
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrics and Operations Research

Combining machine learning and dimension reduction

techniques in forecasting inflation

Nienke Ybema (583094)

Supervisor: E.P. O’Neill

Second assessor: A. Pick

Date final version: 1st July 2024

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



Abstract

The prices of products and goods change constantly and have a direct impact on con-

sumption and investment. Hence, the trend of prices, inflation, is a great determinant in the

decision-making models of almost all economic agents and the predictions of inflation are

essential in our economy. While early literature relied on linear models, most of the driving

factors of inflation exhibit non-linear patterns. Therefore, recently more advanced methods

like dimension reduction techniques or machine learning techniques were introduced in the

forecasting environment. This paper aims to combine the strengths of these methods and

trains several machine learning methods on the factors extracted from the data with dimen-

sion reduction techniques. To evaluate the contribution of the machine learning methods, we

compare the forecasting performance with the predictive ability of a dynamic regression with

shrinkage priors, which is employed with the obtained factors as covariates. The forecasts,

made one-quarter ahead, were evaluated with different forecasting performance tests. For

the estimation of these models we use the FRED-MD database. This is a recent and relat-

ively complete dataset of monthly macro-economic variables measured in the US from 1959

until the present. The results of our research suggest that the inclusion of machine learning

methods in factor-augmented models was not useful in the predicting of inflation. The ma-

chine learning methods provided less accurate results than the simpler AR(12) benchmark

model. However, certain dimension reduction techniques, especially squared and quadratic

principal component analysis enhanced the accuracy of the simpler benchmark model.

1 Introduction

The fluctuation of prices, known as inflation, is a concept that affects everyone and is a crucial

indicator of the economic stability of a country or region. Inflation is a very volatile variable,

and it is complex to accurately predict inflation. However, apart from the direct impact current

inflation has on our daily lives, the expectations of inflation are also crucial in many economic

forecasts used by institutions as the European Central Bank (ECB). Likewise, other economic

agents, such as consumers and investors base their decision-making about investing or saving on

their predictions of this variable. Therefore it is of great importance to form accurate predictions

of inflation to implement appropriate monetary policies.

While simple univariate models already predict inflation quite accurately and are difficult

to beat (Stock and Watson, 2006), complex machine learning methods and dimension reduction

techniques can possibly assess the non-linearity in the macro-economic environment even better.

Dimension reduction techniques, which transform variables into a smaller number of factors,

can be linear and relatively simple or highly non-linear and complex. Machine learning methods

are complex computer algorithms which can improve the predictions relative to ordinary least

squares in complex or non-linear forecasting frameworks.

The forecasting of inflation using machine learning methods or dimension reduction tech-

niques is widely researched. Both methods seem to improve the simple benchmark AR(p) model

(Medeiros et al., 2018), (Hauzenberger et al., 2023). Therefore this paper aims to combine the

strong features of both techniques and thus apply machine learning methods on the factors ob-

tained with dimension reduction techniques. In this way we investigate whether adding another

non-linear model instead of a simple regression improves the results of these factor-augmented
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forecasts. Hence the main research question of this paper is: How can machine learning meth-

ods improve the accuracy of real-time quarterly ahead forecasts of inflation in combination with

dimension reduction techniques?

We try to answer this question by first analyzing the performance of models which implement

the different dimension reduction techniques with a dynamic regression using shrinkage priors.

Thereafter three different machine learning methods are employed on the factors obtained with

the dimension reduction techniques.

This paper is built on the paper of Hauzenberger et al. (2023), which researched the predictive

performance of dimension reduction techniques applied to the forecasting of inflation. This

paper extends the work of Hauzenberger et al. (2023) by forecasting inflation using machine

learning methods (elastic net, random forest and kernel ridge regression) trained on the reduced

dimension data instead of applying linear models to these factors and thus studying the added

value of combining these two methods. The first part of the analysis is limited to the performance

of the dimension reduction techniques. In this part some of the models that were best performing

in the paper of Hauzenberger et al. (2023) are applied and compared with simpler benchmark

models, which include an AR(p) and ARX model. The covariates of the ARX model are set to be

the 5 variables which are most correlated with the factors obtained through the best performing

dimension reduction technique. The factors obtained with the factor-augmented methods are

then linked to inflation in a second stage regression and the results of the paper of Hauzenberger

et al. (2023) are verified.

The coefficients estimated with the dynamic regression are assumed to be constant over time.

To shrink the numbers of parameters, two different shrinkage methods are employed, particu-

larly the Minnesota prior (Chan, 2019) and the Horsehoe prior (Carvalho et al., 2010). The

specification of the model allows for stochastic volatility. In the second part of the analysis the

performance of the different machine learning methods in the framework of inflation forecasting

is analysed. Selection of the models employed is based on the performance of these models

in previous literature. Different sets of combinations including machine learning methods and

factor models are made to examine their contribution to each other.

To assess the performance of the models, different evaluation metrics and tests are employed.

The root mean square error (RMSE) and mean absolute error (MAE) are calculated and to

determine whether the results of a model are significantly different from the AR(p) benchmark

model a Diebold-Mariano test is performed. Additionally, the model confidence set is constructed

to establish the set of best performing models based on a certain confidence level.

The FRED-MD database is a large dataset including many macro-economic variables (Mc-

Cracken and Ng, 2015), this database is used for the estimation of our models. A rolling window

of 20 years is estimated monthly, while the estimation sample remains constant at 240 obser-

vations. The machine learning methods and dimension reduction techniques are valuable in

forecasting with such large datasets. Therefore the combination of these two different kinds of

methods applied to a big dataset can increase the predictive ability of the model even more.

We evaluate three machine learning methods and four dimension reduction techniques on

this data and conclude that the more complex models including machine learning methods and

dimension reduction techniques were not a significant improvement of the AR(p) benchmark
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model. The forecasting performance of most of these combinations was significantly worse than

the performance of the dimension reduction techniques combined with a dynamic regression

and a Bayesian prior. Therefore including machine learning methods when predicting inflation

with factor augmented estimation is not beneficial. Squared an quadratic principal component

analysis provide smaller values for RMSE and MAE than the benchmark model. However, these

differences are not significant according to the Diebold-Mariano test or the model confidence set

procedure.

In conclusion, the inclusion of these particular machine learning methods in the framework

of dimension reduction techniques in forecasting inflation results in unnecessary complexity of

the models. Thus, it would be preferred for economic agents to avoid combining these models

in the forecasting of inflation one-quarter ahead. However, the use of only dimension reduction

techniques could be valuable by incorporating the non-linearity’s of the data in the model.

In this paper, we first provide a general overview of the existing literature and relevance in

Section 2. Thereafter we describe the FRED-MD dataset and the variables used in our models

in Section 3. In section 4 we explain the methods employed. Then the results are presented in

section 5. Finally, we state our conclusions in section 6.

2 Existing literature

2.1 Dimension reduction techniques

Various dimension reduction techniques have been tested in a macro econometric forecasting

environment. Most of the literature came to the conclusion that models which apply dimension

reduction techniques generally outperform simpler models in forecasting inflation. Hauzenberger

et al. (2023) researched the autoencoder, different forms of principal component analysis (PCA),

diffusion maps, local linear embeddings and isometric feature mapping. The autoencoder was the

best overall predictor in monthly ahead forecasts, but squared and quadratic PCA provided the

most accurate predictions in quarterly ahead forecasts. Additionally, this paper constructed a

dynamic combination of the best performing forecasting methods. They found that the dynamic

combination performed slightly worse than the best performing model. However, this model

reduced much uncertainty in turbulent times.

2.2 Machine learning methods

Another interesting way of forecasting inflation is employed by utilizing machine learning meth-

ods. Machine learning methods impose a more flexible structure than traditional econometric

methods and do not need a lot of assumptions. Therefore, these methods are capable of cap-

turing complex macroeconomic relationships. Goulet Coulombe et al. (2022) employed machine

learning methods in different forecasting environments and evaluated that these methods are

particularly useful when there is a high level of uncertainty. Machine learning methods are able

to capture the non-linearity’s arising from this uncertainty. The literature is quite consistent

in the belief that most machine learning methods are an improvement on simpler regression

methods. Nonetheless, there is no clear superior method.
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The random forest algorithm, introduced by Breiman (2001), uses multiple decision trees to

form a model and make predictions. This method was found to be the best performing method

in predicting the inflation in the USA by Medeiros et al. (2018) and Goulet et al. (2021) for a

time horizon of 3, 6 and 12 months. The random forest model also provided accurate predictions

for inflation over longer time horizons of one year in Brazil (Araujo and Gaglianone, 2023), while

for shorter horizons a combination of the best performing models worked the best. Other Tree-

based models, like the extreme gradient boosting model (XGBoost) showed good performance

as well (Li et al., 2022). Because of the excellent performance in previous literature, this paper

uses the random forest algorithm as one of the machine learning methods employed to estimate

our model. This model can handle non-linearity and is not restricted to assumptions, which

allows the model to be quite flexible.

During the COVID pandemic, the forecasting of inflation became even more complex, be-

cause of the unpredictability of the macroeconomic environment. However, the kernel ridge

regression still produced accurate predictions. Goulet Coulombe et al. (2022) tested the per-

formance of the kernel ridge regression. This method is quite accurate in predictions in turbulent

times. The kernel ridge regression handle high-dimensionality and non-linearity in the data. It

prevents over-fitting by penalizing the parameters. These properties demonstrate that the ker-

nel ridge regression provides an attractive framework for estimating nonlinearity’s in the data.

Thus, we choose the kernel ridge regression and the random forest algorithm as methods to

estimate our factor-augmented model. In addition, we implement the elastic net method. This

method is close to linearity and thus we can compare the highly non-linear machine learning

methods with a more linear machine learning method.

2.3 Feature selection for machine learning methods

Goulet et al. (2021) researched the effect of different data transformations before applying ma-

chine learning methods in inflation forecasting. Such transformations can alter the results of

the models drastically. Therefore one should be careful with using these transformation meth-

ods. Most machine learning methods generate accurate predictions using high-dimensional data.

However, in forecasting we normally do not have many data points available and the issue of

over-fitting arises. Therefore the simple principle component analysis is often used to prevent

these over-fitting issues (Goulet Coulombe et al., 2022). Uddin et al. (2018) identifies the selec-

tion of the features used in the machine learning methods as the key to better prediction accuracy

of machine learning methods and shows that the selection of specific feature sets can optimize

the machine learning process. Goulet et al. (2021) extract factors from the data using MARX

and MAF methods and the simple principal component analysis. They found that the inclusion

of these dimension reduction techniques yield lower RMSEs and is beneficial for the forecasting

accuracy. Even the simple principle component analysis provided more accurate results than

the benchmark model. Because of these results we are interested in further researching different

dimension reduction techniques in combination with machine learning methods. Hence, this pa-

per applies other dimension reduction techniques (squared and quadratic PCA and ISOMAP)

which are frequently used in previous literature to the machine learning forecasting framework.

In conclusion, most of the existing literature considers the performance of both machine
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learning methods and dimension reduction techniques as a good addition in the forecasting

of inflation. However, the combination of the two methods is rarely researched. This paper

contributes to the literature by using a big and recent dataset and applying the best performing

machine learning methods to a set of factors created by dimension reduction techniques in the

forecasting procedure. Therefore it combines the strengths of already existing models in creating

a new forecasting model. In addition we compare the predictive ability of these models directly

to forecasting performance of dimension reduction techniques combined with a simpler dynamic

regression.

3 Data

3.1 Data source

The data source used for the estimation of the models is the FRED-MD database. This data

is publicly available and covers macroeconomic variables collected at a monthly frequency in

the U.S. A detailed description of the data can be found in McCracken and Ng (2015). In our

paper data from 1963 until 2020 is used. The dataset contains 134 indicator variables of the U.S.

economy and is updated monthly. The dataset is designed for big data analyses and includes 8

different groups of variables: Output and income, labor market, housing, consumption, money

and credit, interest and exchange rates, prices and stock market. Because not all variables are

consistent over the years we use a subset of 105 monthly variables. A list of all the included

variables can be found in Appendix Section 3.4.

3.2 Data transformations

Stationary data is more convenient for estimation. Therefore we transform some of the variables

in the dataset to cause them to be stationary. The transformations include taking first differ-

ences, logarithms, or first and second differences of logarithms and calculating the percentage

change over one period. The exact data transformations per variable are described in Appendix

Section 3.4. Additionally, the covariates are standardized to have a mean of zero, and a variance

of one. Some variables have missing values for several months. These missing observations are

handled by setting the value of these observations as the previous value of this variable.

3.3 Rolling window

For our estimation, we use data from January 1963 until December 2019. A rolling window is

adopted, the length of the estimation sample stays fixed at 240 observations. The estimation

sample is used for the model estimation and the forecasting of inflation in the hold-out sample,

which ranges until December 2019. We use the first month of our hold-out sample to evaluate

the predictions. One-quarter-ahead predictions are made for the periods ranging from January

2000 until December 2019. We estimate the quarterly-ahead inflation for all months within

this period, while using the latest dataset available at time t. Thus, the model is re-estimated

each month to generate forecasts. The predictions are evaluated and compared with the actual

inflation numbers. The actual inflation numbers of time t+ h are gathered 3 months after time
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t + h. Hence, we make sure that the realized inflation is not subject to revision. Most data

revisions take place in the first months after t (Croushore, 2011), so this leads to the most

realistic outcome.

3.4 Dependent variable

Our dependent variable, inflation, is specified using the Consumer Price Index (CPI) variable

in the dataset. We estimate the h-period inflation rate, which is calculated by taking the

logarithm of the change in CPI in the period ranging from t until t+ h. This variable indicates

the percentage change in price over the h months after t. We subtract the inflation rate between

the period of t − 1 until t from the h-period inflation rate. This method, based on Stock and

Watson (1999), causes the dependent variable to have an I(1) process. Thus, the dependent

variable yt+h is specified as

yt+h = log

(
CPIt+h

CPIt

)
− log

(
CPIt
CPIt−1

)
(1)

In Table 1, the descriptive statistics of the estimated variable yt+h, the h-period ahead

inflation, and CPI are shown for the period from 1980 until 2019. yt+h, the variable we predict,

fluctuates around its mean, which is close to zero. This indicates that yt+h is relatively stationary,

without a constant trend. The inflation rate itself ranges from 0 to 0.10. This is to be expected,

because the inflation rate is normally between 0 and 10 percent. Notably, inflation tends to

be lower in later years. The standard deviation is large, implying that inflation is a volatile

variable. The values of the price level increase over time due to positive inflation. The standard

deviation of CPI over the whole period is larger than the standard deviation in specific periods.

This is because of the larger sample size and the largely significant differences in prices between

1980 and 2019.

Table 1: Descriptive statistics of the dependent variable, the inflation rate and the Consumer
Price Index (CPI)

yt+h Inflation rate CPI

Mean S.D. Mean S.D. Mean S.D.

1980-1984 -3.59 e-03 3.56 e-02 0.061 0.038 95.77 7.46

1985-1989 1.69 e-03 2.72 e-02 0.037 0.020 115.57 6.50

1990-1994 -1.12 e-03 2.16 e-02 0.033 0.015 140.90 6.34

1995-1999 5.91 e-04 1.67 e-02 0.024 0.010 160.68 5.21

2000-2004 -4.43 e-04 3.19 e-02 0.025 0.015 181.34 6.09

2005-2009 -1.80 e-04 6.25 e-02 0.025 0.041 207.80 7.79

2010-2014 -8.74 e-04 2.65 e-02 0.016 0.019 229.15 6.43

2015-2019 1.40 e-03 2.49 e-02 0.018 0.013 246.76 7.28

Overall -6.20 e-04 3.34 e -02 0.030 0.027 172.25 50.98

Note: yt+h = log(CPIt+h/CPIt)− log(CPIt/CPIt−1); Inflation rate = log(CPIt+h/CPIt)
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4 Methodology

The forecasting of inflation is split in two parts. First, we apply dimension reduction techniques

to extract the most important factors in the data. These obtained factors are used as independent

variables in the next step. In this step a dynamic regression model with Bayesian priors is applied

to estimate the model. Additionally, three different machine learning methods (elastic net,

random forest and kernel ridge regression) are employed with the obtained factors as covariates.

The forecasting accuracy of these methods is compared with the forecasting performance of

the dynamic regression methods. We forecast inflation one quarter ahead and use four different

dimension reduction techniques, particularly linear, squared and quadratic principle components

analysis and isometric feature mapping. Additionally, two benchmark models are estimated. In

particular, an AR(12) model and an ARX model, with 5 exogenous variables. These variables

are selected based on the outcomes of the best performing dimension reduction technique. The

variables which are most correlated with the obtained factors belonging to this technique are

chosen as regressors.

Our inflation variable is constructed from the consumer price index (CPI), as specified in

Section 3. We are interested in quarterly ahead forecasting, thus h = 3.

There are 104 different covariates from the FRED-MD database included in each model. Ad-

ditionally, 12 lags of each of these variables are used as additional covariates in the construction

of the factors. Furthermore, the 12 lags of CPI itself are included as additional regressors in

the dynamic regressions and machine learning methods. As mentioned in the Section 3 a rolling

window is applied and the model is re-estimated for each t, to predict inflation at time t + h

using the latest available information.

4.1 Dimension reduction techniques

The dataset of FRED-MD is relatively big, therefore including all variables could cause the

number of regressors (K) to be bigger than the number of observations (T ). This could lead to

overfitting issues. That is why dimension reduction techniques are introduced. The basic idea

of this techniques is to use a function f that transforms regressor matrix X = (x1, ..., xT )
′ to a

lower-dimensional T ×q matrix representation Z = f(X) = (z1, ..., zT )
′. f reaches from linear to

highly non-linear depending on the specific technique. q has to be smaller than K and represents

the number of factors included in the model. The value of q is crucial for the predictive ability

of a model. Therefore we consider different values for q, and retrieve 5, 15 and 30 factors for

each model.

4.1.1 Linear Principal Component Analysis

Linear principal component analysis (PCA) is the simplest dimension reduction technique presen-

ted in this paper. PCA alters the correlated variables into a set of uncorrelated variables, called

factors. These factors explain most of the variance. PCA alters the magnitude of the covariates

with function g : W = g(X) and it alters the sample covariance with function h : k = h(W ′W ).

The relation between the PCs and X is as follows:
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Z = f(X) = g(X)Λ(k) = WΛ(k) (2)

Where Λ(k) the truncatedKxq eigenvector matrix of k. For the linear PC modelW = X and

k = X ′X. Hence, Linear PCA takes the eigenvectors and orders them based on their eigenvalue.

The first principal component has the largest eigenvalue and explains the most variance in the

data. We choose the first q eigenvectors as factors in our model. These factors are consistent

when K and T go to infinity. The downside of this model is that it assumes linearity.

4.1.2 Squared and Quadratic Principle Component Analysis

To overcome the linearity restriction an quadratic link could be applied to function f . This

results in a more flexible structure. Squared and Quadratic PCA are similar to linear PCA.

The difference is in the specification of the functions f and h. Squared PCs are represented

by W = X2 and k = (X2)′(X2). Where X2 denotes the element-wise multiplication of X.

Quadratic PCs are represented by W = (X,X2) and k = W ′W . We construct the factors in a

similar manner as for the linear PCA. Here, the factors are equal to the first q eigenvectors of the

corresponding matrix W . The quadratic transformations in the establishment of W cause strong

movements in the covariates to dominate the effects on the forecasts, while smaller movements

have little effect. This implies that crisis periods with irregular observations have great impact

on the predictions. Squared and quadratic PCAs were the best performing dimension reduction

techniques for one-quarter-ahead forecasts in the paper of Hauzenberger et al. (2023).

4.1.3 Isometric Feature mapping

Isometric Feature mapping (ISOMAP) was introduced by Tenenbaum et al. (2000). ISOMAP

calculates the geodesic distances between data points and uses them to retrieve a small number

of underlying factors. In the first step the geodesic distance between all data points is measured.

Thereafter we identify the nearest neighbours of each datapoint. Then the shortest path dis-

tances between all data points are stored in a dissimilarity matrix D where Dij =
∑

k |xki−xkj |
is the distance between points i and j. Multidimensional Scaling is applied to the matrix. This

method transforms the distances to a lower dimensional space, such that the data points are

preserved as much as possible. We determine the eigenvectors of the centered distance matrix

to get the low dimensional coordinates. The centered distance matrix B is computed as follows:

B = −1

2
HD2H (3)

H = I − 1

n
ιιT (4)

Where I represents the identity matrix and ι is a vector of ones. Because the transformation

used is non-linear, it is possible to identify a non-linear structure with this dimension reduction

technique.
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4.2 Linear model

After applying the dimension reduction techniques the following regression model is estimated:

yt+h = d′tβ + ϵt+h, ϵt+h ∼ N (0, σ2
t+h) (5)

Here, β is a M(= q + p + 1) × 1 vector of parameters, associated with dt, which includes

an intercept, q factors from one of the dimension reduction techniques and p lagged values of

yt. To further optimize and shrink the parameters two different Bayesian priors are adapted,

namely the Horsehoe prior (Carvalho et al., 2010) and the Adaptive Minnesota prior (Chan,

2019). The parameters are assumed to be time-invariant. The process of the Bayesian prior

estimation is discussed in detail in Appendix Section A. σ2
t+h denotes the time varying variance,

which follows the stochastic volatility model developed by Kastner and Frühwirth-Schnatter

(2014). This means log(σ2
t+h) follows a normal distribution:

log(σ2
t+h) ∼ N (µ+ ϕ log σ2

t+h−1, ν
2) (6)

where µ, ϕ and ν are the hyperparameters drawn from the stochastic volatility priors. These

are drawn in each MCMC iteration using the estimated beta from the Minnesota or Horseshoe

prior and the latent values of the parameters and log(σ2
t+h). The posterior distribution of the

parameters is explained in more detail in Appendix Section A.2.1. Forecasts are made based

on the estimated β and σt+h from the previous iteration and saved for the last 8000 MCMC

iterations. The estimation and forecasting of these regression models is performed for each

rolling window.

4.3 Machine learning methods

Additional to the dynamic regression methods, three machine learning methods are evaluated to

examine whether they could improve the predictive ability of the forecasting model even more.

The factors obtained from the dimension reduction techniques are used as independent variables

in estimating these models. In accordance with the other methods, these models are estimated

for each rolling window and each month forecasts are made.

4.3.1 Elastic Net

Elastic Net is a regularization technique introduced by Zou and Hastie (2005). This method

takes the basic form of a linear regression and adds a penalty to the magnitude of the parameters

in the loss function to shrink the parameters towards zero. The elastic net loss function combines

the penalties of the Ridge and Lasso methods. The penalty of Lasso is equal to the absolute value

of the magnitude of coefficients: λ
∑p

j=1 |βj |. This leads to models for which some coefficient

estimates are exactly zero. The penalty of Ridge is equal to λ
∑p

j=1 β
2
j . Coefficients of Ridge

are generally not shrunk to zero. Elastic net minimizes the following loss function

Loss =

n∑
i=1

(yi − ŷi)
2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2
j (7)
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Where λ1 and λ2 are tuning parameters. We tune these parameters in each rolling window

using 5-fold cross validation. The elastic net estimator of β is equal to vector of parameters

that minimizes this loss function. The elastic net model can overcome over-fitting due to the

penalization of the parameters and is a flexible model due to the tuning parameters. However,

this machine learning method is not optimal for capturing non-linear relationships.

4.3.2 Random Forest

The random forest algorithm, introduced by Breiman (2001), constructs multiple decision trees

during training and delivers the mean prediction of the individual trees as forecasts. It handles

classification or regression models. The decision trees splits the data into subsets at each decision

node based on the values of some of the exogenous variables. The specific variables at each

decision node are determined randomly. The training dataset (X,Y ) is used to construct a

function m(x) = E[Y |X = x]. The random forest algorithm uses bagging: It creates multiple

subsets of the training data, which are used to train different decision trees. At each decision node

in the tree a random subset of features is adopted as potential splitting variables. Therefore the

different trees have reduced correlation. Each branch in the tree represents a specific outcome of

the decision at the corresponding note. The forecasts are calculated as the region-specific mean

of yt+h at the node corresponding to the specific data point used to predict yt+h. The forecast

is averaged over all the constructed trees in a specific rolling window. In this paper 500 trees

are constructed for each model estimation, which should be enough to stabilise predictions. The

random forest model is adopted because of its predictive accuracy and flexible structure, where

no assumptions are needed. Moreover, it can capture non-linearities in the dataset.

4.3.3 Kernel Ridge regression

The kernel ridge regression (KRR) extends the regular ridge regression with a non-linear Kernel

function and thus it can capture non-linear relationships in the data. KRR uses the Kernel

trick which was introduced by Boser et al. (1992). The Kernel trick maps the inputs in a higher

dimensional space without computing all the exact outcomes. Instead, the Kernel trick directly

computes the inner product. This makes it possible to map our data in a high dimensional

space, while keeping the computation time small. The kernel trick is represented by the fact

that there exist a reproducing kernel K() such that

Ê(yt+h|Zt) =
t∑

i=1

β̂i⟨ϕ(Zi), ϕ(Zt)⟩ =
t∑

i=1

α̂iK(Zi, Zt) (8)

Kγ(x, x
′) = exp

(
−∥x− x′∥2

2γ2

)
(9)

We use the standard radial basis function (RBF) kernel with tuning parameter γ as function

K(). The loss function of the kernel ridge regression resembles the loss function of the normal
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ridge regression. This function is minimized to obtain the optimal estimates of β

Loss =

n∑
i=1

(yi −
n∑

j=1

βjK(xi, xj))
2 + λ

n∑
i=1

α2
i (10)

γ and λ are tuning parameters. These two parameters are tuned by minimizing the Akaike

information criterion (AIC). For the evaluation of the tuning parameters the forecasting data

set is split into a training and evaluating data set of respectively 80 and 20 percent of the data.

The AIC of the evaluation dataset is calculated for 7 values of γ and λ ranging from 10−3 until

103. We choose γ and λ based on the lowest value of AIC. Then the loss function is minimized

for these values of γ and λ. The forecast obtained for the KRR is as follows:

Ê(yt+h|Zt) = Kγ(Zt, Z)(Kγ(Zt, Z) + λIT )
−1yt (11)

Because of the non-linear kernel function, this method is useful in capturing non-linear relation-

ships in the data and is flexible in the tuning of the parameters.

4.4 Forecasting and testing

4.4.1 Evaluation metrics

To generate forecasts, yt+h is predicted in each rolling window utilizing Xt as a matrix of

regressors. Xt includes the factors extracted from all regressors and their lags obtained at

time t. For the evaluation of point forecasts root mean squared errors (RMSEs) and mean

absolute errors (MAEs) are obtained for each model. Both metrics use the forecast errors of all

rolling windows and measure their magnitude. The RMSEs are more affected by outliers than

the MAEs, because of the squared errors in the function of RMSE. The RMSE and MAE are

calculated as follows over all rolling windows:

RMSE =

√√√√ 1

T

T∑
t=1

(yt+h − ŷt+h)2 (12)

MAE =
1

T

T∑
t=1

|yt+h − ŷt+h| (13)

Where yt+h is the actual value of our dependent variable and ŷt+h is the predicted value

of yt+h using the information available at time t. For the dynamic regressions using Bayesian

optimization the ŷt+h is the expected value of yt+h averaged over all MCMC iterations.

4.4.2 Forecasting performance tests

Additionally, two performance tests are applied: The Diebold-Mariano (DM) test (Diebold and

Mariano, 1994) and the model confidence set (MCS) procedure (Hansen et al., 2011). The

Diebold-Mariano test computes a loss function using the errors of the tested model and the

errors of the benchmark AR(12) model. The test consists of a simple t-test to test the null

hypothesis which is equal to no difference in the forecast errors of the competing models. In this
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paper two different loss functions are employed to test the significance of the particular metrics

(RMSE, MAE). The loss functions and null hypotheses are equal to:

L(eit) = e2it (14)

L(eit) = |eit| (15)

H0 : E(g(eit)) = E(g(e0t)) (16)

Where eit is the forecast error of model i computed at time t and model 0 represents the

AR(12) benchmark model. Equation 14 tests the significance of the difference in the RMSEs of

the tested model and AR(12) benchmark model and Equation 15 determines the significance of

difference in the MAEs.

The model confidence set procedure is a sequence of tests that determines a set of superior

models. Within this set of models the null hypothesis of equal predictive ability (EPA) is not

rejected at a specified confidence level α. This procedure is performed for α = 0.05 and α = 0.1.

li,t is the loss function for model i at time t, this function is equal to the square of the errors as

in Equation 14. dij,t = li,t − lj,t is the loss differential between two models. Thus the EPA null

hypothesis is equal to:

E(dij,t) = 0, ∀i, j (17)

tij =
dij√

V̂ ar
(
dij

) (18)

Where tij represent the t-statistics and dij =
1
m

∑T
t=1 dij,t is equal to the relative sample loss

between the ith and jth model. We perform a block bootstrap procedure with 5000 bootstrap

samples. V̂ ar
(
dij

)
denotes the bootstrap estimate of V ar

(
dij

)
. The test statistic for each

model is equal to:

TR,M = max
i,j∈M

|tij | (19)

The model with the highest test statistic is eliminated from the model confidence set if the

test statistic is significant according to confidence level α. The elimination process is repeated

until all models satisfy the null hypothesis of equal predictive ability at confidence level α.

5 Results

In this section we elaborate on the outcomes of our forecasting models. We used two different

evaluation metrics to compare the forecasting performance of the different models: The mean

absolute error (MAE) and the root mean squared error (RMSE). Lower values of these metrics

relate to better forecasting performances of the corresponding model. Because of the square in

the formula of RMSE, large errors have more influence on this metric and it is more sensitive to

large outliers than the MAE. The values of these metrics are calculated relative to the RMSE
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and MAE of the benchmark AR(12) Minnesota model.

5.1 Root Mean Squared Errors

The results of the relative RMSEs are presented in Table 2. The asterisks represent the signific-

ance of the difference in RMSE between the tested model and the benchmark model according

to the Diebold-Mariano test. The T-statistics and p-values of the Diebold-Mariano test for all

RMSE values are presented in Appendix Section C

5.1.1 The performance of the machine learning methods

None of the machine learning models yield significantly better results than the benchmark model.

On the contrary, the relative RMSEs of these methods are all below zero, which indicates these

methods performed worse than the benchmark model. Especially the random forest method

shows poor forecasting performance. The RMSEs of the random forest method are all signific-

antly higher than the RMSE of the benchmark model. While most of the RMSEs of elastic net

and the kernel ridge regression are not significantly worse than the benchmark AR(12) model,

these models yield undesirable results in terms of predictive accuracy. Therefore, these models

do not improve the linear AR(12) model combined with the Minnesota prior, and none of the

machine learning methods can outperform the benchmark model according to the RMSE.

5.1.2 The performance of dimension reduction techniques

Thereafter we compare the factor-augmented methods estimated with the Bayesian priors. There

is not a lot of significance in the differences of the specific models with the benchmark model.

The RMSE values are the lowest for the squared and quadratic principle component analysis

with five factors for both the Minnesota and Horseshoe prior. Hence, these dimension reduction

techniques generate the most accurate forecasts. This is in line with the results of Hauzenberger

et al. (2023). All other models provide a relative RMSE above one which indicates these models

do not improve the benchmark model. Additionally, the two best performing factor models (the

squared and quadratic PCA with q = 5) are used to create an ARX model with independent

variables, which are most correlated with the obtained factors from squared or quadratic PCA.

These models do not improve the benchmark model according to their higher values of RMSE.

Thus, when we examine the RMSE, the squared and quadratic PCA are considered the best-

performing dimension reduction techniques. However, there is no statistical evidence that these

models have a better predictive accuracy than the AR(12) benchmark model. This lack of

significance could be due to the small sample size or noisy data. Because of this insignificance

we are not able to reject the null hypothesis that the factor-augmented models have equal

predictive ability as the benchmark AR(12) model.

5.2 Mean Absolute Error

The MAEs of the different specifications are presented in Table 5.2.2, where the asterisks repres-

ent their significance. The T-statistics and p-values of the Diebold-Mariano test are presented in
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Table 2: Values of the relative Root Mean Squared Error (RMSE) for all specifications calculated
over an estimation sample from 2000 until 2019

Specification Minnesota Horseshoe Elastic Net Random Forest Kernel Ridge

AR (p) 1.053 0.995’ 1.016 1.196* 1.077

PCA linear (q = 5) 1.044 1.049 1.153 1.212* 1.114

PCA linear (q = 15) 1.031 1.025 1.208 1.214* 1.170*

PCA linear (q = 30) 1.026 1.023 1.179 1.221* 1.227*

PCA squared (q = 5) 0.966 0.925 1.578 1.204* 1.130

PCA squared (q = 15) 1.012 0.990 1.140 1.221* 1.175’

PCA squared (q = 30) 1.033* 1.036 1.264’ 1.231** 1.182’

PCA quadratic (q = 5) 0.980 0.951 1.484 1.209* 1.128

PCA quadratic (q = 15) 1.036 1.036 1.109 1.206* 1.169’

PCA quadratic (q = 30) 1.023 1.066 1.242* 1.225* 1.200’

ISOMAP (q = 5) 1.006 1.007 1.055 1.238* 1.109

ISOMAP (q = 15) 1.008 1.014 1.053 1.246* 1.155’

ISOMAP (q = 30) 1.001 0.994 1.093* 1.219* 1.185*

ARX (PCAs (q = 5)) 1.033 1.046 1.216 1.210* 1.119

ARX (PCAq (q = 5)) 1.028 1.030 1.213 1.213* 1.141

Note: The RMSE is calculated over the whole sample from 2000 until 2019; the first model (AR(p),
Minnesota) is the benchmark model, the rest of the values of RMSE are relative to this model; q is the
number of factors used for estimation; ’: p < 0.01 *: p < 0.05, **: p < 0.001 indicate the statistical
significance for each model relative to the benchmark.

Appendix Section C as well. The collected MAEs confirm most of the conclusions of the RMSE

evaluation.

5.2.1 The performance of the machine learning methods

The machine learning methods, random forest and kernel ridge regression, again provide sig-

nificantly higher values for MAE relative to the benchmark model. Thus, there is statistical

evidence that the two most complex machine learning methods, the kernel ridge regression and

the random forest algorithm can not improve the simple AR(12) model. The MAE values of

elastic net are all above one. Thus, according to the RMSE and MAE there is no additional value

in including the machine learning methods in the factor-augmented model for the forecasting of

inflation. This result contradicts the remarkable performance of machine learning methods in

the literature on forecasting. This could be the result of the way the data is transformed. The

manner in which the data is transformed is crucial for the predictive accuracy of the machine

learning methods. The unexpected results could also be due to the great performance of the dy-

namic regression methods in combination with dimension reduction techniques. Most machine

learning methods handle high-dimensionality in the data and prevent over-fitting by themselves.

Hence, imposing an additional restriction may cause the methods to underperform and reduces

their flexibility.

The differences in MAEs of the machine learning methods and the benchmark model are

more significant than the differences in RMSE, especially for the kernel ridge regression. RMSE
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is more sensitive to outliers. Thus, this confirms that machine learning methods have relatively

better predictive ability during periods of high volatility and uncertainty and are strong in coping

with outliers in the data. This is especially true for the kernel ridge regression. The RMSEs

of this method are only significantly different for some of the dimension reduction techniques,

while the MAEs of this method are significantly different from the benchmark model for all of

the dimension reduction techniques employed.

5.2.2 The performance of dimension reduction techniques

The differences in the MAEs of the dimension reduction techniques are similar to the differences

in RMSE. The only models with smaller MAEs than the benchmark model are the PCA squared

and AR(12) model estimated with the Horseshoe prior. Most of the more complex factor models

have lower relative RMSEs compared to their relative MAEs. This implies that these methods

are an improvement of the simple AR(12) model when there are large outliers or the data is more

volatile. This corresponds with the nature of squared and quadratic PCA to respond heavily to

large outliers. Most of the differences in MAE between the dimension reduction methods and

the benchmark model are not significant. The ARX model is estimated for the same models

(PCA squared and PCA quadratic). These models again do not show statistical significance.

From the values of RMSE and MAE we can not draw a secure conclusion on a superior model.

However, both metrics demonstrate good forecasting performance for the squared and quadratic

PCA with five factors. Thus, the use of these dimension reduction techniques can be beneficial,

certainly in turbulent times.

Table 3: Values of the relative Mean Absolute Error for all specifications calculated over an
estimation sample from 2000 until 2019

Specification Minnesota Horseshoe Elastic Net Random Forest Kernel Ridge

AR (p) 0.710 0.992* 1.020 1.283** 1.176*

PCA linear (q = 5) 1.017 1.019 1.112 1.299** 1.203**

PCA linear (q = 15) 1.017 1.019 1.164’ 1.303** 1.255**

PCA linear (q = 30) 1.009 1.035 1.198* 1.331** 1.334**

PCA squared (q = 5) 1.011 0.992 1.176 1.273** 1.197**

PCA squared (q = 15) 1.018 1.015 1.133 1.306** 1.234**

PCA squared (q = 30) 1.044* 1.046 1.223** 1.324** 1.218**

PCA quadratic (q = 5) 1.016 1.000 1.063 1.302** 1.179*

PCA quadratic (q = 15) 1.069 1.072 1.102 1.297** 1.253**

PCA quadratic (q = 30) 1.033 1.080 1.194* 1.306** 1.254**

ISOMAP (q = 5) 1.008 1.014 1.066* 1.326** 1.194**

ISOMAP (q = 15) 1.004 1.024’ 1.074* 1.309** 1.237**

ISOMAP (q = 30) 1.002 1.013 1.146** 1.305** 1.260**

ARX (PCAs (q = 5)) 1.024 1.028 1.105 1.283** 1.173*

ARX (PCAq (q = 5)) 1.021 1.018 1.110 1.287** 1.198**

Note: The relative MAE is calculated over the estimation sample from 2000 until 2019; the first model
(AR(p), Minnesota) is the benchmark model, the rest of the values of the MAE are calculated relative to
this model; q is the number of factors used for estimation; ’: p < 0.01 *: p < 0.05, **: p < 0.001 indicate
the statistical significance for each model relative to the benchmark.
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5.3 Model Confidence Set

In addition to the Diebold-Mariano test the model confidence set (MCS) procedure is performed.

This method selects the set of the best performing methods. These models conform to the null

hypothesis of equal predictive ability at confidence level α. We calculated the MCS for α = 0.05

and α = 0.1. The MCS for those values is displayed in Table 4. Apart from six kernel ridge

models and the PCA linear model with 30 factors and the AR(12) model with an horseshoe prior

all models we used in our estimation are in both of these model confidence sets. Therefore we

can not choose superior models based on these results. This is consistent with the insignificant

differences in MAE and RMSE between models. However, this gives us more evidence that

the more complex machine learning methods, especially the kernel ridge regression, are under-

performing in this environment. It also does not reject our hypothesis that the PCA squared

and quadratic model are the best performing dimension reduction techniques.

Table 4: Model confidence set for different α
Specification Minnesota Horseshoe Elastic Net Random Forest Kernel Ridge
AR (p) x x x x x x x x x x
PCA linear (q = 5) x x x x x x x x x x
PCA linear (q = 15) x x x x x x x x x x
PCA linear (q = 30) x x - - x x x x x -
PCA squared (q = 5) x x x x x x x x x -
PCA squared (q = 15) x x x x x x x x x x
PCA squared (q = 30) x x x x x x x x x x
PCA quadratic (q = 5) x x x x x x x x x x
PCA quadratic (q = 15) x x x x x x x x - -
PCA quadratic (q = 30) x x x x x x x x x -
ISOMAP (q = 5) x x x x x x x x - -
ISOMAP (q = 15) x x x x x x x x x x
ISOMAP (q = 30) x x x x x x x x x x
ARX (PCAs (q = 5)) x x x x x x x x x x
ARX (PCAq (q = 5)) x x x x x x x x - -
Note: The left x’s display the model confidence set at a confidence level α = 0.05 and the right x’s display
the model confidence set at confidence level α = 0.1

6 Conclusion

In this paper, different combinations of dimension reduction techniques and machine learning

methods were tested in forecasting inflation 3 months ahead using a rolling window framework

from 2000 until 2019 with data from the FRED-MD database. Our main research question was,

”How can machine learning algorithms improve the results of real-time quarterly-ahead inflation

forecasts in combination with dimension reduction techniques?”. We used mean absolute errors

(MAE), root mean squared errors (RMSE), the Diebold-Mariano test and the model confidence

set test (MCS) to compare and evaluate the forecasts and find an answer to this question.

The three machine learning methods (elastic net, random forest and kernel ridge regression)

do not express very accurate forecasting performance. The random forest method and kernel

ridge regression have significantly higher values for the evaluation metrics than the AR(12)

benchmark model. Elastic net does not have many statistically significant differences in per-

formance compared to the benchmark model. However, this method still showed high values
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for RMSE and MAE. Therefore it is preferred to use a dynamic regression with Bayesian priors

after applying dimension reduction techniques. This conclusion contradicts the sentiment of the

literature regarding machine learning methods in forecasting environments. This difference is

probably due to the specific data transformations made. These transformations can alter the

predictive accuracy of the machine learning methods. The specific data transformation imposes

an additional restriction to the model, while most machine learning methods can handle high di-

mensional data without dimension reduction. The differences in squared errors were greater than

those in absolute errors. Thus, machine learning methods were more appropriate in turbulent

times with larger outliers.

The dimension reduction techniques combined with a dynamic regression do not significantly

improve the AR(12) benchmark model, which is in contrast to most of the literature. However,

the squared and quadratic PCA demonstrate the most desirable values for all evaluation metrics.

The insignificance could be due to the choice of the dataset, the particular dimension reduction

methods chosen or the dynamic regression used to estimate the model.

Based on our results, we conclude that machine learning methods can not contribute to

the accuracy of the forecasting of inflation using factors obtained through dimension reduction

techniques. The dimension reduction techniques combined with a dynamic regression create a

model which produces more accurate results. Because these methods are capable of capturing

non-linearity’s in the data and perform well in case of outliers we recommend applying these

methods when forecasting inflation.

For further research, it would be interesting to test these specific dimension reduction tech-

niques on other macro-economic datasets to search for scientific proof that methods as the PCA

squared and PCA quadratic, which performed well in our paper, significantly outperform sim-

pler benchmark models. We concluded that applying machine learning methods after dimension

reduction techniques does not yield better results. However, both methods perform well in pre-

dicting inflation. Therefore dynamically combining both machine learning and factor-augmented

models, as in Hauzenberger et al. (2023), could be interesting to construct a model that is more

robust and does not depend on specific methods and test whether this way of combining models

does improve the predictions. Moreover, the performance of machine learning methods applied

to the higher-dimensional datasets could be examined and compared with the performance of

factor-augmented methods.
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A Technical Appendix

A.1 Bayesian priors structure

For the estimation of the dynamic regression Bayesian priors are implemented. In this paper we

use time-invariant parameters, this means we want to estimate the following regression:

yt+h = d′tβ + ϵt+h, ϵt+h ∼ N(0, σ2
t+h) (20)

where dt is an (M × 1) vector, which consist of the lagged values of yt+h, an intercept and q

different factors. log(σ2
t+h) are stochastic volatility’s. We use two different multivariate Gaussian

priors on β:

β | V ∼ N (0, V ) (21)

The prior mean is set to zero. This is because our dependent variable yt+h is stationairy and

has supposedly a zero mean. V is a M-dimensional diagonal variance-covariance matrix (V =

diag(θ21, ...θ
2
M )). θ21, ...θ

2
M are shrinkage parameters collected from the priors. The two priors

considered are the Horseshoe prior (Carvalho et al., 2010) and the adaptive Minnesota prior

(Chan, 2019).

1. For the Horseshoe prior θ2j,H is calculated as:

θ2j,H = τ2Hζ2j,H (22)

Where τH is a global parameter which pushes the coefficients to 0 (the mean of β) and

ζj,H is a variable-specific (local) scaling, which allows for deviations from zero for specific

variables. This leads to heavy tails in the marginal prior, which is useful for forecasting.

Both shrinkage parameters have a prior structure and are standard half Cauchy distributed

2. We consider the Adaptive Minnesota as in Carvalho et al. (2010). This prior treats the

different type of variables (the intercept, the lags of inflation and the factors) in a different

way. θ2j,M is calculated in a similar manner as for the Horseshoe prior:

θ2j,M = τ2i,Mζ2j,M (23)

where i is the kind of independent variable j and

ζ2j,M =


1
l2

for parameters associated with own lags of inflation (l = 1, ..., p)

σ̂2
π

σ̂2
k

for parameters associated with q factors (k = 1, ..., q)

σ̂2
π for the intercept

(24)

σ̂2
k is the estimated OLS variance of an AR(1) model of the particular variable. Thus, σ̂2

π

is the OLS variance of an AR(1) model on inflation. These local scaling parameters are

constant, while τi,M features a hierarchical prior structure and is standard half-Cauchy
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distributed for i = 1, 2, where i = 1 if j belongs to a lag of inflation, i = 2 if j belongs to a

factor. For the intercept τ3,M = 1.

A.2 Bayesian updating

We use a Markov Chain Monte Carlo (MCMC) algorithm to get the posterior distribution of the

parameters and log-volatility’s and perform forecasts with the coefficients. We sample 10,000

times, updating the parameters within each iteration and saving the forecast error for each

iteration. We set τH = ζj,H = νj = ϕH = 1 as starting values for the Horseshoe prior and

and τi,M = ϕi,M = 1 as starting values for the Minnesota prior. With the starting values for

θ we construct V . We draw β from N (β, V ) with V = (d̃′d̃ + V −1)−1 and β = V (d̃ỹ). ỹ

is a T-dimensional vector with elements yt/σt and d̃ is a T x M matrix with rows d̃t/σt. In

each iteration σt and the elements of V are calculated based on the estimate of β and the prior

parameters. This depends on the specific prior.

The horseshoe prior updates the parameters τ2H , ζ2j,H , νj , ϕH . These parameters follow an

inverse Gamma distribution:

ζ2j,H |βj , τH , ν ∼ InvGamma

(
1, ν−1

j +
βj

2

2τ2H

)
, (25)

τ2H |βj , ζj,H , ϕH ∼ InvGamma

2M + 1

2
, ϕ−1 +

2M∑
j=1

β2
j

2ζ2j,H

 (26)

νj |ζj,H ∼ InvGamma
(
1, 1 + ζ−2

j,H)
)
, (27)

ϕ|τH ∼ InvGamma
(
1, 1 + τ−2

H

)
(28)

The minnesota prior updates the variabels τ1,M , τ2,M , τ3,M , ϕi,M in a similar way.

τ21,M |βj , ζj,M , ϕ1 ∼ InvGamma

p+ 1

2
, ϕ−1

1 +

p∑
j=1

β2
j

2ζ2j,M

 (29)

τ22,M |βj , ζj,M , ϕ2 ∼ InvGamma

M − p+ 1

2
, ϕ−1

2 +
M∑

j=p+1

β2
j

2ζ2j,M

 (30)

ϕi|τi,M ∼ InvGamma
(
1, 1 + τ−2

i,M

)
, for i = 1, 2, 3. (31)

A.2.1 Stochastic volatility

The variance of β is also updated every MCMC and follows a stochastic volatility model.

The stochastic volatilities log (σ2
t+h) are drawn from the algorithm of Kastner and Frühwirth-

Schnatter (2014).

log(σ2
t+h) ∼ N (µ+ φ log(σ2

t+h−1), η) (32)
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where

µ ∼ N (0, 1) (33)

φ+ 1

2
∼ B (25, 5) (34)

η ∼ Γ (0.5, 10) (35)

B Programming code

We used R to implement our methods. Parts of the code of Hauzenberger et al. (2023) were

used. The code first gathers the data from a folder and stores it in a list. Thereafter all functions

and characteristics for each model are specified. For the machine learning functions we used

the randomForest, glmnet and kernlab package from R. Additionally we used the caret

package for cross validation of the parameters of elastic net. In the machine learning functions

we construct the model for an X and y and calculate forecast errors based on the predictions

made with these models.

The dynamic regression estimation is performed through a function which uses X and y.

It first sets up initial values and calculates the hyperparameters which stays constant over all

MCMC iterations. Thereafter the Bayesian priors and stochastic volatility’s are updated 10,000

times in a for loop according to the joint posterior distribution of the parameters. We use the

package stochvol for sampling the stochastic volatilities. The distribution of the Bayesian priors

is implemented by the code itself.

For each specified model a for loop is executed over all the months ranging from January

2000 until December 2019. For all rolling windows the X and y are constructed based on the data

available in the estimation sample and the specific dimension reduction technique, to construct

the factors for ISOMAP, the vegan package is employed. The X and y for the first month of the

hold-out sample are also stored to evaluate the predictions. This data is used to carry out the

dynamic regressions and machine learning functions for each window and retrieve the forecast

errors.

The RMSE, MAE, Diebold-Mariano test and Model Confidence Set are calculated with these

errors using the R packages MCS and forecast.
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C Test statistics and p-values

Table 5: Diebold-Mariano test statistic for all specifications calculated relative to the benchmark
AR(p) model over the complete sample using an absolute loss function

Specification Minnesota Horseshoe Elastic Net Random Forest Kernel Ridge

AR (p) 0.000 (0.000) 2.447* (0.015) -0.783 (0.435) -3.501** (0.001) -2.538* (0.012)

PCA linear (q = 5) -0.549 (0.583) -0.548 (0.584) -1.539 (0.125) -3.460** (0.001) -3.090** (0.002)

PCA linear (q = 15) -0.614 (0.540) -0.687 (0.493) -1.871’ (0.063) -3.553** (0.000) -3.552** (0.000)

PCA linear (q = 30) -0.424 (0.672) -1.524 (0.129) -2.546* (0.012) -4.148** (0.000) -3.932** (0.000)

PCA squared (q = 5) -0.206 (0.837) 0.107 (0.915) -1.002 (0.318) -3.283** (0.001) -2.732** (0.007)

PCA squared (q = 15) -0.359 (0.720) -0.296 (0.767) -1.350 (0.178) -3.901** (0.000) -3.075** (0.002)

PCA squared (q = 30) -2.093’ (0.037) -1.360 (0.175) -2.688** (0.008) -4.084** (0.000) -2.699** (0.007)

PCA quadratic (q = 5) -0.387 (0.699) 0.007 (0.995) -0.325 (0.746) -3.616** (0.000) -2.528* (0.012)

PCA quadratic (q = 15) -1.047 (0.296) -1.013 (0.312) -0.958 (0.339) -3.596** (0.000) -3.472** (0.001)

PCA quadratic (q = 30) -1.050 (0.295) -1.540 (0.125) -2.182* (0.030) -3.791** (0.000) -3.107** (0.002)

ISOMAP (q = 5) -1.038 (0.300) -1.322 (0.187) -2.051* (0.041) -3.754** (0.000) -2.769** (0.006)

ISOMAP (q = 15) -0.405 (0.686) -1.683’ (0.094) -2.565* (0.011) -3.481** (0.001) -3.252** (0.001)

ISOMAP (q = 30) -0.139 (0.890) -0.646 (0.519) -2.957** (0.003) -3.579** (0.000) -3.339** (0.001)

ARX (PCAs (q = 5)) -0.866 (0.387) -0.776 (0.438) -1.241 (0.216) -3.330** (0.001) -2.352* (0.019)

ARX (PCAq (q = 5)) -0.705 (0.481) -0.555 (0.579) -1.292 (0.198) -3.465** (0.001) -2.779** (0.006)

Note: The first number in each column is the test statistic and in between brackets is the corresponding p-value;
The test statistics are calculated over the period 2000-2019; the first model (AR(p), Minnesota) is the benchmark
model; q is the number of factors used for estimation; ’: p ¡ 0.01 *: p ¡ 0.05, **: p ¡ 0.001 indicate the statistical
significance for each model relative to the benchmark.

Table 6: Diebold-Mariano test statistic for all specifications calculated relative to the benchmark
AR(p) model over the complete sample using a squared loss function

Specification Minnesota Horseshoe Elastic Net Random Forest Kernel Ridge

AR (p) 0.000 (0.000) 1.688’ (0.093) -0.877 (0.381) -2.234* (0.026) -0.914 (0.361)

PCA linear (q = 5) -1.389 (0.166) -1.297 (0.196) -1.323 (0.187) -2.164* (0.031) -1.476 (0.141)

PCA linear (q = 15) -1.428 (0.154) -1.296 (0.196) -1.522 (0.129) -2.229* (0.027) -2.031* (0.043)

PCA linear (q = 30) -1.371 (0.172) -1.578 (0.116) -1.642’ (0.102) -2.427** (0.016) -2.283* (0.023)

PCA squared (q = 5) 0.391 (0.696) 0.498 (0.619) -1.021 (0.308) -2.266* (0.024) -1.411 (0.160)

PCA squared (q = 15) -0.282 (0.778) 0.211 (0.833) -0.810 (0.419) -2.548** (0.011) -1.720’ (0.087)

PCA squared (q = 30) -1.980’ (0.049) -0.998 (0.319) -1.918’ (0.056) -2.754** (0.006) -1.701’ (0.090)

PCA quadratic (q = 5) 0.365 (0.715) 0.538 (0.591) -0.754 (0.451) -2.330* (0.021) -1.392 (0.165)

PCA quadratic (q = 15) -0.575 (0.566) -0.553 (0.581) -0.573 (0.567) -2.163* (0.032) -1.747’ (0.082)

PCA quadratic (q = 30) -0.894 (0.372) -1.340 (0.182) -2.001’ (0.047) -2.466** (0.014) -1.891’ (0.060)

ISOMAP (q = 5) -0.893 (0.373) -0.746 (0.457) -1.405 (0.161) -2.491** (0.013) -1.374 (0.171)

ISOMAP (q = 15) -1.150 (0.251) -1.301 (0.194) -2.302* (0.022) -2.416** (0.016) -1.931’ (0.055)

ISOMAP (q = 30) -0.157 (0.875) 0.324 (0.746) -2.245* (0.026) -2.448** (0.015) -2.037* (0.043)

ARX (PCAs (q = 5)) -0.892 (0.373) -0.829 (0.408) -1.056 (0.292) -2.170* (0.031) -1.223 (0.223)

ARX (PCAq (q = 5)) -0.708 (0.480) -0.626 (0.532) -1.045 (0.297) -2.259* (0.025) -1.643’ (0.102)

Note: The first number in each column is the test statistic and in between brackets is the corresponding p-value;
The test statistics are calculated over the period 2000-2019; the first model (AR(p), Minnesota) is the benchmark
model; q is the number of factors used for estimation; ’: p ¡ 0.01 *: p ¡ 0.05, **: p ¡ 0.001 indicate the statistical
significance for each model relative to the benchmark.
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D Data transformations

Table 7: Variables used for estimation

Classification Variable Name Variable Description I(0)

Real activity RPI Real personal income 5

W875RX1 Real personal income ex transfer receipts 5

INDPRO IP Index 5

IPFPNSS IP: Final Products 5

IPFINAL IP: Final Products (Market Group) 5

IPCONGD IP: Consumer Goods 5

IPMAT IP: Materials 5

IPMANSICS IP: Manufacturing (SIC) 5

CUMFNS Capacity Utilization: Manufacturing 2

RETAILx Retail and Food Services Sales 5

AMDMNOx New Orders for Durable goods 5

ANDENOx New Orders for Nondefense Capital goods 5

AMDMUOx Unfilled Orders for Durable goods 5

BUSINVx Total Business Inventories 5

ISRATIOx Total Business: Inventories to Sales Ratio 2

UMCSENTx Consumer Sentiment Index 2

CMRMTSPLx Real Manu. and TradeIndustries Sales 5

Housing HOUST Housing Starts: Total New Privately Owned 4

HOUSTNE Housing Starts, Northeast 4

HOUSTMW Housing Starts, Midwest 4

HOUSTS Housing Starts, South 4

HOUSTW Housing Starts, West 4

PERMIT New Private Housing Permits (SAAR) 4

PERMITNE New Private Housing Permits, Northeast

(SAAR)

4

PERMITMW New Private Housing Permits, Midwest (SAAR) 4

PERMITS New Private Housing Permits, South (SAAR) 4

PERMITW New Private Housing Permits, West (SAAR) 4

Labor market CLF16OV Civilian Labor Force 5

CE16OV Civilian Employment 5

UNRATE Civilian Unemployment Rate 2

UEMPMEAN Average Duration of Unemployment (Weeks) 2

UEMPLT5 Civilians Unemployed : Less Than 5 Weeks 5

UEMP5TO14 Civilians Unemployed for 41760 Weeks 5

UEMP15OV Civilians Unemployed : 15 Weeks & Over 5

UEMP15T26 Civilians Unemployed for 15-26 Weeks 5

UEMP27OV Civilians Unemployed for 27 Weeks and Over 5

CLAIMSx Initial Claims 5
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Table 7: Variables used for estimation

Classification Variable Name Variable Description I(0)

PAYEMS All Employees: Total nonfarm 5

USGOOD All Employees: Goods-Producing Industries 5

CES1021000001 All Employees: Mining and Logging: Mining 5

USCONS All Employees: Construction 5

MANEMP All Employees: Manufacturing 5

DMANEMP All Employees: Durable goods 5

NDMANEMP All Employees: Nondurable goods 5

SRVPRD All Employees: Service-Providing Industries 5

USWTRADE All Employees: Wholesale Trade 5

USTRADE All Employees: Retail Trade 5

USFIRE All Employees: Financial Activities 5

USGOVT All Employees: Government 5

CES0600000007 Avg Weekly Hours: Goods-Producing 1

AWOTMAN Avg Weekly Overtime Hourse: Manufacturing 2

AWHMAN Avg Weekly Hours: Manufacturing 1

CES0600000008 Avg Hourly Earnings: Goods-Producing 6

CES2000000008 Avg Hourly Earnings: Construction 6

CES3000000008 Avg Hourly Earnings: Manufacturing 6

Prices OILPRICEx Crude Oil, , spliced WTI and Cushing 6

PPICMM PPI: Metals and metal products 6

CPIAUCSL CPI : All Items 6

CPIAPPSL CPI : Apparel 6

CPITRNSL CPI : Transportation 6

CPIMEDSL CPI : Medical Care 6

CUSR0000SAC CPI : Commodities 6

CUSR0000SAS CPI : Services 6

CPIULFSL CPI : All Items Less Food 6

CUSR0000SA0L5 CPI : All Items Less Medical Care 6

Money stocks M1SL M1 Money Stock 6

M2SL M2 Money Stock 6

M2REAL Real M2 Money Stock 5

AMBSL St. Louis Adjusted Monetary Base 6

Reserves & loans TOTRESNS Total Reserves of Depository Institutions 6

NONBORRES Reserves of Depository Institutions 7

BUSLOANS Commercial and Industrial Loans 6

REALLN Real Estate Loans at All Commerical Banks 6

NONREVSL Total Nonrevolving Credit 6

CONSPI Nonrevolving consumer credit to Personal In-

come

2

MZMSL MZM Money Stock 6
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Table 7: Variables used for estimation

Classification Variable Name Variable Description I(0)

DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 6

DTCTHFNM Total Consumer Loans and Leases Outstanding 6

INVEST Securities in Bank Credit at All Commercial

Banks

6

CP3Mx 3-Month AA Financial Commercial Paper Rate 2

Interest rates FEDFUNDS Effective Federal Funds Rate 2

TB3MS 3-Month Treasury Bill 2

TB6MS 6-Month Treasury Bill 2

GS1 1-Year Treasury Rate 2

GS5 5-Year Treasury Rate 2

GS10 10-Year Treasury Rate 2

AAA MoodyÕs Seasoned Aaa Corporate Bond Yield 2

BAA MoodyÕs Seasoned Baa Corporate Bond Yield 2

COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 1

TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 1

TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 1

T1YFFM 1-Year Treasury C Minus FEDFUNDS 1

T5YFFM 5-Year Treasury C Minus FEDFUNDS 1

T10YFFM 10-Year Treasury C Minus FEDFUNDS 1

AAAFFM Moody’s Aaa Corporate Bond Minus FED-

FUNDS

1

BAAFFM Moody’s Baa Corporate Bond Minus FED-

FUNDS

1

Stock market TWEXMMTH Trade Weighted U.S. Dollar Index: Major Cur-

rencies

5

EXSZUSx Switzerland / U.S. Foreign Exchange Rate 5

EXJPUSx Japan / U.S. Foreign Exchange Rate 5

EXUSUKx U.S. / UK Foreign Exchange Rate 5

EXCAUSx Canada / U.S. Foreign Exchange Rate 5

S.P.500 S&Ps Common Stock Price Index: Composite 5

S.P..indust S&Ps Common Stock Price Index: Industrials 5

S.P.div.yield S&Ps Composite Common Stock: Dividend

Yield

2

S.P.PE.ratio S&Ps Composite Common Stock: Price-

Earnings Ratio

5

Note: the column I(0) denotes the transformation of each variable to obtain stationairity where

1. No transformation, 2. ∆xt, 4. log(xt), 5. ∆ log(xt), 6. ∆
2 log(xt), 7. ∆(xt/Xt−1 − 1.0)
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