by scaling the amelioration set penalties

based on the data in the design matrix. The robustness of using these penalties can be argued

from two perspectives: On one hand, due to their data dependence, they might succumb to the

fallacy of overfitting to noise, similar to the Lasso estimator. On the other hand, selecting a

small subset of potentially information-dense controls allows for the exploitation of information

that irrelevant controls might have previously masked.

The adaptive penalty, denoted by ΩA, is based on the logic of the two-step adaptive Lasso

(Zou, 2006) 11. First, an OLS regression is performed with yi regressed on the controls in k̂.

The resulting coefficients determine the penalization: the highest coefficients receive the lowest

penalization. This approach adapts the amelioration set penalties to the correlation structure of

the data. The scaling is determined by taking the multiplicative inverse of the coefficients and

scaling the weights between zero and one, such that the controls with the largest coefficients in

the preliminary OLS are penalized the least in the Lasso (See 5.13).

The score penalty, denoted by ΩS , uses information from the score in the problem to set the

amelioration set penalties. Similar to how the λ-penalty is proportional to the maximum score:

S ∝ En [xiεi], this approach is applied to setting ΩS based on the score of each control within k̂.

Controls with a lower score are penalized less, aligning with the logic of ℓ1-regularization in the

Lasso estimator. The same scaling method used for ΩA is applied here. Note that the residual

vector changes across iterations of estimating σ̂, so ΩS should be updated with each iteration.

scale(ζi) :=
ζi −min(ζ)

max(ζ)−min(ζ)
(5.13)

ΩA =

ωi ∈ scale(b−1
i ), i ∈ k̂ for bi = (X ′

tXt)
′X ′

tyi, Xt = X ′Ii∈k̂
1, otherwise

(5.14)

ΩS =

ωi ∈ scale(bi), i ∈ k̂ for bi = En[xiε̂i]

1, otherwise
(5.15)

where Ii∈k̂ is an indicator function that determines whether a regressor in the design matrix

is an element of k̂. A full sequential overview of all amelioration set penalties is presented in

Appendix C.

5.4 Metrics

The metrics used to evaluate the performance of different estimators and penalties align with

existing literature (Belloni & Chernozhukov, 2011; Belloni et al., 2014a). These metrics include

the treatment effect’s bias, the bias’s standard deviation, and the rejection probabilities of the

95% confidence intervals. The confidence intervals are calculated using the jackknife standard

error estimator, which is preferred over regular heteroscedastic standard error estimators due

to its ability to reduce bias, especially in small samples, by systematically leaving out one ob-

servation at a time (MacKinnon & White, 1985). This method provides more robust standard

11I want to thank Dr. Kaspar Wüthrich for pointing out this idea in an e-mail conversation.
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errors in the presence of heteroscedasticity and performs strongly under homoscedasticity, ac-

commodating DGPs with either error distribution. In addition, the jackknife method yields

more reliable inferences in finite samples, which is crucial in this research where n = 100 (Long

& Ervin, 2000).

Therefore, in the final OLS regression of the Post-Double Selection, the residuals can be used

to consistently estimate the standard error of the treatment effect. The rejection probability

should ideally be 5% to indicate uniformly valid performance. Furthermore, the number of

controls in Î = {Î1 ∪ Î2} that are an element of s, and the total number of chosen controls in

Î, are examined to evaluate the effect of the amelioration set penalties on better-performing

control selection. Ideally, the Î should converge to s while the total number of selected controls

remains low.

6 Simulation Results

The results of the Monte Carlo simulations are presented in three stages. First, a preliminary

analysis of the different Lasso estimators is conducted to holistically evaluate their performance

and provide intuition for using both the Post-Double Selection and amelioration set penal-

ties. Second, different cases of R2 are examined to evaluate the performance of the various

amelioration set penalties and levels of precision in specific chosen cases, demonstrating that

some penalties perform better under certain conditions. Third, generalized results are presented

across the full grid of R2 values to comprehensively assess the amelioration set penalties. Here,

a practitioner’s recommendation is provided for appropriately using the robust amelioration set

penalties under varying conditions.

6.1 Lasso-Estimators for Causal Inference

Table 1 displays the results of the different Lasso-estimators performed on Design 1 with homo-

scedastic errors, and Figure 2 shows the distribution of the estimated treatment effect, of which

the shapes align with those found in existing literature (Belloni et al., 2014a).

Table 1. Simulation results for Lasso-estimators

Estimator Mean Bias Std. Dev rp(0.05) Relevant Controls Total Controls

Lasso 0.653 0.088 1.000 4.8 5.3
Post-Lasso 0.434 0.219 0.879 4.8 5.3
Indirect-Lasso 0.087 0.188 0.006 5.4 5.5
Post-Double Selection -0.017 0.108 0.097 5.4 5.5
Post-Double Selection Oracle -0.001 0.110 0.052 15.0 15.0
Oracle -0.002 0.100 0.055 10.0 10.0

Note: The table reports performance metrics of the different Lasso-estimators, described in Section 3.3, based on
1000 simulations of Design 1 with homoscedastic errors, as detailed in Section 5.1.1, using the metrics detailed in
Section 5.4.

The Lasso and Post-Lasso estimators show a significant positive bias. The Lasso bias is

expected to result from a combination of ℓ1-regularization bias and omitted variable bias (OVB).

In contrast, the Post-Lasso corrects for the regularization bias and only suffers from OVB,

resulting in its distinct bimodal shape. This result is clarified in Table 1, where, although
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Figure 2. The finite-sample distributions of the different Lasso estimators, described in Section 3.3, are
shown. These distributions are based on 1000 simulations of Design 1, as detailed in Section 5.1.1. A
dotted vertical line indicates the expected value of the standard normal distribution.

Lasso and Post-Lasso show similarly low numbers of selected relevant and total controls, the

regular Lasso has a higher bias than Post-Lasso. In both estimators, the bias dominates the

standard error, leading to a high rejection rate and poor inferential capabilities. Note that this

distribution is accentuated in this setup where n≪ p under finite-sample assumptions.

The indirect Post-Lasso, an extension of the Post-Lasso with an additional Lasso selection

step of di on xi, shows considerably lower bias and no bimodal shape. The additional step

of selecting confounding variables for di significantly reduces the OVB, although the standard

error remains unaffected. Hence, the magnitude of the test statistic is relatively high, and the

rejection probability is the lowest among all estimators and far under the 5% target. This is not

a favourable result as it indicates that the standard error bounds are too conservative, leading

to type II errors where incorrect inferences are unlikely to be rejected.

The Double-Selection estimator corrects this problem by reducing the variability in the

estimated treatment effect through an additional Lasso selection step of yi on xi. By doing so,

the bias is significantly reduced while also halving the standard error. An intuitive explanation

for this trend across all estimators is that each additional control selection step detects more

relevant confounding variables in the causality problem by conditioning on the relationships of xi

with both yi and di. This relationship is shown in Table 1, where the number of selected relevant

controls monotonically increases. Moreover, there are still gains to be made until the Oracle and

Double Selection Oracle are reached. The table shows that a perfect selection of confounding

variables leads to negligible levels of OVB and an approximately correct rejection probability of

0.05. This result strongly motivates the use of amelioration set penalties, which could assist in

better selecting confounding variables to reach favourable oracle-level performance. However,

note that Design 1 with homoscedastic errors is specifically designed to be an approximately

sparse model with easy-to-control errors and, therefore, provides optimal conditions for Post-

Double Selection.
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6.2 ‘Precision’ in the Amelioration Set

The implementation of generating ‘beliefs’ with varying densities of correct information has not

resulted in significantly different outcomes across the three levels of precision. Appendix D

shows that the differences across precision levels in all metrics are marginal and do not alter

the conclusions per precision. The figures do indicate that some of the constructed hypotheses

are realized. For instance, as precision increases, the number of selected total controls increases

while the number of selected confounding variables converges to s. As a result, the bias decreases

slightly, and the coverage is closer to the true value. These graphical results are subtle and

difficult to discern. Therefore, ‘medium’ precision is chosen for further analyses as it represents

the midpoint and the conclusions drawn are expected to apply to all precision levels.

The most obvious explanation for the methodology’s failure to produce significant results is

that different levels of precision only account for varying probabilities of adding more irrelev-

ant controls, whereas the fundamental variables within the DGP are still selected with equal

probabilities across all precision levels. Given the strength of Post-Double Selection in selecting

correct confounding variables in ASMs, the addition of lower penalizations for irrelevant controls

may not have led to significant spurious selection. One possible extension for future research

is to calibrate the different precision levels based on both the number of confounding variables

and irrelevant controls that are accessible for selection, with higher precision, including a higher

ratio of fundamental variables to irrelevant controls.

6.3 Selected R2 Cases

In this section, the focus shifts to the Post-Double Selection and the amelioration set penalties.

Table 2 displays the results of the amelioration set penalties across different designs and error

types. The best-performing penalties are identified and contextualized. The Root-Mean-Squared

Error (RMSE) is used instead of mean error (bias) to allow negative and positive biases to have

an additive effect rather than averaging out.

The specific cases of R2 values are chosen concerning the existing literature (see Section

2.2), where significantly disparate behaviour is observed between the Post-Lasso and the Post-

Double Selection methods based on the different levels of correlation between the confounding

variables and the treatment variable, as well as the confounding variables and the outcome.

This same analysis is performed. One important difference is that, in the existing literature, the

confounding variables in both stages are the same, whereas this is not the case in all current

designs. Therefore, these cases provide insight into how the amelioration set penalties, which

are purposefully equal in both stages, affect control selection when the correlation is higher in

one of the two stages.

Starting with the homoscedastic designs (A, B, and C), a striking observation is that the con-

trol estimator performs the worst across all designs and all R2 cases. The difference is most

pronounced in Cases I and III, where the second-stage R2 = 0. This could be because, in the

second stage, the relationship between the outcome and the control and treatment variables is

difficult to establish, causing the control to struggle in identifying the confounding variables.

While some correct confounding variables can be identified in the first stage, the different iden-
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Table 2. Simulation Results for Selected R2 Values

Case I Case II Case III Case IV
First Stage R2 = 0.2 First Stage R2 = 0.2 First Stage R2 = 0.8 First Stage R2 = 0.8
Second Stage R2 = 0 Second Stage R2 = 0.8 Second Stage R2 = 0 Second Stage R2 = 0.8

Estimation method RMSE Rej. Rate RMSE Rej. Rate RMSE Rej. Rate RMSE Rej. Rate

A. Linear decay with homoscedastic errors
Control 0.130 0.112 0.128 0.110 0.176 0.108 0.123 0.087
Discrete 0.109 0.064 0.120 0.066 0.133 0.073 0.105 0.046
Half-Discrete 0.118 0.086 0.122 0.086 0.149 0.072 0.115 0.066
Adaptive 0.118 0.082 0.123 0.090 0.151 0.081 0.116 0.069
Score 0.115 0.072 0.122 0.067 0.149 0.100 0.109 0.057

B. Quadratic decay with homoscedastic errors
Control 0.118 0.090 0.116 0.073 0.168 0.101 0.112 0.071
Discrete 0.112 0.070 0.110 0.053 0.132 0.062 0.109 0.059
Half-Discrete 0.114 0.075 0.113 0.060 0.151 0.063 0.111 0.070
Adaptive 0.114 0.072 0.114 0.061 0.150 0.073 0.110 0.065
Score 0.113 0.075 0.110 0.052 0.150 0.075 0.109 0.066

C. Extended Quadratic decay with homoscedastic errors
Control 0.116 0.087 0.121 0.091 0.160 0.081 0.112 0.067
Discrete 0.110 0.076 0.112 0.070 0.131 0.058 0.104 0.046
Half-Discrete 0.112 0.066 0.118 0.090 0.145 0.054 0.111 0.057
Adaptive 0.113 0.072 0.118 0.085 0.145 0.063 0.110 0.062
Score 0.112 0.079 0.115 0.070 0.148 0.068 0.106 0.049

D. Linear decay with heteroscedastic errors
Control 0.186 0.078 0.186 0.077 0.201 0.081 0.176 0.084
Discrete 0.167 0.080 0.201 0.086 0.176 0.087 0.170 0.093
Half-Discrete 0.175 0.080 0.182 0.082 0.187 0.080 0.172 0.088
Adaptive 0.175 0.077 0.189 0.089 0.186 0.084 0.174 0.078
Score 0.170 0.080 0.201 0.088 0.185 0.105 0.168 0.095

E. Quadratic decay with heteroscedastic errors
Control 0.192 0.098 0.174 0.070 0.200 0.080 0.167 0.074
Discrete 0.180 0.083 0.172 0.068 0.184 0.087 0.164 0.079
Half-Discrete 0.186 0.085 0.169 0.064 0.192 0.072 0.166 0.078
Adaptive 0.187 0.083 0.169 0.061 0.194 0.086 0.164 0.077
Score 0.183 0.083 0.173 0.061 0.186 0.077 0.165 0.075

F. Extended Quadratic decay with heteroscedastic errors
Control 0.183 0.084 0.185 0.085 0.192 0.079 0.173 0.077
Discrete 0.170 0.079 0.184 0.076 0.178 0.076 0.168 0.081
Half-Discrete 0.175 0.070 0.181 0.078 0.187 0.067 0.172 0.087
Adaptive 0.176 0.072 0.180 0.072 0.189 0.077 0.173 0.078
Score 0.172 0.072 0.185 0.075 0.187 0.083 0.168 0.072

Note: The table reports the RMSE and the rejection probabilities of 95% confidence intervals for the Post-Double
Selection (control) and the Post-Double Selection with amelioration set penalties, as described in Section 5.3, for
selected sets of first-stage and second-stage R2. A ‘medium’ precision level is assumed for the amelioration set
penalties. The results are based on 1,000 simulations of Designs 1, 2, and 3 with homoscedastic and heteroscedastic
errors, as detailed in Section 5.1.1, using the metrics outlined in Section 5.4.
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tities of confounding variables in the equations of the partially linear model leave those that

don’t overlap unidentified in the second stage. 12 The amelioration set penalties, which assume

some knowledge of the confounding variables in both stages, help mitigate the issue of missing

confounding variables in the second stage.

This conclusion aligns with the observation that the Discrete penalty performs the best

across all designs. Forced inclusion through zero penalization effectively helps identify addi-

tional confounding variables in both stages. The Half-Discrete penalty, which follows a similar

procedure but with less intense penalization, produces slightly weaker results. However, these

results also highlight a previously identified shortcoming in the methodology: all precision levels

assume too perfect knowledge of the real confounding variables. For instance, if the amelioration

set does not accurately reflect the DGP and includes a number of irrelevant controls with lower

penalties, adding amelioration set penalties might worsen performance compared to the control.

Moreover, under homoscedastic errors, there is a trend indicating that lower absolute pen-

alization of the amelioration set results in better outcomes. However, the question of whether

the information in the data-driven penalties is valuable remains open, as scaling from 0 to 1

might not have been sufficient. Perhaps scaling the data-driven penalties from 0 to 0.5, such

that the absolute penalization is closer to zero while still exploiting useful information in the

data, might produce better results than the Discrete penalty. This sensitivity to scaling is left

open for further research.

With heteroscedastic designs (D, E, and F), the performance of different amelioration set penal-

ties becomes more nuanced. The RMSE strictly increases compared to the homoscedastic errors

case, which is expected since the final OLS regression under heteroscedastic errors produces

estimates with higher variance. While the control estimator consistently shows weak perform-

ance across all cases, the previously dominant performance of the Discrete penalty diminishes.

Notably, in Case II, the Discrete penalty performs the worst among all estimators in D and

nearly as poorly as the control in E and F. This is particularly interesting because, under homo-

scedastic errors, the Discrete penalty consistently performed the best for that case. A possible

explanation is that the forced selection of the amelioration set distorted the selection of other

important controls that might have been highly correlated with the amelioration set, leading to

their exclusion in the Lasso-estimation. However, this argument is dubious, as it is exactly the

opposite of the intended advantage of the amelioration set penalties.

An important observation is that the Discrete penalty continues to perform well under a

second-stage R2 = 0. This makes sense, as in situations with low correlation, the exact structure

of the confounding variables is unknown, making any correct information on their identities

through the amelioration set valuable. This finding is consistent with literature suggesting that

the Post-Double Selection method works best when the second-stage R2 is low and the first-

stage R2 is high (Belloni et al., 2014b). Therefore, the Discrete penalty shows promise for its

integration when precise beliefs about the amelioration set exist. For this reason, the following

section will specifically focus on the behaviour of the Control versus the Discrete penalty.

12The difference in coefficient designs between the first and second stages likely explains the difference in results
of the Post-Double Selection in Belloni et al. (2014b) across different R2 cases compared to the results in Table 2.
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6.4 The Discrete penalty

The trends in design, bias and rejection probability are difficult to establish through Table 2

as both the design and the rejection probabilities do not follow a specific pattern given the

selected cases. Therefore, this section introduces a three-dimensional grid in Figure 3 to offer

better insight into the strength of the Discrete penalty against the Control under imperfect

amelioration set selection. Appendix D displays these grids for all metrics (and all Ω’s) 13 across

all designs and both error specifications. This section will focus only on the heteroscedastic

errors to create valid practitioner recommendations primarily aimed at realistic heteroscedastic

data. Additionally, the heteroscedastic results have more visible differences in specific metrics

features, allowing for a more intuitive graphical analysis. 14

Starting with the Control, the differences between the linear, quadratic, and extended Quad-

ratic decay designs perfectly illustrate how the Post-Double Selection method handles ASMs and

sparsely approximates non-ASMs for a low enough approximation error. The difference between

the Linear and Quadratic decay designs is expected, as the coefficients in the latter drop much

more quickly. Therefore, some controls need not be selected for a valid approximately sparse

approximation with a sufficiently low approximation error. Under the assumption that not se-

lecting controls with coefficients below a certain threshold in the true DGP does not significantly

alter the approximation error, the sparse approximation of the Linear decay will have to select

more controls for a similar approximation.

This leads to several outcomes. First, under unfavourable conditions where correct variable

selection is challenging (such as low R2 in either stage), the Linear decay displays higher bias.

This can be attributed to the larger coefficient sizes in the Linear decay, meaning that if a

confounding variable is not selected —a likely scenario in this finite sample setup— the resulting

OVB will be more significant. This is especially important given the imperfect selection of the

full set of confounding variables in the amelioration set for a given level of ‘precision’. Second, the

larger coefficient sizes in the true DGP of the Linear decay increase the number of significantly

large coefficients that need to be included in the ASM, reflected in the number of selected relevant

and total controls. Furthermore, the rejection probability of the quadratic designs appears to be

closer to the true value, indicating that the behaviour of the Control is more valid for quadratic

designs.

The trend is clear: Quadratic decay leads to a sparser approximation, making it less prone

to missing the selection of confounding variables with significant effects in the DGP. This con-

clusion also explains the similar behaviour between Quadratic decay and extended Quadratic

decay. It was unexpected that the extended Quadratic decay, which is not sparse by design,

is approximated just as well as a regular Quadratic decay. This is likely due to the threshold

idea, where a control with sufficiently small significance in the true DGP is ignored because of

its minimal impact on the approximation error. Considering that some controls were already

ignored in the Quadratic decay, it is not implausible that all other controls with even smaller

13Further analysis of the other amelioration set penalties is an interesting extension to uncover the effects of
data-driven versus data-independent penalties. However, considering the scope of this thesis, only the Discrete
penalty can feasibly be evaluated in detail.

14The values of the bias and rejection probability in the heteroscedastic designs have significantly more moun-
tainous, less uniform shapes. This accommodates a more graphically intuitive comparison across the designs.
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(a) Design 1 (Linear decay) with Heteroscedastic Errors

(b) Design 2 (Quadratic decay) with Heteroscedastic Errors

(c) Design 3 (extended Quadratic decay) with Heteroscedastic Errors

Figure 3. The figure reports the mean bias, the rejection probabilities of 95% confidence intervals,
the number of selected controls in the true DGP, and the total number of selected controls for both the
Post-Double Selection (Control) and the Post-Double Selection with amelioration set penalties methods.
These penalties are described in Section 5.3 and are evaluated across a grid of first-stage and second-stage
R2. A ’medium’ precision level is assumed for the amelioration set penalties. The results are based on
500 simulations of Designs 1, 2, and 3, which include heteroscedastic errors as detailed in Section 5.1.1.
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effects are similarly ignored.

The implementation of the Discrete penalty has asymmetrical effects on the Linear and Quad-

ratic decay designs. The bias flattens and converges around zero in the Quadratic decay designs

across all values R2. One explanation is that for all values of R2, the Discrete penalty forces in-

creased relevant and control selection by removing the Lasso-penalty on select controls, which is

reflected in the flat near-uniform surface at a high base-line level in Figure 3. Increased (correct)

control selection could have led to a reduced level of OVB.

The most interesting finding is the bias of the Discrete penalty on the Linear decay, which

seems to show little improvement over the control in terms of absolute bias. The bias stays at a

near-zero level for moderate levels of first-stage and second-stage R2. However, especially for a

high value of second-stage R2, the bias is volatile to the change in first-stage R2. This behaviour

is more moderate given a lower level of first-stage R2. The surface strongly resembles that of the

Post-Lasso in a study in the literature conducted on a DGP variant of the extended Quadratic

decay by Belloni et al. (2014a), which has also been described in Section 2.2. In that case, the

Post-Lasso had trouble under a high first-stage R2 to select all relevant confounding controls

in the second-stage estimation. This could be the same here, where the Discrete penalties,

which are equal for the first-stage and second-stage equations, hinder the selection of the true

confounding variables by wrongly forcing irrelevant controls. Given the higher coefficient values

of those controls in the Linear decay and the impact of missing the selection of a relevant control

on the bias, this could be the reason for the turbulent bias plot.

Therefore, based on the analysis of the Monte Carlo simulations, the following recommend-

ation for practitioners is offered: data-independent Discrete penalties can yield significant im-

provements across different ASMs, with performance varying according to the first and second-

stage correlations. The optimal results are achieved with a moderate to high first-stage R2 and

a low second-stage R2. Under favorable conditions, the bias is significantly reduced across all

correlations, while under unfavorable conditions, it does not worsen compared to the control.

7 Empirical Case: The Effect of Abortion Rate on Crime

Building on the practitioner’s recommendation, the empirical case of Donohue and Levitt (2001)

is revisited to evaluate the effect of the amelioration set penalties, particularly the Discrete

penalty, on the treatment effect, control selection, and the economic interpretations of the eco-

nomically intuitive controls. Table 3 presents the different estimations of the treatment effect,

while Table 4 shows the coefficient estimates of the economically intuitive variables. These are

defined as the set of controls used in the original research. 15 In the appendix, Table E.1 shows

the cardinalities of selected relevant and total controls, and Tables E.2 to E.4 show the effect of

amelioration set penalties on control selection.

To improve readability, the terms will be referred to as follows: Post-Double Selection will

be called the ‘Control‘, Post-Double Selection with the ex-post addition of the amelioration set

15This follows the methodology used in previous re-examinations of Donohue and Levitt (2001) using the
Post-Double Selection (Belloni et al., 2014b)

27



will be called the ‘Amel-Control‘, and Post-Double Selection with the Discrete penalty for the

amelioration set will be called the ‘Discrete‘.

TheR2 values of the different first-stage and second-stage regressions across crime types—violent

crime, property crime, and murder—have been established in the literature (Belloni et al.,

2014b). Respectively, the first-stage R2 values are 0.8420, 0.6116, and 0.7781, while the second-

stage R2 values are 0.0251, 0.1179, and 0.0039. Based on the practitioner’s recommendation,

these values correspond to regions of the R2 grid where the Discrete can be a valuable addition

to the Control, assuming some degree of precision in identifying the amelioration set. In the

empirical case, it is therefore assumed that the set of economically intuitive variables includes

some significant information on the true confounding variables.

Table 3. Estimated treatment effect of abortion on different crimes

Violent Crime Property Crime Murder

Effect Std. Error Effect Std. Error Effect SE

Donohue and Levitt (2001) -0.129 0.024 -0.091 0.018 -0.121 0.047
Belloni et al. (2014b) -0.104 0.107 -0.030 0.055 -0.125 0.151
Belloni et al. (2014b) + ex-post Amel. -0.082 0.106 -0.031 0.057 -0.068 0.200
Control -0.158 0.120 -0.024 0.043 -0.117 0.417
Control + ex-post Amel. -0.133 0.122 -0.028 0.045 -0.103 0.434
Discrete -0.113 0.120 -0.013 0.044 -0.063 0.421

Note: The table reports the estimated treatment effects of abortion on three types of crimes in the empirical
study, including results in literature, for the Post-Double selection, and the Post-Double Selection with the ex-post
addition of the amelioration (Amel.) set, under heteroscedastic errors. Standard error estimates are produced
using the jackknife method.

The replication results align with those found in the literature, showing similar values for

the Control and Amel-Control. As in previous studies, the estimated treatment effects from

the original research are significantly different for property crime and slightly for violent crime.

All standard errors for the Control and its extensions are large, with 95% confidence intervals

spanning a broad positive and negative range. Therefore, drawing valid economic conclusions

from these results with sufficient certainty is challenging.

Table E.1 reveals an important observation: none of the Control estimations selects econom-

ically intuitive variables. Instead, more complex interactions and time-dependent controls are

chosen. For property crime, the Discrete chooses one less variable than the Control but does

choose five economically intuitive variables. For murder, the Discrete selects four additional

controls, all of which are economically intuitive. Due to the disparity in control selection, the

Discrete shows a larger deviation from the Control, with the treatment effect being approxim-

ately halved for both property crime and murder. However, since the true effect is unknown, it

is difficult to assess this result and conclude whether a higher number of economically intuitive

penalties is favourable.

Another interesting observation is that the treatment variable estimates of the Amel-Control

surprisingly fall between those of the Control and the Discrete. Therefore, the Discrete penalty,

which should be a less extreme and more robust alternative to the Amel-Control, selects controls

considerably differently. To uncover the true treatment effect, the treatment variable should

be assumed to be exogenous within the large control set, which could be better accommodated
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through the alternative selection method of the Discrete penalties. Thus, examining the selected

variables across different methods may provide better insights into the correct confounding

variable selection.

Several trends on control selection emerge across Tables E.2 to E.4. First, as a robustness check,

the variable selection between Belloni et al. (2014b) and the Control is largely similar. The

Control generally includes all the controls used in the literature and adds a few extra ones,

mostly interactions with time, which already comprise most of the variable selection. Second,

as expected, the variables selection between the Amel-Control and the Discrete is very similar.

For example, only one variable was selected out of 18 for violent crimes. However, the treatment

effect estimates differ significantly, ranging from -0.133 to -0.113. Similarly, for murder, the

Control selects three additional controls for a total of 15, while the ex-post amelioration set

halves the estimated effect from -0.103 to -0.063. From here, the question arises as to how such

a minor difference in Control selection can significantly affect the estimated effect and whether

the controls excluded by the integration of the Discrete undermine the exogeneity assumptions

of the treatment variable. The disparity in control selection is most pronounced for property

crime. The Amel-Control set selects 24 controls, while the Discrete penalty selects a subset of 16

of those controls. Of the eight missing controls, only two are economically intuitive, illustrating

the Discrete’s tendency to prioritize economically intuitive variables over others.

Table 4. Coefficient estimates of economically intuitive variables

Violent Crime Property Crime Murder

Ex-Post Discrete Ex-Post Discrete Ex-Post Discrete

D (treatment effect) -0.133 -0.114 -0.028 -0.013 -0.103 -0.063
Dinc 16.4 23.1 -4.74 - -230 -
Dpov 0.161 0.152 0.069 0.092 -0.112 0.064
Dafdc 0.034 0.040 -0.016 -0.020 -0.362 -0.368
Dbeer 0.086 0.164 -0.047 -0.099 0.267 -0.109
Dpolice -0.019 -0.017 -0.026 -0.031 0.337 0.334
Dprison -0.048 - -0.019 -0.019 -0.020 -

Note: The table reports the coefficient estimates of the economically intuitive variables in the Post-Double
Selection with the ex-post addition of the amelioration set and the Post-Double Selection with the Discrete
penalty. A ’-’ indicates that the variable was not selected.

The coefficient estimates of the selected controls presented in Table 4 allow for a final eco-

nomic interpretation. Generally, the differences in coefficient estimates are slight, with the

maximum deviation being by a factor of two. The only outlier is ‘Dinc’, which represents the

change in income. This variable shows a significantly higher estimate but is not selected in

two of the Discrete estimations. This is remarkable behaviour since the penalty in the Lasso-

estimation is set to zero, yet the Control is not selected, indicating its low confounding potential.

This demonstrates the advantage of the amelioration set penalties, which discard such variables

and avoid including potentially spurious variables with outlier effects. The table also displays

changes in sign for variables such as ‘Dbeer’ and ‘Dpov’ in the murder estimation. Given that

‘Dinc’ was forced into the ex-post amelioration set estimation, its non-selection in the Dis-

crete penalty naturally creates a different interpretation of the economically intuitive variables.

Whether this difference in interpretation more closely resembles reality remains unanswered.
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8 Conclusion

The Post-Double Selection method effectively reduces bias in causal inference on treatment ef-

fects, particularly in settings with high-dimensional controls. Selecting spurious confounding

variables can lead to significant bias in noisy conditions and finite samples. This thesis pro-

poses a methodology to mitigate this bias by conditioning on beliefs about the true structural

representation through a targeted set of regressors, known as the amelioration set. Various data-

dependent and data-independent penalties are evaluated for their effectiveness in reducing bias

and improving inference. The Discrete penalty, a robust adaptation of current literature that

integrates information on the amelioration set into the Post-Double Selection methodology, has

shown potential for enhancing inference across various designs, error distributions, and correla-

tions between the outcome, treatment, and controls. This finding assumes sufficient knowledge

of economically intuitive variables driving the DGP. When applied to empirical situations, the

Discrete penalty functions as a hybrid of the Post-Double Selection and an extended version

with an ex-post amelioration set addition.

Acknowledging the limitations of this research, the Monte Carlo simulation results may rely

too heavily on accurate knowledge of the amelioration set, potentially overstating results through

data-snooping. Therefore, analysing scenarios with incorrect information would be valuable to

determine the robustness of the Post-Double Selection method when faced with a poorly chosen

amelioration set. The treatment of error distributions has also been polariseds: simulations

either assumed homoscedasticity with appropriate equivariance correction or heteroscedasticity

with the same correction. However, the scenario in which the wrong type of correction is applied

has not been considered. This is particularly relevant because, in practice, the error distribution

is very sensitive and difficult to determine when using such a complex method. In addition,

the high rejection probabilities across the simulations suggest that the error might not have

been conservative enough. Hence, an idea for future research is to investigate the usage of a

fatter-tailed distribution.

The potential of the integrated amelioration set offers an opportunity for its integration into

Bayesian statistics through the Bayesian Lasso. The Discrete penalty has proven strong and is

easily implemented by modifying the priors for specific controls. A further theoretical extension

would be to find conditions under which the integrated amelioration set produces uniformly

valid results, a manageable adaptation from the existing proof of the Post-Double Selection.
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A Derivations Partial R2 Parameterization

The following derivation is based off of the supplementary material (Belloni, Chernozhukov &

Hansen, 2013). Introduce the partially linear model:

yi = d′iα0 + x′i(cyβ0) + σy(di, xi)ui (A.1)

di = x′i(cdη0) + σd(xi)vi (A.2)

whereX = [x1, . . . , xp] is a (n×p) matrix with Variance-Covariance matrix Σ, η0 = (η0,1, . . . , η0,p)
′

and β0 = (β0,1, . . . , β0,p)
′ are (p×1) vectors, ui ∼ N (0, 1), vi ∼ N (0, 1). σy and σd are dependent

on the error specification of the Design. Constants cd ∈ R and cy ∈ R are introduced to scale

the R2 of Equations (A.2) and (A.1) respectively.

A.1 First-Stage Parametrization

R2
d :=

V(Explained Variance in Equation (A.2))

V(Total Variance in Equation (A.2))
(A.3)

=
V(x′i(cdη0))

V(x′i(cdη0) + σd(xi)vi)
(A.4)

=
c2dη

′
0Ση0

c2dη
′
0Ση0 + V(σd(xi)vi)

(A.5)

(A.6)

which can be rewritten as:

cd =

√
σd(xi)vi ·R2

d

(1−R2
d)η

′
0Ση0

(A.7)

A.2 Second-Stage Parametrization

R2
y :=

V(Explained Variance in Equation (A.1))

V(Total Variance in Equation (A.1))
(A.8)

=
V(x′i(cdη0 + cyβ0))

V(x′i(cdη0 + cyβ0) + σy(di, xi)ui)
(A.9)

=
(cdη0 + cyβ0)

′V(xi)(cdη0 + cyβ0)

(cdη0 + cyβ0)′V(xi)(cdη0 + cyβ0) + V(σy(di, xi)ui)
(A.10)

where the numerator can be expanded as:

(cdη0 + cyβ0)
′V(xi)(cdη0 + cyβ0) = c2dη

′
0Ση0 + 2cdcyη

′
0Σβ0 + c2yβ

′
0Σβ0 (A.11)

such that

R2
y =

c2dη
′
0Ση0 + 2cdcyη

′
0Σβ0 + c2yβ

′
0Σβ0

c2dη
′
0Ση0 + 2cdcyη

′
0Σβ0 + c2yβ

′
0Σβ0 + V(σy(di, xi)ui)

(A.12)

0 = (R2
y − 1)c2yβ

′
0Σβ0 + (R2

y − 1)2cdcyη
′
0Σβ0 + (R2

y − 1)c2dη
′
0Ση0 + V(σy(di, xi)ui) (A.13)
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which can be written as a quadratic model ax2 + bx+ c = 0:

a = (R2
y − 1)β′0Σβ0 (A.14)

b = (R2
y − 1)2cdη

′
0Σβ0 (A.15)

c = (R2
y − 1)c2dη

′
0Ση0 + V(σy(di, xi)ui) (A.16)

which can be solved using the quadratic formula. Note that the second stage parametrization

is directly dependent on the value of cd, meaning it should be performed in the specified order.

B Post-Lasso σ̂-Estimation

The iterative Post-Lasso estimation of σ̂ is adjusted from the methodology of Belloni and

Chernozhukov (2011), accomodating for the inclusion of Ω:

Algorithm 1 Estimation of σ using Post-Lasso iterations

Input:
Positive number ψ
Small constant ν > 0 (tolerance level)
Constant K > 1 (upper bound on the number of iterations)

Output:
Estimate of σ

Initialization:
Set k = 0
Set initial σ̂ = ψσ̂I0

Iterative Procedure:
while convergence not achieved and k < K do

Compute the Post-Lasso estimator β̂ based on λ = 2cσ̂kΛ(1− γ|X),

Ψ = 1 (homoscedastic) or
√
En[x2i ε

2
i ] (heteroscedastic), and (if specified) Ω.

Set σ̂k+1 = Q̂(β̂)
if |σ̂k+1 − σ̂k| ≤ ν or k ≥ K then

Set σ̄ = σ̂k+1

Break
else

Increment k by 1 (k = k + 1)
end if

end while
Final Output:
Report σ̄ as the estimate of σ

where ψ was recommended in the ’hdm’ -package to be 0.75. Preliminary tuning has indicated

that this value of ψ gives similarly strong results for homoscedastic and heteroscedastic data.

The constant c is recommended to be 1.1.
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C Overview of Ω-penalties

ΩC =
{
1, i ∈ p (C.1)

ΩD =

0, i ∈ k̂

1, otherwise
(C.2)

ΩHD =

0.5, i ∈ k̂

1, otherwise
(C.3)

ΩA =

ωi ∈ scale(b−1
i ), i ∈ k̂ for bi = (X ′

tXt)
′X ′

tyi, Xt = X ′Ii∈k̂
1, otherwise

(C.4)

ΩS =

ωi ∈ scale(bi), i ∈ k̂ for bi = En[xiε̂i]

1, otherwise
(C.5)

where the subscripts are defined as follows: C = Control, D = Disfrete, HD = Half-Discrete, A

= Adaptive, S = Score.
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D Monte Carlo Simulation Results on Amelioration Set Penal-

ties

Figure D.1. The figure reports the mean bias, the rejection probabilities of 95% confidence intervals,
the number of selected controls in the true DGP, and the total number of selected controls for both the
Post-Double Selection (control) and the Post-Double Selection with amelioration set penalties methods.
These penalties are described in Section 5.3 and are evaluated across a grid of first-stage and second-stage
R2. A ’medium’ precision level is assumed for the amelioration set penalties. The results are based on
500 simulations of Design 1, which includes homoscedastic errors as detailed in Section 5.1.1.
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Figure D.2. The figure reports the mean bias, the rejection probabilities of 95% confidence intervals,
the number of selected controls in the true DGP, and the total number of selected controls for both the
Post-Double Selection (control) and the Post-Double Selection with amelioration set penalties methods.
These penalties are described in Section 5.3 and are evaluated across a grid of first-stage and second-stage
R2. A ’medium’ precision level is assumed for the amelioration set penalties. The results are based on
500 simulations of Design 2, which includes homoscedastic errors as detailed in Section 5.1.1.
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Figure D.3. The figure reports the mean bias, the rejection probabilities of 95% confidence intervals,
the number of selected controls in the true DGP, and the total number of selected controls for both the
Post-Double Selection (control) and the Post-Double Selection with amelioration set penalties methods.
These penalties are described in Section 5.3 and are evaluated across a grid of first-stage and second-stage
R2. A ’medium’ precision level is assumed for the amelioration set penalties. The results are based on
500 simulations of Design 3, which includes homoscedastic errors as detailed in Section 5.1.1.
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Figure D.4. The figure reports the mean bias, the rejection probabilities of 95% confidence intervals,
the number of selected controls in the true DGP, and the total number of selected controls for both the
Post-Double Selection (control) and the Post-Double Selection with amelioration set penalties methods.
These penalties are described in Section 5.3 and are evaluated across a grid of first-stage and second-stage
R2. A ’medium’ precision level is assumed for the amelioration set penalties. The results are based on
500 simulations of Design 1, which includes heteroscedastic errors as detailed in Section 5.1.1.
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Figure D.5. The figure reports the mean bias, the rejection probabilities of 95% confidence intervals,
the number of selected controls in the true DGP, and the total number of selected controls for both the
Post-Double Selection (control) and the Post-Double Selection with amelioration set penalties methods.
These penalties are described in Section 5.3 and are evaluated across a grid of first-stage and second-stage
R2. A ’medium’ precision level is assumed for the amelioration set penalties. The results are based on
500 simulations of Design 2, which includes heteroscedastic errors as detailed in Section 5.1.1.
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Figure D.6. The figure reports the mean bias, the rejection probabilities of 95% confidence intervals,
the number of selected controls in the true DGP, and the total number of selected controls for both the
Post-Double Selection (control) and the Post-Double Selection with amelioration set penalties methods.
These penalties are described in Section 5.3 and are evaluated across a grid of first-stage and second-stage
R2. A ’medium’ precision level is assumed for the amelioration set penalties. The results are based on
500 simulations of Design 3, which includes heteroscedastic errors as detailed in Section 5.1.1.
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E Empirical Variable Selection

Table E.1. Cardinalities of selected relevant and total controls in the empirical case

Violence Property Murder

Relevant Total Relevant Total Relevant Total

Control 0 15 0 17 0 8
Control + ex-post Amel 7 20 7 24 7 15
Discrete 6 20 5 16 4 12
Half-Discrete 0 12 1 13 0 8
Adaptive 2 13 2 14 0 8
Score 3 15 2 13 2 10

Note: Relevant and total number selected for the control, the control with the ex-post addition of the amelioration
set, and all amelioration set penalties in the empirical case under the assumption of heteroscedastic errors are
described in Section 7. Relevant control selection refers to the selection of economically intuitive variables.

Table E.2. Control selection per amelioration set penalty: Violence

Control Belloni Control Control
+ Amel

Discrete Half-
Discrete†

Adaptive Score

Lprison ✓ ✓ ✓ ✓ ✓ ✓ ✓
Lur ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dbeer0 × t ✓ ✓ ✓ ✓ ✓ ✓ ✓
incBar ✓ ✓ ✓ ✓ ✓ ✓ ✓
incBar × t ✓ ✓ ✓ ✓ ✓ ✓ ✓
xV0 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dinc02 × t ✓
LprisonBar × t ✓
Lpolice ✓ ✓ ✓ ✓ ✓ ✓
Dinc0 × t ✓ ✓ ✓ ✓ ✓ ✓
Lbeer0 × t2 ✓ ✓ ✓ ✓ ✓ ✓
Lprison02× t2 ✓ ✓ ✓ ✓ ✓ ✓
Linc0× t ✓ ✓ ✓ ✓ ✓
Dur ✓ ✓ ✓
Dpov ✓ ✓ ✓ ✓
Dinc0 ✓ ✓ ✓
Linc0 ✓ ✓ ✓ ✓
Dinc ✓ ✓ ✓ ✓
Dbeer ✓ ✓ ✓
Dpolice ✓ ✓ ✓
Dafdc ✓ ✓
Dprison ✓
Dbeer2 × t2 ✓ ✓

Note: Selected controls in the empirical case of the study on the effect of abortion on violent crime, including
the control, the control with the ex-post addition of the amelioration set, and all amelioration set penalties under
the assumption of heteroscedastic errors, are described in Section 7. The amelioration set is constructed from
economically intuitive variables.
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Table E.3. Control selection per amelioration set penalty: Property

Control Belloni Control Control
+ Amel

Discrete Half-
Discrete

Adaptive Score

Lprison ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dinc0 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Linc0 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dbeer0 × t ✓ ✓ ✓ ✓ ✓ ✓ ✓
incBar ✓ ✓ ✓ ✓ ✓ ✓ ✓
xP0 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Linc ✓ ✓ ✓ ✓ ✓
Dinc02 × t ✓ ✓ ✓
incBar × t ✓ ✓ ✓
DincBar02 × t ✓ ✓ ✓
afdcBar ✓ ✓ ✓
afdcBar2 ✓ ✓ ✓
Lpolice ✓ ✓ ✓ ✓ ✓ ✓
Lur ✓ ✓ ✓ ✓ ✓ ✓
Dinc0 × t ✓ ✓ ✓ ✓ ✓ ✓
Lprison02 × 2 ✓ ✓ ✓ ✓ ✓ ✓
Lbeer02 × t2 ✓ ✓ ✓ ✓ ✓ ✓
Dur ✓ ✓ ✓ ✓ ✓
Dpolice ✓ ✓ ✓
Dpov ✓ ✓ ✓
Dprison ✓ ✓
Dafdc ✓ ✓
Dbeer ✓
Dinc ✓
Lprison02 × t ✓

Note: Selected controls in the empirical case of the study on the effect of abortion on property crime, including
the control, the control with the ex-post addition of the amelioration set, and all amelioration set penalties under
the assumption of heteroscedastic errors, are described in Section 7. The amelioration set is constructed from
economically intuitive variables.

Table E.4. Control selection per amelioration set penalty: Murder

Control Belloni Control Control
+ Amel

Discrete Half-
Discrete

Adaptive Score

Lur ✓ ✓ ✓ ✓ ✓ ✓ ✓
Lprison0 × t ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dbeer0 × t2 ✓ ✓ ✓ ✓ ✓ ✓ ✓
incBar× t ✓ ✓ ✓ ✓ ✓ ✓ ✓
xM0 ✓ ✓ ✓ ✓ ✓ ✓ ✓
xM0 × t ✓ ✓ ✓ ✓ ✓ ✓ ✓
prisonBar × t ✓
Dur02 ✓
Lprison ✓
Linc0 × t ✓ ✓ ✓ ✓ ✓ ✓
policeBar × t ✓ ✓ ✓ ✓ ✓ ✓
Dpolice ✓ ✓
Dpov ✓ ✓ ✓
Dbeer ✓ ✓ ✓
Dafdc ✓ ✓
Dprison ✓
Dur ✓
Dinc ✓

Note: Selected controls in the empirical case of the study on the effect of abortion on murder, including the
control, the control with the ex-post addition of the amelioration set, and all amelioration set penalties under
the assumption of heteroscedastic errors, are described in Section 7. The amelioration set is constructed from
economically intuitive variables.
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F Code Description

The description of the code is structured according to its affiliation with one of the following categories:

General, Replication, Monte Carlo Simulations, Empirical Case, Results, and Computing.

1. General Functions

(a) externalFunctions.R: Includes code sourced from the ‘hdm’ package and supplementary ma-

terial (Belloni, Chernozhukov & Hansen, 2013; Chernozhukov et al., 2016). Functions include:

initial values estimation for the Post-Lasso Iterations, the LassoShooting function, and the

Post-Estimator function.

(b) auxFunctions.R: Contains general functions that are always imported. Functions include:

generation of matrices given parameter inputs, partial R2 parametrization, simulation of

Λ(1 − α|X), jackknife standard error estimation (MacKinnon & White, 1985), and control

selection metrics.

(c) auxPenalties.R: Generates ‘beliefs’ on the amelioration set penalties given a precision level.

(d) auxAlgorithms.R: Contains different Post-Lasso iteration algorithms to estimate σ, condi-

tional on the type of amelioration set penalty and error distribution.

2. Replication Functions

(a) mainReplication.R: A wrapper for all Lasso estimations to run in the replication (Lasso, Post-

Lasso, Indirect Post-Lasso, Post-Double Selection, Oracle, Double-Selection Oracle). Collects

all the metrics afterwards.

(b) auxFunctionsReplication.R: A subset of functions from auxFunctions.R tailored to the rep-

lication wrapper.

3. Simulation Functions

(a) mainSimulations.R: A wrapper for all amelioration set penalties simulations to run in the

extension.

4. Empirical Case Functions

(a) mainExtension.R: A wrapper for all amelioration set penalties applications to run on different

empirical case data.

(b) auxFunctionsExtensions.R: A subset of functions from auxFunctions.R tailored to the empir-

ical case.

5. Graphical Functions

(a) Results.R: Generates results based on simulations of the replication and the extension.

(b) ResultsCases.R: Generates results based on different R2 cases.

(c) Results3D.R: Generates results based on the 3D grid, to be exported with ExportMATLAB.R.

(d) ExportMATLAB.R: Exports the 3D grid results to a .csv file, to create graphics in MATLAB.

(e) Various MATLAB files: Generate different figures using the MATLAB surface function.

6. Computing Functions

(a) pcSims.R: Standard code snippet for distributed computing. For reference, one standard

university computer can perform 1000 simulations in approximately 2 hours. Therefore, a

(5x5) 3D grid for 3 precision levels, 2 error distributions, and 3 designs takes approximately

900-1000 hours. This can be best distributed among a large number of computers.
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