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Abstract

This paper explores real-time inflation forecasting by addressing high-dimensional data

and non-linearities in the dataset. It employs various Principal Component Analysis (PCA)

methods and shrinkage techniques to tackle multicollinearity and overfitting. Dimension

reduction methods include linear, squared, quadratic, and kernel PCA. Shrinkage methods

involve the adaptive Minnesota prior, ridge regression, Least Absolute Shrinkage and Selec-

tion Operator (Lasso), Elastic Net, and kernel ridge regression. Results show that quadratic

or kernel PCA combined with the Minnesota prior or Elastic Net outperform benchmark

AR models for one-month-ahead forecasts, while for one-quarter-ahead forecasts, quadratic

or squared PCA with the Minnesota prior or ridge regression excel. However, robustness

checks indicate variability in performance across non-linear PCA methods, with models us-

ing squared or quadratic PCA being less robust than those using kernel PCA. Overall, ridge

and kernel ridge regressions demonstrate greater robustness in one-quarter-ahead forecasts,

suggesting a trade-off between accuracy and robustness.

1 Introduction

Forecasting real-time macroeconomic conditions is a compelling topic for both economists and

econometricians. Building such a model involves intricacies as it could be correlated with numer-

ous potential economic factors, which brings out significant challenges. In the study by Stock

& Watson (1999), they forecast inflation more accurately by employing 168 different economic-

related data, instead of relying solely on the unemployment rate. This indicates that including

a larger dimensional dataset might benefit the prediction. However, using a high-dimensional

dataset could lead to potential problems in real practice. The process could be computationally

expensive and overfitting would undermine the validity and accuracy of final results. This, to-

gether with the increasing interest in forecasting macroeconomic data sparked a surge of relevant

studies utilising machine learning and other dimension reduction techniques (Bai & Ng, 2008;

Goulet Coulombe et al., 2022; Hauzenberger et al., 2023; Kim & Swanson, 2018).

Another challenge is that the previous traditional models assume linearity in the observed

dataset, while this is not the case in empirical work. Stock & Watson (1998) point out that

allowing for non-linearities could benefit models that are tightly parameterised, in other words,

models expected to have a limited number of variables. Modern studies typically aim to build a

model with informative but parsimonious factors, suggesting that possible non-linearities need

to be considered.

My paper concentrates on the above-discussed challenges, which are problems rooted in

the high-dimensional data and the non-linearities. Therefore, I use different techniques to de-

velop models that can effectively capture complex patterns in economic data while maintaining

parsimony and improving forecast accuracy. This study focuses on two key aspects: dimension

reduction and shrinkage methods. Inspired by Hauzenberger et al. (2023), my paper also em-

ploys the adaptive Minnesota prior and various types of PCA. In addition to these, I incorporate

other regularisation methods.

PCA is commonly applied to process and transform macroeconomic data. In this paper,

besides the traditional linear PCA, I also employ other non-linear PCA techniques including

squared PCA, quadratic PCA, and kernel PCA (Gaussian and polynomial kernels) to model
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non-linearities (see, e.g., Bai & Ng, 2008; Hauzenberger et al., 2023; Ludvigson & Ng, 2009).

To further address multicollinearity and improve computational efficiency, shrinkage methods

are applied after the dimension reduction. These include shrinkage priors (Chan et al., 2020;

Hauzenberger et al., 2023) and penalised regressions (Bai & Ng, 2008; Kim & Swanson, 2018).

Classic penalisation methods such as ridge regression, Lasso, and Elastic Net are incorporated.

Additionally, my paper uses kernel ridge regression to capture non-linearity within the dataset

(Exterkate et al., 2016). All models are compared against the benchmark autoregressive model

(AR) model using the Diebold-Mariano (DM) test and the Root Mean Square Error (RMSE).

Loosening assumptions on linearity, this paper proposes models combining both dimension

reduction and shrinkage methods and thus, my research question is formulated as:

How can dimension reduction and shrinkage methods improve the accuracy of real-time in-

flation forecasting?

with the following subquestions,

• How do linear and non-linear dimension reduction techniques affect the accuracy of real-

time inflation forecasts?

• Which combinations of dimension reduction techniques and shrinkage methods are more

effective in forecasting real-time inflation?.

This paper makes twofold extra contributions to the existing literature. While many previous

works focus on one single method to improve the model performance, such as Exterkate et

al. (2016) on kernel PCA and Chan (2021) on the Minnesota shrinkage prior, my approach

sequentially applies data transformation and shrinkage methods. My paper builds on the work

by Hauzenberger et al. (2023), who apply various non-linear dimension reduction techniques and

shrinkage priors, including different types of PCA as well as other machine learning techniques

such as diffusion maps, autoencoders, and local linear embeddings. My paper narrows down the

scope by solely focusing on PCA. I extend their study by incorporating additional regularisation

methods mentioned in other studies (Coulombe et al., 2021; Kim & Swanson, 2018). Moreover,

my paper introduces a new combination of PCA and kernel ridge regression.

Additionally, my study updates the dataset to include the most recent data up to April

2024, compared to Hauzenberger et al. (2023), which only includes data up to January 2021.

The inclusion of post-COVID data is expected to provide valuable new insights and a more

comprehensive understanding of underlying trends.

This paper finds that, in the main-sample forecast using pre-COVID data, combining quad-

ratic or kernel PCA with the Minnesota prior or Elastic Net performs best in the one-month-

ahead forecast. For one-quarter-ahead forecasts, quadratic or squared PCA combined with the

Minnesota prior or ridge regression outperforms the AR model. However, many models, par-

ticularly those using linear PCA with the Minnesota prior or Lasso regression, underperform in

the DM test. These findings support the assumption that non-linear PCA outperforms linear

PCA, which is validated again in the robustness check. Despite these insights, no definitive best

combination of dimension reduction techniques and shrinkage methods is identified. Contradict-

ory to the main-sample forecast, the robustness check suggests that incorporating squared or

quadratic PCA may perform worse than other non-linear PCA methods, and using kernel PCA
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could achieve better performance. Furthermore, models using ridge or kernel ridge regressions

are most robust for one-quarter-ahead forecasts. The decision to choose the preferred model

specification involves a trade-off between accuracy and robustness.

The rest of the paper is structured as follows. Section 2 provides an extensive review of the

literature. Section 3 discusses the dataset used in this study. Section 4 explains the methodology

in detail. Finally, I present the results and discuss the conclusions.

2 Literature

There is extensive research that exists on macroeconomic forecasting (see, e.g., Hauzenberger

et al., 2023; Kim & Swanson, 2018; Sermpinis et al., 2014; Smeekes & Wijler, 2018; Stock &

Watson, 1999). Despite the various problematic aspects of this task, this paper focuses on two

main popular topics. The first is to model the non-linearity. Bai & Ng (2008) shows that non-

linear models using squared and quadratic principal components (PCs) often outperform linear

models. Goulet Coulombe et al. (2022) also indicate in their study that including non-linearity

is a “game changer” for forecasting, where they propose two commonly used approaches, kernel

ridge regression and random forests, and the former is applied in this paper.

The second concern is to deal with high-dimensional data, which not only increases com-

putation time but also introduces possible multicollinearities. Researchers aim to only retain

the variables that are informative and relevant to the predicted target and to develop relatively

simple models using parsimonious factors (see, e.g., Bai & Ng, 2006, 2008; Hauzenberger et al.,

2023; Kim & Swanson, 2018; Ludvigson & Ng, 2009; Stock & Watson, 2002). PCA remains a

widely used technique in these studies.

There are many variations of PCA derived from the basic linear one (Hotelling, 1933), which

reduces the original data space to a lower dimension with a linear function. While the linear PCA

could be useful in many circumstances, it fails to capture more complicated real-life data. This

is why non-linear PCA is needed, as this technique allows for both linearity and non-linearity

between the original data and transformed latent factors. Different types of non-linear PCA have

been developed. Ludvigson & Ng (2009) apply both squared and cubed factors in their study

for predicting excess bond returns as they effectively reduce the Bayesian Information Criteria

(BIC). Bai & Ng (2008) employ both squared and quadratic PCs for inflation forecasting, and

they outperform one another interchangeably over different sample sizes. In this paper, I use

both squared PCA and quadratic PCA while also performing the linear PCA for comparison.

In addition, another form of PCA is applied in my paper. When mapping the original dataset

into higher dimensions, problems could occur. Since the dataset is of a higher dimension, it is

computationally costly if the dimension is too high. Proposed by Schölkopf et al. (1998), kernel

PCA successfully solves this problem, where there is no need to calculate the data transformation

explicitly, instead, the computation is implicitly finished using the kernel trick. Nahil & Lyhyaoui

(2018) use different kernels to predict the short-term stock price indices and show that kernel

PCA outperforms other methods.

These PCA methods help improve efficiency when it comes to “big data” or “data mining”,

but the size of parameters could still be large and possible problems including overfitting and

multicollinearity could still exist. As the intersection of machine learning with econometric
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forecasting has become increasingly popular in recent studies, other researchers propose to use

machine learning techniques to solve this problem further (see, e.g., Bai & Ng, 2008; Hauzenber-

ger et al., 2023; Kim & Swanson, 2018; Korobilis & Pettenuzzo, 2016; Nahil & Lyhyaoui, 2018;

Sermpinis et al., 2014). Therefore, this paper also considers to include a series of shrinkage

methods.

The first approach is to include the shrinkage prior. Sims (1980) points out that the a priori

restrictions can lead to significant estimation errors in out-of-sample forecasting. He proposes

the use of Bayesian methods to shrink “unconstrained coefficients” in empirical macroeconomics

effectively. Litterman (1979) first introduces the Minnesota prior, which serves as a foundation

for later research. Giannone et al. (2015) create a new prior by combining different priors

including the Minnesota prior, while other researchers like Korobilis & Pettenuzzo (2016) and

Chan et al. (2020) develop new “adaptive” Minnesota priors. This paper uses the adaptive

Minnesota prior suggested by Chan et al. (2020), which is also applied later by Hauzenberger

et al. (2023).

Another popular technique is penalised regression, with Ridge, Lasso, and Elastic Net be-

ing the three common methods. Previous studies show that forecast accuracy is improved if

penalised regressions are conducted after reducing the data dimension (Bai & Ng, 2008; Kim

& Swanson, 2018; Smeekes & Wijler, 2018). My paper adds value by including kernel ridge

regression besides these three methods. Building upon the standard ridge regression, the kernel

ridge regression maps the dataset to a possible higher dimension using the kernel trick before

directly operating on the original feature space. The non-linearities in the initial regressors

are considered and thus, improve the prediction accuracy, especially for macroeconomic data

(Exterkate et al., 2016; Sermpinis et al., 2014). I follow the steps described in Exterkate et

al. (2016) to build the kernel ridge regression using the Gaussian kernel. As for the choice of

hyperparameters, my paper uses the popular k-fold cross-validation (CV) approach as suggested

in many papers (Coulombe et al., 2021; Exterkate et al., 2016; Goulet Coulombe et al., 2022;

Hauzenberger et al., 2023; Kim & Swanson, 2018). The hyperparameters are updated by k-fold

CV in each rolling window.

My paper introduces two extra contributions to the existing literature. Many previous

works focus primarily on improving models with one single technique. For example, Exterkate

et al. (2016) concentrate solely on kernel PCA, while Chan (2021) investigates the Minnesota

shrinkage prior in depth. In contrast, I sequentially utilise two distinct techniques, PCA and

shrinkage methods. Hauzenberger et al. (2023) build their models using a similar logic but with

different approaches. They apply horseshoe and Minnesota shrinkage priors after the dimension

reduction. My paper, however, extends their work by considering additional regularisation

methods mentioned in other works (Coulombe et al., 2021; Kim & Swanson, 2018). Kim &

Swanson (2018) only use the most classic penalised regressions and PCA but do not explore

kernel PCA or kernel ridge regression. In contrast, my study integrates and compares these

advanced techniques.

Moreover, this paper extends the dataset used in the analysis to include the most recent data

up to April 2024, in contrast to the work in Hauzenberger et al. (2023), which only includes

data up to January 2021. The inclusion of post-Covid data is expected to provide valuable new
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insights and a more comprehensive understanding of the underlying trends.

3 Data

The data are retrieved from the US Federal Reserve Economic Data (FRED-MD), where monthly

updated macroeconomic data can be obtained in real-time (McCracken & Ng, 2016). This

database is easily accessible and designed for big data research. I retrieve all available vintages

dating from September 1999 to April 2024. Each vintage records a set of covariates beginning

from January 1959 until the latest month. More details about the variables are provided in

Appendix A. Note that inflation is not directly retrievable and must be calculated using the

Consumer Price Index (CPI), and this is discussed later in Section 4.1.

Before transforming the data, several preprocessing steps are necessary. There are two

kinds of missing data in general. First, the earliest months do not record all covariates, so any

months with missing data are excluded. Therefore, my dataset begins in January 1960. Second,

some variables were added or deleted during the historical vintages. To maintain consistency

throughout all vintages, the scope of all possible variables is determined by the current vintage

(see the table in Appendix A), and there are 103 variables in total.

Moreover, each variable must be transformed to achieve stationarity. The transformation

rules are based on the official suggestion (McCracken & Ng, 2016). In addition, all explanatory

and dependent variables will be demeaned and standardized to unit sample variance before

performing dimension reduction.

After the above procedures, the dimension reduction is conducted, and the number of PCs

is set to 5, 10, and 15. Regarding the forecasting model, both inflation and exogenous variables

include their lags. In empirical practice, one year of lagged information is included, i.e., 12 lags.

Also, the forecast horizon is set to one month and one quarter, i.e. h ∈ {1, 3}. The size of

the rolling window is set to 240 months (20 years), and the main forecast sample is set as the

pre-Covid period.

Figure 1: Monthly CPI from 2015 to 2024

The monthly trend of CPI data from 2015 to 2024 is analysed in figure 1 to determine a

clear breakpoint regarding the start of COVID-19. As shown in the graph, before May 2020

(indicated by the blue dotted line), the CPI increased relatively smoothly. However, after May

2020, there was a temporary drop followed by a steep increase. Since then, the slope of the trend
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has remained pronounced in contrast to the pre-COVID period, indicating that the pandemic

has a long-lasting effect on the CPI. Therefore, the main model predicts the period from June

2000 to May 2020. Accordingly, the initial window starts in June 1980 and ends in May 2000.

The last window starts in May 2000 and ends in April 2020. In total, there are 240 windows.

Another small sample is used to forecast the inflation from June 2020 to December 2023 for

further robustness checks, with 43 rolling windows in total. The initial window is from June

2000 to May 2020, and the final one is from December 2003 to November 2023. Here, again, the

window size is 240 months.

4 Methodology

4.1 Forecasting Inflation

In this section, I first define the forecasted index, inflation. As suggested by Hauzenberger et

al. (2023), the inflation is calculated as

yt+h = log

(
CPIt+h

CPIt

)
− log

(
CPIt
CPIt−1

)
. (1)

with h indicating the forecast horizon. The forecast model will employ a rolling window fore-

casting method, with a size of L months. The fully real-time forecasts are benchmarked against

the pseudo-real-time forecasts. The former uses data available at a specific point, reflecting

real-time conditions, while the latter incorporates subsequent revisions. This comparison can

show the impact of data revisions. A generalised h-step ahead forecast for inflation, given the

information up until period t, is formulated as follows,

Yt+h = u′tβt+h + ϵt+h, ϵt+h ∼ N(0, σ2), (2)

where ut is a set of m variables including latent factors together with lags of yt at time t. The

errors are homoskedastic and the variance is constant over time.

For a detailed specification of u′t, it includes m variables, m = q + p, where p represents the

number of lagged yt variables, and q represents the dimension for latent variables obtained by

dimension reduction techniques. Suppose the original dataset Xt =
(
s′t−p+1, . . . , s

′
t

)′
, where st

is the observation at time t, with k0 covariates in the given dataset, and Xt contains current st

and p− 1 lags of it. Therefore, Xt is composed of K variables with K = k0 × p. Latent factors

are obtained by applying the dimension reduction techniques (see next Section 4.2).

4.2 Dimension Reduction Techniques

Suppose the observed data setX is a T×K matrix, which contains information ofK dimensional

variables over T time periods, where X = {X1, . . . , XT }′, and Xt is the observation at time

t, t = 1, . . . , T . To perform dimensional reduction, there exists a function f(·), such that

Z = f(X), and f : RT×K → RT×q. The ultimate goal is to reduce the dimension of X such that

the transformed matrix Z is of q dimensions and q is much smaller than K (i.e., q ≪ K). To

achieve this, this paper applies different variants of PCA, including basic linear PCA, squared
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PCA, quadratic PCA, and kernel PCA.

Since this paper considers not only linear data transformations but also non-linear ones, X

can be possibly mapped to a higher dimension to capture the non-linearities. Let g(·) be the

function that maps X to the matrix W , i.e., W = g(X). The resulting matrix W is of dimension

T × d, where d is greater than or equal to K. The covariance matrix of W is denoted by Ω, and

the function V (·) is used to extract the eigenvectors of Ω, represented as V (Ω). The general

formula for obtaining the final transformed data Z can be written as follows,

Z = f(X) = g(X)V (W ′W ) = WV (Ω) (3)

Note that the eigenvectors are obtained by first applying the singular value decomposition (SVD)

of the covariance matrix Ω and then choosing the eigenvectors based on the first top eigenvalues.

By defining g(·) and f(·) functions differently, different PCs can be obtained.

4.2.1 Linear, Squared and Quadratic PCs

In the setting of linear PCA, the relationship simplifies to W = X, suggesting that g is the

identity function. In this case, Ω represents the covariance matrix of X. Essentially, Z is

obtained by projecting the original dataset through a linear transformation.

For both squared and quadratic PCs, g becomes a non-linear function. In squared PCs,

g(X) = X ⊙X = W , where ⊙ denotes the Hadamard product for element-wise multiplication.

For simplicity, X ⊙X is denoted by X2. Consequently, Ω then becomes as

Ω = W ′W =
(
X2

)′ (
X2

)
.

Regarding the quadratic PCs, function g maps the data into a new feature space that concat-

enates original data and the element-wise squared X, i.e. g(X) = (X,X2) = W . The covariance

matrix Ω is formulated as

Ω = W ′W =

[
X ′

(X2)′

] [
X X2

]
=

[
X ′X X ′X2

(X2)′X (X2)′X2

]
,

where the W is a T × 2K matrix, and naturally, the Ω is of dimension 2K × 2K.

4.2.2 Kernel PCs

By using a kernel function, the kernel PCA implicitly transforms the data points into a higher-

dimensional feature space in a non-linear style. This paper considers two different kernels, the

Gaussian kernel and the polynomial kernel.

Similar to the above-discussed approaches, after transforming the data, SVD will be applied

to obtain the corresponding eigenvectors, however, since the transformation is undergone impli-

citly, in this case, we do not calculate the covariance matrix explicitly. Define Ω = κ, and the κ

is a K ×K kernel matrix, of which each element κi,j = κ(x·i, x·j). x·i and x·j are the columns

of dataset X, with i, j = 1, . . . ,K.
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The Gaussian kernel function is expressed as,

κ(x·i, x·j) = exp

(
−∥x·i − x·j∥2

2σ2
1

)
,

where ∥ · ∥ is the Euclidean distance function and the σ1, as a tuning parameter, controls the

shape of the Gaussian function. Following Hauzenberger et al. (2023) and Exterkate et al.

(2016), σ1 is set as σ1 =
√
CK/π, with CK as the 95th percentile of the χ2 distribution with K

degrees of freedom. The polynomial kernel function is expressed as,

κ(x·i, x·j) =

(
x′·ix·j
σ2

+ 1

)2

,

with σ2 =
√
(K + 2) /2.

4.3 Shrinkage Methods

4.3.1 Adaptive Minnesota Prior

Besides reducing the data dimension, this paper considers different shrinkage methods to improve

the computational efficiency further. The first one is the adaptive Minnesota prior. Based on the

work from Chan (2021) and Hauzenberger et al. (2023), suppose β as the coefficient vector for

the forecasting model described in equation 2, β = (β′
1, . . . , β

′
m), m as the number of regressors.

I assume β has a multivariate normal distribution,

β|V ∼ N(0, V ).

V is a m × m dimensional prior variance-covariance matrix and it is a diagonal matrix, with

each diagonal element denoting as v2j . For the adaptive Minnesota prior, the structure of v2j is

v2j = η2j c
2
j ,

with

η2j =


η21 for time-invariant coefficients related to the own lags of the dependent variable (e.g., inflation)

η22 for time-invariant coefficients related to exogenous factors

η23 for state innovation standard deviations,

c2j =


1
l2

for coefficients associated with the own lags of inflation (l = 1, . . . , p)

σ̂2
π

σ̂2
k

for coefficients associated with the kth exogenous factor (k = 1, . . . , q),

where η2j is the global shrinkage parameter and c2j is the local scaling parameter. σ̂2
π and σ̂2

k

denote the OLS variances of an AR(1) model for inflation and for the k-th exogenous factor. Here

the local scaling parameters are assumed fixed and known and the global shrinkage parameters
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follow a hierarchical prior structure and are standard half-Cauchy distributed. Later for the

posterior inference, the emphasis is on updating global hyperparameters and their auxiliary

quantities using the Markov Chain Monte Carlo simulations.

4.3.2 Penalised Regressions

In addition to the shrinkage prior, several types of penalised regressions are considered: ridge

regression, Lasso, Elastic Net, and kernel ridge regression. The first three are widely used

to address possible multicollinearity in the high-dimensional data but with slight differences.

Ridge regression is an L2 regularisation, which adds a penalty to all coefficients and shrinks

them towards zero. Given that U is a T × q regressor matrix after the data transformation and

β is the coefficient matrix as described in equation 2, the loss function of the ridge penalisation

is expressed as,

min
β

(Y − Uβ)′(Y − Uβ) + λ1

q∑
j=1

β2
j

 . (4)

Lasso regression uses L1 regularization, which penalizes the absolute value of the coefficients,

potentially driving some of them to exactly zero. The objective function is defined as,

min
β

(Y − Uβ)′(Y − Uβ) + λ2

q∑
j=1

|βj |

 . (5)

Whereas Elastic Net combines both L1 and L2 regularisations, incorporating the benefits of

both methods, and its loss function is formulated as,

min
β

(Y − Uβ)′(Y − Uβ) + λ3

q∑
j=1

|βj |+ λ4

q∑
j=1

β2
j

 . (6)

Here, λ1, λ2, λ3, λ4 are tuning parameters that control the strength of the regularisation. These

tuning parameters are selected by applying a k-fold CV in each rolling window to ensure the

best model performance.

The last penalised regression method is kernel ridge regression. Built upon the ridge function,

this method is able to handle non-linearities with the use of kernel trick. Define the Kernel matrix

as H and each element hi,j is defined by the Gaussian kernel function,

hi,j = h(ui, uj) = exp

(
−∥ui − uj∥2

2σ2

)
, i, j = 1, . . . , T,

with ui and uj being rows of the regressor matrix U . The objective function of the kernel ridge

regression is,

min
α

(Y −Hα)′(Y −Hα) + λ5

T∑
i=1

T∑
j=1

αihijαj

 , (7)

and the α is obtained by solving (H + λI)α = Y. To make prediction, using new dataset

unew, compute the kernel matrix Hnew between the training data U and unew. The predic-
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tion for the new data is then as Ŷnew = H⊤
newα. Two tuning parameters are involved in the

kernel ridge regression, λ5 being the regularisation parameter and σ controls kernel width.

Applying the k-fold CV, these two hyperparameters are selected from grids in each window,

λ5 ∈
{
1
8λ0,

1
4λ0,

1
2λ0, λ0, 2λ0

}
, σ ∈

{
1
2σ0, σ0, 2σ0, 4σ0, 8σ0

}
. λ0 and σ0 are defined as,

λ0 =
1− R̂2

R̂2
, σ0 =

√
Cq

π
,

where Cq is the 95th percentile of χ2 distribution with q degrees of freedom. The R̂2 is the R2

value for the regression of y on the first principle component of the covariate matrix U (Exterkate

et al., 2016).

4.4 Model Specification and Evaluation

The models are specified in two ways. The first type of model specification involves transform-

ing the data using different dimension reduction techniques discussed in Section 4.2, followed

by including the Minnesota shrinkage prior in the forecast model. In the second type, I use

penalised regression techniques after reducing the dimensionality of the data. Both approaches

employ dimension reduction to handle high-dimensional data effectively while also incorporating

shrinkage methods to shrink large-sized parameters further.

To evaluate the model performance, I benchmark against the AR(p) model, which regresses

the dependent variable y on its own lags. The DM test (Diebold & Mariano, 1995) is employed to

compare the predictive accuracy between the benchmark and alternative models. Additionally,

the RMSE is used as another evaluation metric (see,e.g., Coulombe et al., 2021; Hauzenberger

et al., 2023). To assess the robustness of the models against turbulent changes in inflation, the

forecast errors are compared across different models specifically after the outbreak of COVID-19.

5 Results

5.1 Forecasts for Pre-Covid period

This section presents the model performance across different specifications. The main focus is

to evaluate the prediction accuracy of models that combine various PCA methods and machine

learning techniques. As discussed in Section 3, my models first forecast the inflation before

June 2020 as the main-sample forecast. There are two different forecast horizons: one month

ahead and one quarter ahead. For each forecast horizon, there are two types of forecasts, fully

real-time predictions and pseudo-real-time predictions. Fully real-time forecasts use the data

available up to the time of the forecast, simulating real-time conditions. In contrast, pseudo-real-

time forecasts incorporate revised and more complete data, serving as a benchmark to evaluate

the performance of real-time forecasts.

Table 1 displays the RMSEs for the one-month-ahead forecast with real-time data. The first

row presents the actual RMSE for the AR models, while the remaining values stand for the

relative RMSE of each model compared to the AR model. The asterisks present the p-value

from the DM test, showing if the prediction accuracy of the indicated model significantly differs
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from that of the AR model. Overall, the forecast performance does not improve significantly

by utilising different PCA techniques. The DM test shows that there is no notable difference

between the AR model and other model specifications, except for the model using linear PCA.

The p-value for the model using linear PCA with 15 factors and ridge regression is smaller than

0.05, and the RMSE is higher than that of the AR model, which shows that only applying linear

transformations in the dataset could undermine the forecast accuracy.

However, when considering RMSE as the only evaluation metric, the models using 10 or 15

quadratic PCs and Elastic Net outperform the AR model. Their RMSEs are 0.983 and 0.991

times that of the AR model respectively. Furthermore, models that combine kernel PCs with the

Minnesota prior or Elastic Net typically perform better. For example, when the model includes

5 Gaussian kernel PCs in the Minnesota prior model, it achieves the lowest RMSE value than

using other forms of PCs, which is 0.997 times the value in the AR model.

Table 1: One-month-ahead forecast (real-time)

MIN Ridge Lasso Elastic Net Kernel Ridge

AR 1.197 1.210 1.214 1.214 1.240

p = 5

Linear PCA 1.004 1.055* 1.126 1.076 1.034

Squared PCA 1.070 1.106 1.362 1.255 1.023

Quadratic PCA 1.094 1.077 1.229 1.158 1.026

Gauss. kernel PCA 0.997 1.002 1.026 1.015 1.019

Poly. kernel PCA 1.002 1.007 1.102 1.008 1.020

p =10

Linear PCA 1.002 1.118 1.214 1.151 1.034

Squared PCA 1.301 1.007 1.029 1.040 1.023

Quadratic PCA 1.017 1.004 1.007 0.983 1.026

Gauss. kernel PCA 1.002 1.006 1.068 1.009 1.019

Poly. kernel PCA 1.001 1.008 1.056 1.009 1.020

p =15

Linear PCA 1.001 1.108** 1.043 1.104 1.034

Squared PCA 1.060 1.038 1.030 1.017 1.023

Quadratic PCA 1.070 1.018 1.089 0.991 1.026

Gauss. kernel PCA 1.001 1.017 1.181 1.020 1.019

Poly. kernel PCA 0.999 1.007 1.022 0.996 1.020

Note: The first row presents the actual RMSE for the AR models, while the remaining

values represent the relative RMSE of each model compared to the AR model. Asterisks

indicate the p-value significance levels for the DM test, with ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

This shows whether the forecast errors of the AR model and the specified model are stat-

istically different. “MIN” stands for Minnesota prior.

While combining kernel ridge regression with different PCA techniques does not create any

models that outperform the benchmark model, it generally yields relatively lower RMSE values

compared to models using ridge or Lasso regression. The other two models have slightly higher

11



RMSEs, but in line with the DM test, they are not dramatically different from the benchmark

model. It is also worth mentioning that, though in the DM test, linear PCA performs the worst,

it does not always generate the highest RMSE among all PCA methods. For instance, if using

the Elastic Net, the model applying linear PCA with 5 factors has a relative RMSE of 1.076

compared to the benchmark, while applying squared PCA with 5 factors has a higher relative

RMSE of 1.255, 1.166 times the former.

Next, Table 2 presents the pseudo-one-month-ahead forecast, where the data are revised

over certain periods and considered to be more accurate. Again, when examining the DM test

results, models using linear PCA combined with ridge regression exhibit significantly larger

forecast errors against the AR model. Moreover, if applying the Lasso regularisation, the model

uses the Gaussian kernel PCA with 5 latent factors and the model uses the polynomial kernel

PCA with 10 factors both have p-values lower than 0.1 in the DM test, suggesting that under

these two circumstances, the predictive performance is significantly worse than that of the AR

model.

Table 2: One-month-ahead forecast (pseudo)

MIN Ridge Lasso Elastic Net Kernel Ridge

AR 1.121 1.133 1.143 1.140 1.144

p = 5

Linear PCA 1.005 1.063* 1.147 1.088 1.031

Squared PCA 1.079 1.109 1.386 1.271 1.028

Quadratic PCA 1.101 1.078 1.241 1.169 1.031

Gauss. kernel PCA 0.999 1.001 1.036* 1.018 1.022

Poly. kernel PCA 1.003 1.007 1.115 1.012 1.023

p = 10

Linear PCA 1.003 1.133 1.242 1.168 1.031

Squared PCA 1.031 0.998 1.018 1.031 1.028

Quadratic PCA 1.016 0.993 0.997 0.971 1.031

Gauss. kernel PCA 1.003 1.007 1.078 1.008 1.022

Poly. kernel PCA 1.002 1.009 1.069* 1.009 1.024

p = 15

Linear PCA 1.002 1.112** 1.043 1.116 1.031

Squared PCA 1.064 1.030 1.025 1.011 1.028

Quadratic PCA 1.078 1.005 1.094 0.980 1.031

Gauss. kernel PCA 1.001 1.011 1.192 1.021 1.022

Poly. kernel PCA 1.000 1.000 1.017 0.994 1.024

Note: The first row presents the actual RMSE for the ARmodels, while the remaining values

represent the relative RMSE of each model compared to the AR model. Asterisks indicate

the p-value significance levels for the DM test, with ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This

shows whether the forecast errors of the AR model and the specified model are statistically

different. “MIN” stands for the Minnesota prior.

However, in Table 2, more models beat the benchmark than in Table 1. Models using 10
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quadratic PCs in the ridge, Lasso or Elastic Net regression achieve a lower RMSE than in the AR

model, with values 0.993, 0.997 or 0.971 times that of the benchmark. The model using squared

PCA combined with ridge regression outperforms the AR model as well. Moreover, using kernel

PCs with the Minnesota prior or Elastic Net also beats the corresponding AR model. In general,

the Lasso regression with different types of PCA performs poorer than other models.

Table 3: One-quarter-ahead forecast (real-time)

MIN Ridge Lasso Elastic Net Kernel Ridge

AR 1.059 1.080 1.074 1.069 1.181

p = 5

Linear PCA 1.046** 1.091 1.127** 1.110 1.028

Squared PCA 0.942 0.973 1.211 1.091 1.049

Quadratic PCA 0.955 0.992 1.190 1.115 1.050

Gauss. kernel PCA 1.045* 1.023 1.120** 1.047 1.003

Poly. kernel PCA 1.031 1.025 1.122** 1.053 1.002

p =10

Linear PCA 1.037* 1.156 1.202*** 1.181 1.028

Squared PCA 1.025 0.991 1.084 1.083 1.049

Quadratic PCA 1.080 1.005 1.145 1.064 1.050

Gauss. kernel PCA 1.035** 1.029 1.170*** 1.062 1.003

Poly. kernel PCA 1.030** 1.029 1.181*** 1.065 1.002

p =15

Linear PCA 1.037** 1.195 1.188 1.185 1.028

Squared PCA 1.043 0.996 1.061 1.036 1.049

Quadratic PCA 1.069 0.978 1.049 0.985 1.050

Gauss. kernel PCA 1.036** 1.028 1.184*** 1.049 1.003

Poly. kernel PCA 1.028** 1.027 1.148** 1.034 1.002

Note: The first row presents the actual RMSE for the AR models, while the remaining values

represent the relative RMSE of each model compared to the AR model. Asterisks indicate

the p-value significance levels for the DM test, with ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This shows

whether the forecast errors of the AR model and the specified model are statistically different.

“MIN” stands for the Minnesota prior.

Table 3 demonstrates the results for real-time forecasting if the forecast horizon is set to one

quarter. The DM tests show that there are more underperformed model specifications against

the AR model compared to the one-month-ahead results shown in Table 1. Similar to the one-

month-ahead forecast, linear PCA combined with different shrinkage methods results in worse

performance against the AR model concerning the DM test. However, kernel PCA methods,

including Gaussian kernel PCA and polynomial kernel PCA, combined with the Minnesota prior

or Lasso regression also present poorer results. This might be because the one-quarter-ahead

forecast introduces more uncertainty and complexity, bringing more challenges for sophisticated

models. The AR model, due to its simplicity and robustness, might handle these fluctuations

better. In contrast, those more complex models with inappropriate regularisations could overfit
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the short-term data, making them less effective at capturing longer-term trends and variability.

Regarding RMSE values, the combination of squared PCs with either the Minnesota prior

or ridge regression beats the benchmark. For instance, in the Minnesota prior model, applying

5 squared PCs leads to an RMSE value that is 0.942 times that of the AR model. Additionally,

the model utilising the Minnesota prior, ridge regression or Elastic Net, combined with quad-

ratic PCA outperforms the AR model when including 5 or 15 latent factors. Comparing the

performance between different regularisations, models applying the Minnesota prior have better

results, while the Lasso generally leads to poorer performance.

Table 4: One-quarter-ahead forecast (pseudo)

MIN Ridge Lasso Elastic Net Kernel Ridge

AR 1.054 1.042 1.056 1.045 1.289

p = 5

Linear PCA 1.057*** 1.103 1.142*** 1.123 1.038

Squared PCA 0.939 0.957 1.201 1.082 1.036

Quadratic PCA 0.953 0.984 1.184 1.112 1.039

Gauss. kernel PCA 1.056*** 1.026 1.134** 1.056 1.035

Polynomial PCA 1.042 1.028 1.136** 1.062 1.035

p =10

Linear PCA 1.047** 1.174 1.219*** 1.200 1.039

Squared PCA 1.022*** 0.986 1.090 1.088 1.036

Quadratic PCA 1.076 0.988** 1.134 1.050 1.039

Gauss. kernel PCA 1.045*** 1.032 1.186*** 1.071 1.035

Polynomial PCA 1.041*** 1.033 1.197** 1.074 1.035

p =15

Linear PCA 1.048** 1.219 1.211*** 1.210 1.039

Squared PCA 1.055 1.010 1.082 1.064 1.036

Quadratic PCA 1.085 0.992 1.070 1.007 1.039

Gauss. kernel PCA 1.047*** 1.031 1.200*** 1.058 1.035

Polynomial PCA 1.039*** 1.031 1.170*** 1.043 1.035

Note: The first row presents the actual RMSE for the AR models, while the remaining values

represent the relative RMSE of each model compared to the AR model. Asterisks indicate the

p-value significance levels for the DM test, with ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This shows whether

the forecast errors of the AR model and the specified model are statistically different. “MIN”

stands for the Minnesota prior.

As for the pseudo-real-time forecast using the revised data in Table 4, it shares similar

patterns with the real-time one. First, comparing the DM test, linear PCA and kernel PCA

combined with the Minnesota prior or Lasso regression lead to forecast errors that are signi-

ficantly different from those of the AR model. Based on their RMSE values, those models

underperform the benchmark model. Applying squared or quadratic PCA with the shrinkage

methods (the Minnesota prior and ridge regression) performs better than the AR model.

In summary, regarding data transformation methods, quadratic PCA generally produces
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better forecasting results, especially when combined with the Minnesota prior, ridge, or Elastic

Net regularisation. In the real-time one-month-ahead forecast, combining the Minnesota prior

or Elastic Net with the kernel PCA also exhibits good performance. However, most of the

DM tests are insignificant, even though some models achieve a lower RMSE than that of the

benchmark. In this paper, most of the significant DM tests indicate the inferior performance

of the suggested model against the AR model. One possible explanation could be that, despite

the small forecast errors, the variance of these errors remains large within these models, leading

to an insignificant DM score. This highlights a limitation of my models: while they can reduce

forecast error magnitude, they do not consistently reduce forecast error variance.

Forecasts using the vintage with revised data have better performance than the real-time

one, with more model specifications outperforming the benchmark. This is mainly seen in

combinations of squared or quadratic PCA with the Minnesota prior, ridge regression, or Elastic

Net. This is expected since the revised data are cleaner and have fewer anomalies, making the

prediction more accurate.

Interestingly, our model specifications perform better in the one-quarter ahead forecast than

in the one-month ahead forecast in terms of RMSE scores, indicating that some models can

handle turbulence in the long forecast horizon. However, if comparing the DM test, in the

one-quarter-ahead forecast, more models perform worse than the benchmark model. This in-

ferior performance is particularly noticeable in kernel PCA models with Lasso regression or the

Minnesota prior.

Furthermore, upon choosing the proper type of regularisation, the Minnesota prior, ridge

regression and Elastic Net are ideal options. Models adopting two less well-performing penalised

regressions, Lasso and kernel ridge regression, hardly outperform the benchmark model. Note

that while combining PCA with kernel ridge regression underperforms, it is not significantly

different from the corresponding AR model based on the DM test. Conversely, especially in

the one-quarter-ahead forecast, models using Lasso and PCA significantly underperform the

AR model most of the time. This suggests that combining PCA methods with Lasso may be

inefficient.

One possible reason could be that the number of PCs extracted is still relatively small,

which might not provide enough variability for the Lasso regularisation to be effective. Lasso

regularisation tends to perform better when there is a larger set of predictors to select from,

as it works by shrinking some coefficients to zero and selecting a subset of variables. With a

limited number of PCs, Lasso may not be able to perform this selection effectively, leading to

inferior model performance. An alternative explanation could be that Lasso works well with

sparse data even with limited data. In this sense, incorporating more latent factors would not

help, as Lasso’s advantage comes from dealing with sparse data. Hence, if our dataset is not

sparse, including more PCs does not necessarily improve the performance either.

5.2 Robustness Check

In this section, I test the robustness of the proposed models to COVID-19 by applying them to

forecast inflation after May 2020. Each model includes 15 latent factors and makes one-month-

ahead and one-quarter-ahead forecasts respectively.
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Figure 2 shows the forecast errors for all model specifications with the forecast horizon of 1.

The graph demonstrates the fluctuating trends in the forecast errors from June 2020 to June

2021, especially for models using linear data transformation with ridge, Lasso or Elastic Net

regularisation. This volatility is expected due to the outbreak of COVID-19, which introduced

many complicated political and financial factors that disrupted the macroeconomic environ-

ment, making it more unpredictable. There are also a few noticeable spikes from April 2022 to

September 2022. After this period, all models seem more stable, exhibiting smaller variances

in forecast errors, and there is no distinct difference between PCA methods regardless of the

shrinkage method used.

While all models illustrate a similar trend, there are still some differences. Even though all

models are volatile at the start of the pandemic, linear PCA predicts the worst, and the squared

PCA also results in large variance in forecast errors. In contrast, kernel PCA has better forecast

performance, characterised by more consistent errors. Note that this finding does not apply to

models utilising the Minnesota prior or kernel ridge regression, as there is no such significant

difference between different PCA methods. In general, models applying different regularised

regressions exhibit similar forecast performance. Despite the fluctuating errors, the variance is

still considered small, indicating that these models are robust to the turbulent changes during

COVID-19.

Figure 2: Robustness check for one-month-ahead forecast

The forecast errors become more pronounced in some models when conducting the one-

quarter-ahead forecast, as illustrated in Figure 3. Similar to the trend in Figure 2, there are

significant fluctuations in the early period (months between June 2020 and June 2021). However,

compared to the one-step-ahead prediction, the trends of forecast errors are more distinct across
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different model specifications. Among all, models with Lasso regression and the Minnesota prior

forecast inflation with significantly large forecast errors in the early period, but errors gradually

stabilise and converge to zero afterwards. Although models with kernel ridge regression exhibit

volatile errors with some peaks, the deviations are relatively small and decrease over time.

Elastic Net with PCA methods also shows moderate deviations initially, followed by reducing

errors in 2023.

The linear PCA is the least stable, producing a wide range of deviations in forecast errors,

making it the least preferred method in the early period. During the same period, the squared

PCA and quadratic PCA also result in a large deviation of the forecast errors. This finding is

interesting, since in the one-quarter-ahead main-sample forecast, these two PCA methods with

the Minnesota prior and ridge regression often beat the AR model. In contrast, two types of

Kernel PCA, the Gaussian kernel PCA and the polynomial kernel PCA, lead to more stable

and robust models than other PCA techniques. This is especially true during the early period

when the overall trend is more turbulent. Last but not least, compared to errors in the one-

month-ahead forecast, the ones in the one-quarter-ahead are more consistent after 2023, showing

a smoother trend.

Figure 3: Robustness check for one-quarter-ahead forecast

To sum up, in both one-month ahead and one-quarter-ahead forecasts, results indicate that

all models start with less accuracy but stabilise over time. This pattern is characterised by

highly volatile forecast errors initially, which converge to zero afterwards. Some specifications

are relatively inferior. The squared PCA and linear PCA, whose combinations of either regular-

isation always lead to a higher variance of forecast errors. In contrast, utilising the kernel PCA

could yield better results.
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Despite the commonalities between predictions across different forecast horizons, differences

still exist. In the one-month-ahead forecast, the deviation of errors is small, making the mod-

els robust. However, in the one-quarter-ahead forecast, models using Lasso regression or the

Minnesota prior exhibit more volatile forecast errors. This is in line with the main-sample

forecast, where most models under these two shrinkage methods underperform the benchmark

regarding the DM test. In contrast, models using ridge, Elastic Net, or kernel ridge regression

are considered more robust. Regardless of the type of regularisation applied, using PCs with

linear, squared, or quadratic transformation undermines the robustness of the model in the

one-quarter-ahead forecast.

6 Conclusion

This paper studies the virtues of combining different data reduction techniques and shrinkage

methods that could effectively improve real-time inflation forecasting. I use both linear and non-

linear PCA to transform data. The non-linear PCA involve squared PCA, quadratic PCA, and

kernel PCA (Gaussian and polynomial). This paper also considers different shrinkage methods,

the first is the Minnesota shrinkage prior and the second is the penalised regression. The latter

applies classic penalisation methods (ridge, Lasso, and Elastic Net regressions) along with the

kernel ridge regression, which uses the kernel function to map the original dataset into a higher

dimension in a non-linear way. Different combinations provide different model specifications. To

evaluate the model performance, I use the DM test and the RMSE metric, with the AR model

as the benchmark.

The main-sample forecast uses data before the pandemic. In the real-time one-month-ahead

forecast, employing quadratic PCA or kernel PCA with the Minnesota prior or Elastic Net

performs better than the AR model. In one-quarter-ahead forecasts, models using squared or

quadratic PCs with the Minnesota prior or ridge regularisation outperform the AR model in

terms of RMSE. However, many models, especially those using linear PCA or kernel PCA with

the Minnesota prior or Lasso regression, underperform according to the DM test, which might

be because of increased uncertainty with a larger forecast horizon. The poor performance due to

the use of linear PCA aligns with my assumption that the linear data transformation is inferior

to the non-linear one when encountering more complex tasks. The robustness check confirms

this again by showing the linear PCA with either regularisation method always generates higher-

volatile forecast errors.

However, the above findings do not suffice enough to determine the most preferred combin-

ations of dimension reduction techniques and shrinkage methods. In fact, there are no definite

answers in this paper. The robustness check shows that including squared or quadratic PCs

could lead to poorer forecast performance than other non-linear PCA methods, contradictory

to the findings in the main-sample forecast. Also, in the one-quarter-ahead, only the ridge and

kernel ridge regressions are considered robust. In this case, during turbulent periods, including

kernel PCs with a ridge or kernel ridge regression might be a better choice. Nevertheless, the

final decision needs to balance between accuracy and robustness.

Inspired by Hauzenberger et al. (2023), this paper narrows down the scope of dimension

reduction techniques by only focusing on different types of PCA, in line with their results,
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including squared or quadratic PCs in the regression using the Minnesota prior in general out-

perform other types of PCA. Building upon their findings, this paper demonstrates that by

including more shrinkage methods, using Elastic Net regression for the month-ahead forecast

or ridge regression for the one-quarter-ahead forecast can also generate results that outperform

the AR model, with absolute RMSE values sometimes even lower than those achieved using the

Minnesota prior.

Moreover, since I adopt more recent data, the robustness check can use samples starting

from and after the pandemic, which provides more insights into the model performance. It

is important to note that the winning models in the main-sample forecast are sometimes less

robust than others, and this paper suggests some more robust models instead of incorporating

the shrinkage prior, among which the ridge and kernel ridge regressions combined with the PCA

technique show better performance.

This paper suggests a combination of various types of PCA and kernel ridge regression.

Although this model does not prove to be the most efficient in the main-sample forecast, it does

show robustness against inflation changes during the pandemic. Further studies can enhance

this new model specification by improving the k-fold cross-validation for tuning parameters.

Defining a more appropriate search grid for the tuning parameters could enhance performance

accuracy. Another approach could be considering other types of PCA, such as sparse PCA, to

refine the model.

Moreover, as discussed before in section 5, this study is limited by the fact that most DM tests

are not significant even if the specified model achieves lower RMSE than the AR model. One

possible explanation is that, while achieving small forecast errors, the variance of these errors

remains large within models, resulting in insignificant DM scores. This highlights a limitation of

my models: they effectively reduce forecast errors but do not consistently reduce error volatility.

Moving forward, this paper only tests models for forecasting inflation. Other macroeco-

nomic data could also be considered. For example, Kim & Swanson (2018) also forecast the

unemployment rate, producer price index, and more. This broader scope could provide a more

comprehensive evaluation of the model’s performance.
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A Description on the dataset

Table 5: Variable Description

id tcode variable description

1 5 RPI Real Personal Income

2 5 W875RX1 Real personal income ex transfer receipts

3 5 CMRMTSPLx Real Manu. and Trade Industries Sales

4 5 RETAILx Retail and Food Services Sales

5 5 INDPRO IP Index

6 5 IPFPNSS IP: Final Products and Nonindustrial Supplies

7 5 IPFINAL IP: Final Products (Market Group)

8 5 IPCONGD IP: Consumer Goods

9 5 IPMAT IP: Materials

10 5 IPMANSICS IP: Manufacturing (SIC)

11 2 CUMFNS Capacity Utilization: Manufacturing

12 5 CLF16OV Civilian Labor Force

13 5 CE16OV Civilian Employment

14 2 UNRATE Civilian Unemployment Rate

15 2 UEMPMEAN Average Duration of Unemployment (Weeks)

16 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks

17 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks

18 5 UEMP15OV Civilians Unemployed - 15 Weeks and Over

19 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks

20 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over

21 5 CLAIMSx Initial Claims

22 5 PAYEMS All Employees: Total nonfarm

23 5 USGOOD All Employees: Goods-Producing Industries

24 5 CES1021000001 All Employees: Mining and Logging: Mining

25 5 USCONS All Employees: Construction
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id tcode variable description

26 5 MANEMP All Employees: Manufacturing

27 5 DMANEMP All Employees: Durable goods

28 5 NDMANEMP All Employees: Nondurable goods

29 5 SRVPRD All Employees: Service-Providing Industries

30 5 USWTRADE All Employees: Wholesale Trade

31 5 USTRADE All Employees: Retail Trade

32 5 USFIRE All Employees: Financial Activities

33 5 USGOVT All Employees: Government

34 1 CES0600000007 Avg Weekly Hours : Goods-Producing

35 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing

36 1 AWHMAN Avg Weekly Hours : Manufacturing

37 4 HOUST Housing Starts: Total New Privately Owned

38 4 HOUSTNE Housing Starts, Northeast

39 4 HOUSTMW Housing Starts, Midwest

40 4 HOUSTS Housing Starts, South

41 4 HOUSTW Housing Starts, West

42 4 PERMIT New Private Housing Permits (SAAR)

43 4 PERMITNE New Private Housing Permits, Northeast (SAAR)

44 4 PERMITMW New Private Housing Permits, Midwest (SAAR)

45 4 PERMITS New Private Housing Permits, South (SAAR)

46 4 PERMITW New Private Housing Permits, West (SAAR)

47 5 AMDMNOx New Orders for Durable Goods

48 5 ANDENOx New Orders for Nondefense Capital Goods

49 5 AMDMUOx Unfilled Orders for Durable Goods

50 5 BUSINVx Total Business Inventories

51 2 ISRATIOx Total Business: Inventories to Sales Ratio

52 6 M1SL M1 Money Stock

53 6 M2SL M2 Money Stock

54 5 M2REAL Real M2 Money Stock

55 6 TOTRESNS Total Reserves of Depository Institutions

56 7 NONBORRES Reserves Of Depository Institutions

57 6 BUSLOANS Commercial and Industrial Loans

58 6 REALLN Real Estate Loans at All Commercial Banks

59 6 NONREVSL Total Nonrevolving Credit

60 2 CONSPI Nonrevolving consumer credit to Personal Income

61 5 S.P 500 S.P’s Common Stock Price Index: Composite

62 2 S.P div yield S.P’s Composite Common Stock: Dividend Yield

63 5 S.P PE ratio S.P’s Composite Common Stock: Price-Earnings Ratio

64 2 FEDFUNDS Effective Federal Funds Rate

65 2 CP3Mx 3-Month AA Financial Commercial Paper Rate

66 2 TB3MS 3-Month Treasury Bill:
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id tcode variable description

67 2 TB6MS 6-Month Treasury Bill:

68 2 GS1 1-Year Treasury Rate

69 2 GS5 5-Year Treasury Rate

70 2 GS10 10-Year Treasury Rate

71 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield

72 2 BAA Moody’s Seasoned Baa Corporate Bond Yield

73 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS

74 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS

75 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS

76 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS

77 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS

78 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS

79 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS

80 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS

81 5 TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index

82 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate

83 5 EXJPUSx Japan / U.S. Foreign Exchange Rate

84 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate

85 5 EXCAUSx Canada / U.S. Foreign Exchange Rate

86 6 OILPRICEx Crude Oil, spliced WTI and Cushing

87 6 PPICMM PPI: Metals and metal products:

88 6 CPIAUCSL CPI : All Items

89 6 CPIAPPSL CPI : Apparel

90 6 CPITRNSL CPI : Transportation

91 6 CPIMEDSL CPI : Medical Care

92 6 CUSR0000SAC CPI : Commodities

93 6 CUSR0000SAS CPI : Services

94 6 CPIULFSL CPI : All Items Less Food

95 6 CUSR0000SA0L5 CPI : All items less medical care

96 6 CES0600000008 Avg Hourly Earnings : Goods-Producing

97 6 CES2000000008 Avg Hourly Earnings : Construction

98 6 CES3000000008 Avg Hourly Earnings : Manufacturing

99 2 UMCSENTx Consumer Sentiment Index

100 6 MZMSL MZM Money Stock

101 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding

102 6 DTCTHFNM Total Consumer Loans and Leases Outstanding

103 6 INVEST Securities in Bank Credit at All Commercial Banks

Note. tcode represents the transformation of the corresponding series: (1) no transformation,

(2) ∆xt, (3) ∆
2xt, (4) log(xt), (5) ∆ log(xt), (6) ∆

2 log(xt), and (7) ∆
(

xt
xt−1

− 1.0
)
.

Adapted Source: US Federal Reserve Economic Data
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B Programming code

This section provides a short description of the replication package and instructions on how to

use the code.

In the replication package, there are the following R scripts: Preprocessing, estim file,

estim extension, data setup, tiv estim, aux fct, and robustness check. Note that the

file Preprocessing is credited to Rens den Heeten. Files estim file, estim extension,

data setup, tiv estim, and aux fct are adapted from the original replication package provided

by Hauzenberger et al. (2023).

1. Preprocessing: The first step is to run the Preprocessing script. This script cleans the

original data and transforms it based on the transformation rules provided by Fred-MD

to ensure stationarity. This script prepares a cleaned dataset containing all vintages for

further transformation. Note that all historical vintages are downloaded from the official

website, as detailed in McCracken & Ng (2016).

2. estim file: To replicate the model mentioned in Hauzenberger et al. (2023), run the

main estimation script estim file. After execution, RMSE values and DM test results

for different model specifications are obtained. Note that some parameters, such as the

forecast horizon, need to be adjusted for different specifications.

3. estim extension: The estim extension script is for running the extension models de-

scribed in this paper. Again, parameters such as the type of shrinkage method and the

forecast horizon need to be adjusted for different models.

4. robustness check: This file is to process and plot the results after running the robustness

check.

5. data setup: The data setup script is for setting up the data by reducing its dimension-

ality and deriving the corresponding response and explanatory variables.

6. tiv estim: The tiv estim script is specifically for models using the Minnesota prior.

7. aux fct: The aux fct script contains most of the functions used in other files, including

functions for RMSE calculation, ridge regression, kernel ridge regression, etc.

Except for the first four files, other files do not need to be run manually. This overview

explains their purpose for simplicity and ensures that users can follow the correct sequence of

steps to replicate the results.

24


	Introduction
	Literature
	Data
	Methodology
	Forecasting Inflation
	Dimension Reduction Techniques
	Linear, Squared and Quadratic PCs
	Kernel PCs

	Shrinkage Methods
	Adaptive Minnesota Prior
	Penalised Regressions

	Model Specification and Evaluation

	Results
	Forecasts for Pre-Covid period
	Robustness Check

	Conclusion
	Description on the dataset
	Programming code

