
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis International Bachelor Econometrics and Operations Research

Learning Missingness Mechanisms for Imputation with

Denoising Autoencoders

Henry Karl Bernhard Heppe (597651)

Supervisor: Markus Müller

Second assessor: Maria Grith

Date final version: 28th June 2024

Abstract

Deep learning-based models for missing value imputation can often outperform well-

known statistical imputation methods such as regression-based imputation. Strong results

can be achieved by using Denoising Autoencoders (DAE). These are neural networks that

learn to reconstruct an observation from a corrupted version of itself. They effectively learn

to reverse the corruption process that is artificially applied to the observation. Previous

works use DAE for imputation with a manually specified corruption process. In this study,

we propose the imputeLM imputation method. It is based on the idea of learning a model on

the missingness mechanism itself. This model can then produce corruptions for the training of

the DAE, which are more similar to the missingness patterns that one is imputing. Therefore,

the DAE learns to reverse a closer representation of the missingness mechanism, which results

in a theoretically more accurate imputation. We evaluate this hypothesis across different

missingness scenarios for the MNIST, FashionMNIST and CIFAR10 datasets and find that

incorporating learned missingness in the imputation process can be beneficial for difficult

imputation tasks. Additionally, we also show that conditioning the corruption process on

higher-level representations of the data can help generate more realistic missingness patterns.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



1 Introduction

When working with real-world data, one of the first challenges on the way to a functioning model

is dealing with missing values. In most data collection scenarios, certain variables may not be

observed for the whole sample. This can be due to humans making errors and forgetting to fill in

a value, it can be survey participants dropping out of the survey but it can also arise naturally

from the context. Missing values are not only commonly encountered in tabular data but are

also a problem for image data. Whether the task is repairing a corrupted image, denoising a

bad image or removing an element of the image and doing inpainting on the area, they can all

be cast as missing value imputation problems.

In the statistical literature, the mechanisms that give rise to missing data are grouped into

three categories. Depending on whether the missingness depends on both observed and un-

observed, only observed or no variables at all the mechanisms are classified as Missing Not

at Random (MNAR), Missing at Random (MAR) or Missing Completely at Random (MCAR)

respectively (Little and Rubin, 2019).

A common approach to imputation is to frame the imputation task as a repeated supervised

learning problem where one observed variable is the dependent variable and all others are the

independent variables (Van Buuren and Oudshoorn, 1999). Then, the learned model is used to

impute the missing values of the dependent variable. Since this requires estimating one separate

model per variable, this approach becomes infeasible quickly for high-dimensional data, large

numbers of observations or more complex models. An approach that has gained popularity

in recent years is imputation with deep learning-based generative models (Yoon et al., 2018).

One such model architecture that lends itself naturally to data imputation is the Denoising

Autoencoder (DAE) introduced by Vincent et al. (2008). These are neural networks that are

trained to reconstruct an observation from a corrupted version of itself. Their reconstructive

training enables them to reconstruct missing values just as well (Pereira et al., 2020).

Previous literature on using DAE for imputation has two caveats. Yoon et al. (2018) find that

many of them require complete data with missingness masks also provided to have a learning

task where the ground truth is known. In practice, this is usually not the way the missing value

problem presents itself. The second caveat they find applies if the dataset can be split into

observations that are fully observed and observations that are partially observed. Most DAE-

based models train only on the fully-observed observations with a manually specified corruption

process. This has the disadvantage that it leaves out the information from the latter part of

the dataset completely, i.e. the information about how the observed missingness pattern is

connected with the variables themselves. One can conjecture that including information about

the missingness mechanism in the imputation model might aid imputation performance. Ma

et al. (2020) take a step in that direction in that they distinguish three simple missingness

patterns to which they manually design different imputation mechanisms.

The approach proposed in this study tackles both caveats by taking the idea of adapting

the imputation model to the missingness mechanism further. It leverages the observations that

contain missing values to learn a model on the missingness patterns. This model is then applied

to the completely observed samples as a corruption process to obtain a training set for the

DAE. Since a DAE effectively learns to invert its corruption process (Bengio et al., 2013), it
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implicitly learns to invert the learned missingness mechanism and impute the missing values

well. Being trained on data that is more similar to the actual missing data, this DAE is then

well-suited for the specific imputation task. Due to the learned missingness component, the

model is called imputeLM 1. To make the learning of the missingness more robust against the

missingness itself we propose to condition this learning on a dense data representation without

missingness instead of the actual observations. These representations are obtained from an

Encoder as part of a separate DAE trained on a standard corruption process. On a high level,

the idea of the imputeLM model is that by making use of all the available information and

adjusting the training of a DAE flexibly, it can perform better at imputing. We verify the

imputation performance of the model on the three well-known datasets MNIST (LeCun, 1998),

FashionMNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky and Hinton, 2009) for a range of

simulated missingness scenarios including MAR, MNAR, MCAR and inpainting tasks.

The contributions of this study can be summarized as follows:

1. For missing value imputation, we propose the imputeLM model: a modified Denoising

Autoencoder, for which the corruption process is learned on real missingness.

2. We show how missingness patterns can be learned on partially observed data to generate

similar artificial missing values for fully observed data.

3. We show that conditioning on higher-level representations of the data obtained from a

separate Encoder model can yield better generalization performance for the missingness

generating model.

4. The presented numerical results indicate that our method can outperform comparable

models significantly across multiple scenarios, datasets and missingness levels.

The remainder of this thesis is structured as follows. Section 2 provides an overview over the

preceding literature. Section 3 introduces the missing value theory more thoroughly and defines

the proposed method. In Section 4, we provide empirical results comparing the method to

existing ones, and Section 5 concludes the paper.

2 Literature Review

The foundation for the statistical analysis of missing data mechanisms and subsequent building

of imputation models is laid by Rubin (1976). He derives a set of general weak conditions under

which ignoring the mechanism behind the missing data is acceptable for statistical inference.

From these conditions, a taxonomy of three classes of missingness algorithms has emerged. The

processes are missing completely at random (MCAR), missing at random (MAR) and missing

not at random (MNAR). MCAR entails that the missingness does not depend on any observed

or unobserved variable, while for MAR, it depends on observed variables and for MNAR, it

depends on unobserved and possibly observed variables.

1A Python implementation is provided at https://github.com/henry-heppe/imputation_with_learned_

missingness.
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Little and Rubin (2019) identify four categories of approaches dealing with missing data.

The first is the idea that one simply discards incomplete observations - this is called complete-

case analysis and has the natural advantage that it is easy to implement. They find that its

problem is that it works only for limited amounts of missing data and can lead to severely biased

inference. The second category are weighting procedures. These follow the idea of reweighting

the observed sample to adjust for the effects of the non-observed data points - an approach that

they find mainly applies to survey-based data. The third method are model-based approaches

for which a model of the complete data is specified, and inference is based on this model via

maximum likelihood. Little and Rubin (2019) mention that this approach has the advantage

that it is flexible and makes the underlying assumptions explicit so they can be evaluated. A

fourth category of methods is imputation, where the missing values are replaced by a sensible

estimate. This estimate can be anything from a simple mean to a regression-based or more

complex estimate. To incorporate the uncertainty in the estimate of the missing value, simple

imputation can be extended to multiple imputation, where more than one estimate of the missing

value is drawn from the predictive distribution and then combined into one value.

The method proposed in this study is an imputation method. It is by default a method for

single imputation but has a simple extension to multiple imputation if a generative model is

chosen accordingly.

Within the imputation methods, a common distinction is made between discriminative and

generative models (Yoon et al., 2018). A few well-known discriminative methods are MICE

(Van Buuren and Oudshoorn, 1999), missForest (Stekhoven and Bühlmann, 2012) and softIm-

pute (Mazumder et al., 2010). However, in cases of high-dimensional data, these methods can

become computationally infeasible. In this study, we thus focus on generative models. These

are most often based on deep learning architectures, two subtypes of which we consider here:

Denoising Autoencoders (DAE) and Variational Autoencoders (VAE). Pereira et al. (2020) find

in their survey that these often outperform classical statistical methods on (tabular) data im-

putation tasks. DAE (Vincent et al., 2008) are trained by reconstructing an observation from

a corrupted version of itself which implies that the application to imputation comes naturally.

Bengio et al. (2013) describe how a DAE learns the reverse conditional distribution of its cor-

ruption process. Thus a central element in the construction of these models is the choice of the

corruption mechanism. Commonly considered variants are setting features randomly to zero or

adding Gaussian noise. Ma et al. (2020) use DAE for imputation with a corruption process that

is manually adapted to the missingness patterns. They propose special corruption processes

for univariate and monotone missingness, which are employed after manually identifying such a

mechanism. The approach proposed here relates to their idea of adapting the corruption process.

However, instead of manually identifying and adjusting it, our method tries to learn the optimal

representation of the true missingness mechanism directly.

Variational Autoencoders learn to encode the observation to a latent probability distribution

(Kingma and Welling, 2013) and subsequently reconstruct the observation from a sample of that

distribution. This has the advantage that by manually specifying and varying the parameters

of the latent distribution and then applying the decoder, a controlled generation of new data

points is possible. VAE have enjoyed substantial popularity for imputation in recent years
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(Boquet et al., 2020), (McCoy et al., 2018) and are included here as a benchmark model.

While some of the previous works describe exact models to use for imputation, our method

can be interpreted as a model framework consisting of learning the missingness and then learning

to replace the missingness. This framework can be filled with a wide range of model architectures

fitted to the task at hand.

3 Methodology

In this section, a formal definition of the missing value problem is given. It is followed by an

overview of the imputeLM framework proposed here, after which the artificial neural networks

employed in this study are described.

3.1 Missing Values

3.1.1 Missing Value Theory

We formalize the missing data problem with notation based on Ipsen et al. (2020). We denote

the data matrix X = (x1, ...,xn)
T ∈ X n, assuming that each row is one of n i.i.d realizations of

the random variable x ∈ X where X = X1 × · · · × Xp is our p-dimensional feature space. We

denote the i-th observation for the j-th variable as xij . The set of indices of all observations

consists of two disjoint subsets I = Im∪Io where the former describes the observations for which

at least one variable is not observed. We denote the respective number of observations as nm

and no. If observation i has missing values, we write xi = (xo
i ,x

m
i ) to differentiate the observed

features from the missing ones. To define the missingness process itself, we use the masking

matrix S = (s1, ..., sn)
T ∈ {0, 1}n×p where sij = 1 if xij is observed and 0 if it is missing. In

our notation, we distinguish the underlying true variables x from the observed vector x̃ which

has missing values where sij = 0. The joint probability distribution of the underlying x and s

parameterized with γ and θ is

pγ,θ(x, s) = pγ(x)pθ(s|x). (3.1.1)

Ipsen et al. (2020) then define the three missingness mechanisms in terms of the conditional

distribution of pθ(s|xo,xm). Missing completely at random (MCAR) means that pθ(s|x) = pθ(s),

i.e. the probability of a value missing is independent of any observed or unobserved variables.

In the missing at random (MAR) scenario pθ(s|x) = pθ(s|xo) thus the missingness depends

only on observed variables. For the case of missing not at random (MNAR), it holds that

pθ(s|x) = pθ(s|xo,xm) depending on both observed and unobserved variables.

To facilitate the explanation of how the corruption process in a Denoising Autoencoder ties

in with this inference task later on, we slightly abuse the notation of Ipsen et al. (2020) to

frame the imputation problem in terms of estimating p(x|x̃), i.e. finding the distribution of the

complete data given knowledge of the data with missing values. The possibility of finding a

precise estimate for the underlying data distribution then still depends on our ability to model

the missingness process pθ(s|x) as x̃ depends on s and x.
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3.1.2 Simulating Missingness

To examine the performance of the proposed model, we simulate several missingness-generating

processes on originally complete datasets. The first three are implementations of a general type of

MCAR, MAR and MNAR processes. For the MCAR process, we generate the missingness from

a standard uniform distribution U(0, 1) and then adjust for the specified missingness proportion

per observation. The general MAR and MNAR processes are based on a formulation by Yoon

et al. (2018). Let the probability that observation xij is missing be denoted by pij . For the

MAR process, they define

pij =
pj · n · exp(−Ψ(i, j))∑n

l=1 exp(−Ψ(l, j))
, (3.1.2)

where

Ψ(i, j) =
∑
k<j

(wksikxik + bk(1− sik)) . (3.1.3)

Here, pj is a fixed missingness proportion chosen for variable j and wk, bk, ∀k = 1, . . . , p are

weights and biases sampled from U(0, 1)p once for the whole missingness process. sij is the

missingness indicator as defined above. The missingness mask is then generated for one variable

after the other taking into account the feature values and missingness values of all previous vari-

ables. To generate a mask from the probabilities, sij is sampled from the Bernoulli distribution

B(pij). Visualizations of the missingness mechanisms are included in Section 4.4 and Appendix

A.

Because of the high dimensionality of the datasets used in the experiments in this study,

it is not feasible to specify the missingness proportions pj by hand. Instead, we sample them

from a multivariate normal distribution with mean zero and as covariance matrix the empirical

covariance matrix of the data. To make the matrix positive definite, a fraction of the identity

matrix is added to it. The samples are then passed through a sigmoid function to bring them

into [0, 1] range. With line search on the offset term of the sigmoid function, we control the

amount of missingness introduced by this process. We choose the multivariate normal instead

of, for example, a uniform distribution because it introduces an extra layer of structure depend-

ing on the real data. Using the uniform distribution instead would make this MAR generation

more similar to the MCAR process and, thus, a less interesting task for learning information

from the process. It is worth noting that this way of sampling the missingness proportions also

introduces a small amount of interdependence between the simulated missingness and poten-

tially unobserved variables. This does not diminish the utility of this simulation, though, as it

theoretically only makes the imputation task more difficult and creates a more realistic scenario.

The above formulation from Yoon et al. (2018) can be implemented efficiently by making

use of optimized matrix multiplication. For this, we rewrite the formulation as a column gener-

ation algorithm to reduce the number of duplicate operations. We compute Ψj (a vector with

Ψ(1, j), . . . ,Ψ(n, j) as elements) as

Ψj = diag(A1:j−2S
T
1:j−2) + b1:j−2S

∗T
1:j−2 + diag(Aj−1S

T
j−1) + bj−1S

∗T
j−1). (3.1.4)
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Here, A = XW is a n × p matrix composed of the data matrix X and the weights matrix W ,

which is a diagonal matrix with the weights wj on its diagonal. The matrix subscripts refer

to the subset of columns selected from the respective matrix, i.e. 1 : j − 2 selects the first

j − 2 columns. The operation diag(·) extracts the diagonal elements of a matrix as a column

vector. S is the mask matrix as above and b a row vector of the biases bj . The matrix S∗

is defined as s∗ij = 1 − sij . The complete matrix A only needs to be calculated once in the

beginning. For every j, all components that are subscripted with j − 2 are already known from

beforehand, and all with j − 1 are newly available from the previous iteration. Thus only the

last two matrix multiplications need to be performed when computing the next Ψj . This vector

is then transformed according to Equation 3.1.2 with the exponential applied element-wise. The

derivation of this formulation can be found in Appendix B. Since this process does not guarantee

the resulting pij to be less than one, we clip any values larger than one. Additionally, in practice,

the value of Ψj may accumulate to such large numbers that the denominator becomes zero, and

the probabilities are not a number. In this case, we reset Ψj to zero.

The MNAR process is simulated similarly to MAR (also due to Yoon et al. (2018)). The pij

are defined as in Equation 3.1.2 but depending only on xij through

Ψ(i, j) = wjxij . (3.1.5)

The matrix formulation of this process then simplifies to plugging in columns of A into Equation

3.1.2 one after the other.

In this study, we also consider another type of MNAR scenario which is based on masking

quantiles taken from Muzellec et al. (2020). This mechanism first randomly splits variables in

X into xo and xm based on a prespecified proportion. It will then set the top and bottom q-

quantiles for these variables to be masked such that a specified share of observations is covered.

Because the quantile information is with respect to the variable that is masked, this is an MNAR

mechanism, which we call QMNAR in this study to distinguish it from the MNAR introduced

above.

While these mechanisms can apply to any numerical dataset, we also include two types of

missingness that are more specific to image data and provide an even more explicit structure

to be learned. The first one we refer to as PATCH, which consists of masking one contiguous

patch of the image from left to right. The height of this patch is determined by the level of

missingness, and the vertical position is uniformly random. The second type, PATCHES, are

multiple small quadratic patches (e.g., 5 by 5 pixels) placed randomly on the image, where the

number of patches is determined by the overall missingness level. Placing these processes in

one of the three missingness assumptions is less straightforward since the missingness does not

depend on the value of any of the variables. However, it is a special type of MCAR because the

missingness values depend on each other through the spatial correlation of pixels.

3.2 imputeLM Framework

In this section, we propose the imputeLM model for missing value imputation and elaborate on

the three separate neural networks that this model is made up of in Section 3.3. These three
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neural networks are trained sequentially, but during inference, the actual imputation is only done

using the last model. The complete model consists of a Preprocessing Denoising Autoencoder

(PDAE) of which only the encoder part is used followed by a Missingness Predictor (MP)

model which in turn is followed by another Denoising Autoencoder, which we here refer to as

the Adapted Denoising Autoencoder (ADAE) to distinguish it from the PDAE. Figure 3.2.1

illustrates the training of the ADAE model. A visualization of all training steps can be found

in Appendix C.

Figure 3.2.1: Training setup of the Adapted Denoising Autoencoder, which is used to impute the missing
values. See Appendix C for full model visualization.

We discuss the theory of these models in reverse order with respect to the data flow since,

in this order, the shortcomings of one model justify the existence of the next model.

3.2.1 Adapted Denoising Autoencoder

The fundamental concept of our proposed method is that of an autoencoder. An autoencoder is

a model that consists of an encoder function fδ(x) and a decoder function gω(x) (Vincent et al.,

2008). The encoder defines a deterministic mapping from an input x to a latent representation

z. The decoder defines another mapping from z to a reconstruction of x called x̂. Together the

encoder and decoder form a model that takes as its input some observation x and has as its

target that same input. Thus it does not require pairs of data and labels but is trained in a

self-supervised manner only.

One of the original purposes of autoencoders is to learn useful latent representations of the

input which can be used as inputs to other models. However, in the setup presented until now,

the model has no incentive to learn anything apart from the identify function since the input

and the target are the same.

The Denoising Autoencoder (DAE) introduced by Vincent et al. (2008) solves that problem.

It does so by training the model to reconstruct x from a corrupted version x∗ of itself. Adjusting

their notation slightly, we can define a DAE in terms of the optimization problem minimizing a

loss between the true x and its reconstruction

δ̂, ω̂ = argmin
δ,ω

1

no

∑
i∈Io

L (xi, gω(fδ(x
∗
i )) . (3.2.1)

While this equation applies to any DAE over a general dataset, we specify the dataset of fully-

observed samples here to emphasize which part of the dataset the model of this section is trained

on.

A corruption process used for training a DAE can, for example, be setting a number of the
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elements of x to zero. The model then learns to infer the removed information from the other

variables. This forces it to learn higher-level representations of the data that are invariant to

such small corruptions (Vincent et al., 2008). To the application of missing value imputation,

the original goal of learning representations is not central, but the very learning setup - learning

to fill in missing information in the input data - lends itself naturally.

To formalize the connection between DAE and imputation, we define the corruption process

to be a stochastic mapping x∗ ∼ p(x∗|x). In words, it defines the conditional distribution of

the corrupted input given the real input. When this stochastic mapping is used to generate

pairs (x∗,x) that are used to train a DAE, the DAE effectively learns to reverse this process

(Bengio et al., 2013). This means it estimates the reverse conditional distribution p(x|x∗). To

then optimize the DAE for an imputation task we thus set x∗ = x̃ and train a DAE on a

corruption process p(x̃|x) of which the reversal is the actual imputation process p(x|x̃). The

reversal learning property implies that training the DAE on samples generated by the true

stochastic missingness mechanism would yield a consistent estimator of the true imputation

function p(x|x̃).
If, in this setup, we use one of the common corruption processes, such as setting elements

randomly to zero, one can see that its interpretation as a missingness mechanism would classify

it as MCAR. This is because, for each variable, the decision of whether or not it is corrupted is

independent of all variables in x. Here, the complete corruption process (that is, the conditional

distribution of x̃) is only conditioned on x with respect to the values of the variables that are

not corrupted but not through the mask. We can take this as a theoretical indication that a

vanilla DAE should perform similarly to a DAE trained on the true missingness mechanism

as corruption mechanism only if the missingness mechanism is MCAR and not otherwise (see

Table 4.5.1 for the corresponding experiment). The idea is thus that adapting the corruption

mechanism towards the missingness mechanism could provide better imputation performance.

However, while this theoretical consideration is a step towards a more flexible imputation

model, in practice, the true missingness mechanism p(x̃|x) is unknown. But the partially ob-

served samples x̃i,∀i ∈ Im can be seen as draws from this distribution. We can thus use these

observations to approximate this mapping. It is the core idea of the imputeLM model to specify

a separate model to learn the missingness mechanism and take on the role of the corruption

process for the training of the DAE imputation model. Since the task of learning p(x̃|x) is

equivalent to learning pθ(s|x), we call this model the Missingness Predictor model and define it

in the next section. The ADAE is then adapted in that it is trained on a corruption process that

adapts to the missingness process differentiating it from the DAE explained in Section 3.2.3.

3.2.2 Missingness Predictor Model

The Missingness Predictor (MP) model is trained to approximate the true missingness mechan-

ism pθ(s|x). Since x has potentially unobserved components in general, the closest approxim-

ation based on observable data is to estimate pθ(s|x̃). To learn this, the model takes as input

a partially observed sample x̃i, i ∈ Im and predicts the corresponding missingness mask si.

The goal is to use the trained model to replicate the missingness behavior on the fully observed

samples to have the ADAE imputation model learn the correct imputation function. If we define
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the MP model to be a function hλ(x), we estimate the parameters λ by minimizing a loss as in

λ̂ = argmin
λ

1

nm

∑
i∈Im

L (si, hλ(x̃i)) . (3.2.2)

We can then apply the trained model to the fully-observed xi to generate new artificial

missingness masks si. It is worth noting that x̃i = xi,∀i ∈ Io.
To be able to generate masks, our implementation of hλ(x) contains a sigmoid function as

the last component, which results in outputs in the [0, 1] range. The output for each variable can

thus be interpreted as the probability that that variable is observed. We can compute the loss

between these probabilities and the target mask using the binary cross-entropy loss (see Section

3.3). When generating new masks for the training of the ADAE, we turn the probabilities into

binary masks by sampling from Bernoulli distributions with the probabilities as their respective

parameters. This makes the corruption process an actual stochastic mapping since hλ(x) itself

is a deterministic function.

This missingness learning approach has one limitation similar to any other imputation model

(see also Section 4.2 and Appendix D). We defined previously that x̃ is obtained by applying s to

x = (xo,xm). If we then also make the distinction between observed and unobserved variables

in the realized vector x̃ = (x̃o, x̃m) we can see in which missingness scenarios the approximation

of p(s|xo,xm) by p(s|x̃o, x̃m) is theoretically feasible.

If MCAR is assumed, we know that the missingness mask is independent of all x, and thus,

the observed masks are realizations of p(s). The MP model should then learn to regard its input

x̃ as random noise and shape this noise into the distribution p(s). This can still be a meaningful

learning task because this distribution can diverge substantially from a vanilla DAE’s uniformly

sampled masking noise (e.g. if the missingness is PATCH). If one assumes MCAR, one could

argue that it could be even better to only give the binary mask as input to the MP model, i.e.

turn it into an autoencoder. One could then make it a Variational Autoencoder (Kingma and

Welling, 2013) to generate new instances of a learned estimate of p(s).

However, the approach we propose here is supposed to also work in the case of MAR.

Because, in this case, the underlying missingness generating mechanism is pθ(s|xo), our model

of this process needs to be conditioned on the information in xo as well. We therefore need to

use the partially observed samples x̃ as input. We can then see that in estimating p(s|x̃o, x̃m)

the model in fact estimates the correct underlying conditional because x̃o is by definition equal

to xo and x̃m does not have any effect on s.

Only in the MNAR case, we cannot learn pθ(s|xo,xm) properly since xm contains relevant

information that is not available in x̃m. Still, the idea of this model setup is that it learns as

much as possible about the distribution from the available information. The MP model should

be able to determine the dependence of s on xo through x̃.

At this point, one more problem appears in the definition of the MP model. Since its main

use is to generate new missingness masks for the fully observed samples, but it is trained solely

on the partially-observed samples, we need it to have strong generalization capabilities in the

direction of partially- to fully-observed. However, to be able to pass a partially observed sample

to the MP model as input, the missing values cannot simply be missing. A simple solution to
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this is to replace the missing values with a fixed placeholder value a ∈ R as in Mattei and Frellsen

(2019), such that xij = xij if sij = 1 and xij = a otherwise. Then, however, depending on the

structure of the data, different values of a would convey different amounts of information about

the missingness of a certain xij . For example, for the MNIST dataset (LeCun, 1998) where the

majority of pixels have values close to 0 or 1, replacing missing values with 0.5 would tell the

model to simply look for values of 0.5 when trying to infer what values were missing. While the

MP model might then be able to achieve near-perfect missingness prediction accuracy during

training on the partially-observed samples, this would pose a problem for its generalization

ability to the fully observed examples. Since in the actual MNIST images, there are almost no

values close to 0.5, a model overfitting on this value generates out-of-sample masks that do not

resemble the masks it was trained on. In our theoretical framework, this would mean that in the

MAR case, the model would not learn to discard the variables x̃m but rather learn to identify

them as missing variables based on their replacement value and use that information to predict

their missingness.

A better solution could be to use random noise as a placeholder, i.e. a ∼ U(0, 1). The idea

would then be that the model learns that the values used as replacement are not related to

the values of the other variables and, thus, must be missing. It could then deduce missingness

from the relation of the observed variables. Still, this leaves doubts about the generalizability

of its predictions since the partially-observed samples with noise replacement could still be

substantially different from the fully-observed samples.

What is needed to theoretically ensure generalizability would be to have as the MP model

input a representation of the underlying observation that is (somewhat) invariant to whether

the value of a variable is the true one or a replacement of any kind. Ma et al. (2018) propose

a permutation-invariant encoder based on a Partial VAE to achieve this. In a similar spirit, we

propose to use an Encoder obtained from training another Denoising Autoencoder for this task.

Recalling that a DAE can be trained to learn higher-level representations of the input invariant

to corruptions, such as masking noise, makes it a useful model to be employed in front of the

MP model.

3.2.3 PDAE-Encoder Model

To be able to learn MAR missingness patterns the MP model needs to be conditioned on the

observed information of a sample. All the inputs to the MP model should be vectors of the same

length and cannot have values missing. Thus, we replace the missing values with a placeholder

value. The problem is then that the samples with replacement values are different from the

fully-observed samples impeding the ability of the MP model to generate masks for the latter

while being trained on the former. We, therefore, need to pass the MP model a representation

of the observation that is ideally invariant to whether the observation had missing values or

not. Thus a model is required that can encode both types of observations into a similar dense

representation that does not depend on the missing values. A Denoising Autoencoder is suitable

for this since the corruption process used in its training removes the information of some variables

and replaces them with a placeholder value. Because this DAE will be applied before the MP

model, we refer to it as the Preprocessing DAE (PDAE). For the PDAE to be able to reconstruct

10



the original observation from the corrupted version, its encoder function produces higher-level

representations that are as invariant to this corruption as possible. Because the difference

between partially- and fully-observed samples is mainly in terms of the replacement values, the

encoder function of the PDAE produces such representations that are (ideally) invariant to

whether the observation had missing values or not. When we apply this encoder function to our

partially-observed samples with replacement values, the idea is that they are mapped to dense

representations without missing values, which we can use as input to the MP model.

We make use of this characteristic by training the PDAE model on the fully-observed samples

xi,∀i ∈ Io. We denote its encoder by the function lη(x) and the decoder by mϕ(x). The

corruption process for this DAE model is defined by replacing a prespecified proportion of

randomly selected variables with draws from U(0, 1) (Section 4.5 includes an experiment where

zero is used as a replacement instead). The proportion of corrupted variables is set to be the

proportion of variables that are missing averaged over all observations. Using only the encoder

part of the fully trained PDAE as our PDAE-Encoder model, we can then encode the partially

observed samples x̃i,∀i ∈ Im and obtain a dense representation without missing values which

we can condition the MP model on. To obtain these representations, the corruption process is

not applied.

One remark worth making is that although alleviating the problem of out-of-sample mask

generation slightly with the PDAE-Encoder model, it moves the weak point to another part

of the model, namely the corruption process used to train the PDAE-Encoder. The more

this corruption process diverges from the actual missingness mechanism, the less invariant its

representations are to the missingness and its replacement values. However, if one tries to start

and adapt the corruption process again towards the missingness one creates a circular problem

of learning the missingness but needing representations that are robust to it in the first place.

We, therefore, leave it at this architecture of stacking one PDAE-Encoder with one MP model

and one ADAE.

With this model, we have introduced the three models that comprise the imputeLM model.

In practice, they are trained as follows. We first train the PDAE-Encoder on the fully observed

samples. We then use it to encode the partially-observed samples, on which we train the MP

model. Then we generate new missingness masks conditioned on the encoded fully-observed

samples and apply it to the unencoded fully-observed samples with which we train the ADAE.

Finally, we do the actual imputation by applying the ADAE model to the unencoded partially

observed samples. Appendix E contains a detailed pseudo-code description of the training. In

Appendix F, we describe an alternative model setup for the MP model in terms of a Generative

Adversarial Network (GAN).

Finally, it is worth noting that the general approach of using a DAE for imputation in this

scenario - be it a vanilla DAE or ADAE - relies heavily on the assumption that the observations in

Io are representative enough of the observations in Im to be able to derive meaningful imputation

values from the feature relationships found in the former set of observations.

While the explanation of the imputeLM setup is kept general on purpose, in the next section,

we define the family of functions and their parameterization that we use for each of these models.
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3.3 Fully-connected Neural Networks

In this study, all of the previously mentioned models consist of fully-connected neural network

layers. Such feedforward neural networks are universal function approximators of which the

parameters and composed functions can be arranged conceptually into separate layers of neurons.

In the input layer, each node is passed the value of one variable for each observation. The input

layer is followed by a number of hidden layers with possibly varying numbers of neurons. Each

observation represents a vector that passes through each of these layers and is transformed at

each step until it reaches the output layer, where it has a possibly different shape, and its values

represent the model prediction for the target variables. Each hidden layer has an associated

weight matrix W and bias vector b. What is meant by an observation x passing through such

a layer is that a linear combination of the input vector or the output of the previous layer is

taken, and an activation function s(·) is applied as in

z = s(xWT + b), (3.3.1)

borrowing the notation from Vincent et al. (2008). With the activation function, we introduce

nonlinearity into the model to give it the necessary flexibility. In this study, the ReLU activation

function is used. It is defined as s(x) = max(0, x) and applied element-wise. In this formulation,

each row in W and element in b is thus associated with a single neuron in the respective layer.

This is a fully-connected neural network because, in each layer, every node is connected with

every node of the preceding and following layers. This differentiates it from, e.g., a Convolutional

Neural Network that s where some weights are shared between neurons.

To make the MP model generalize better, we make use of dropout layers between the linear

layers (Srivastava et al., 2014). During training, these set a proportion of randomly selected

activations to zero. This prevents excessive coadaptation of neurons and thus makes the model

overfit less.

The outputs of the last layer - which has an optional activation function - are passed into a

loss function which is minimized during training. For the DAE models (PDAE and ADAE), as

well as to compute the final imputation loss, we use the mean-squared error loss defined as

L(yi, ŷi) =
(
||yi − ŷi||2

)2
,

for the target observation yi and the model prediction ŷi. While the final imputation loss is

naturally only computed on the variables that are missing for each observation, respectively, the

loss function in training the ADAE model is computed on the full set of variables since a more

focused loss calculation turned out to prevent the model from learning well.

Since the MP model predicts mask probabilities, we use a binary cross-entropy loss, as in

L(yi, ŷi) = −yi log ŷi − (1− yi) log(1− ŷi),

where all of the operations are applied element-wise to obtain a vector of loss values for target

yi, which is then summed up to derive the scalar loss.

To train the model, the gradient with respect to the model parameters is backpropagated
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through the network to update every weight a step in the direction that decreases the loss,

with the size of the step being controlled by the learning rate hyperparameter. This gradient

descent is stochastic because it is not executed after calculating the loss on every observation but

rather on a random subsample of observations to achieve faster convergence. A more in-depth

description of neural networks can be found in LeCun et al. (2015).

4 Numerical Results

In this section, we analyze the performance of the proposed model and examine the behavior of

the different model components. For this, we first explain the different choices that were made

for the experiments, followed by the experiments on the full imputeLM model. Then we show

the performance of our implementation of the Denoising Autoencoder architecture. That section

acts as a replication of Vincent et al. (2008), which is the reference paper for this thesis. The

last two subsections take a closer look at the MP model and different aspects of the full model.

4.1 Experimental Setup

For the numerical experiments, we use three commonly available image datasets: CIFAR10

(Krizhevsky and Hinton, 2009), MNIST (LeCun, 1998) and FashionMNIST (Xiao et al., 2017) -

example images can be found in Appendix A. CIFAR10 consists of 60,000 colour images which

are 32x32 pixels. They contain images in ten classes (such as airplane, bird, cat and ship).

For the experiments in this study, we convert the images to greyscale. MNIST contains 70,000

greyscale 28x28 pixels images of handwritten digits. FashionMNIST has the same size and

format but contains images of articles sold on Zalando. For all three datasets, we convert the

integer greyscale values to floats in [0, 1]. Unless specified otherwise, we split each dataset into

fully-observed and partially-observed parts with a 60-40 split and run all experiments with a

missingness level of 20%, i.e. 20% of elements in X missing. For the MAR, MNAR and QMNAR

implementations, the specified levels are approximate since the correct missingness level has to

be obtained via line search. Visual examples of the missingness mechanisms can be found in

Section 4.4 and Appendix A. All results that are listed with a standard deviation come from

a tenfold repetition of the experiments. To compute a validation loss during training for each

model, we randomly split the dataset 80-20 into training and validation sets.

The performance of the imputeLM model is compared with a vanilla DAE model and a

standard Variational Autoencoder (VAE, Kingma and Welling (2013)) as well as simple mean

imputation. The vanilla DAE is trained with zero-masking noise for which the proportion of

affected variables is set to the missingness level of the data. For further information on using

VAE for imputation, we refer the reader to Pereira et al. (2020). Mean imputation is done by

replacing the missing value with the mean value of all the observed instances of each variable,

respectively. Other popular imputation methods such as kNN imputation (Pedregosa et al.,

2011), MICE (Van Buuren and Oudshoorn, 1999) and softImpute (Mazumder et al., 2010) were

also considered as benchmarks but were not able to finish the imputation within the time limit.

For the precise layer dimensions and hyperparameters of all models, we refer the reader to

Appendix G. A description of the code can be found in Appendix H.
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4.2 Analysis of imputeLM Model

In this section, we present the main experiment that showcases the performance of the imputeLM

model compared with three benchmark imputation methods DAE, VAE and Mean imputation.

Table 4.2.1 shows the RMSE on the imputation task of the respective models together with

its standard deviation over the 10 experiment repetitions. We compare the performance for all

six simulated missingness mechanisms at a missingness level of 20%. The dataset used in this

experiment is the MNIST dataset. In Appendix D, results for the other two datasets and a 10%

missingness level are reported.

Table 4.2.1: Imputation RMSE and standard deviation of imputeLM model and benchmark models on
different missingness mechanisms simulated on MNIST dataset for a missingness level of 20%. The lowest
RMSE are highlighted.

RMSE Patch Patches MAR MNAR MCAR QMNAR

imputeLM .269±.0030 .272±.0031 .121±.0147 .123±.0141 .110±.0011 .153±.0038

DAE .282±.0029 .295±.0027 .194±.0352 .211±.0389 .113±.0009 .137±.0031

VAE .337±.0018 .349±.0023 .248±.0362 .263±.0394 .161±.0032 .170±.0047

Mean .404±.0005 .437±.0005 .366±.0279 .373±.0279 .367±.0001 .345±.0026

This experiment shows how the imputeLM model significantly outperforms the other imputa-

tion methods in terms of RMSE across most types of missingness. For the PATCH, PATCHES,

MAR and MNAR scenario, imputeLM shows the lowest RMSE over all three datasets and all

missingness levels that were tested (see Section 4.5 and Appendix D for more). Only in the case

of MCAR and QMNAR is there no clear winner between the imputeLM model and the bench-

mark DAE. This is in line with the theoretical justification of the imputeLM model. Since the

idea of the imputeLM model is to be able to extract information from the missingness process,

we would expect it to outperform for at least PATCH, PATCHES and MAR, as these do not

depend on any unobserved information and provide substantial structure to be learned. For

the MNAR case, the consistent difference in performance is not fully expected as the MNAR

implementation here only directly depends on the missing variable itself, and one could think

that it does not include a dependence on observed variables. However, by sampling the miss-

ingness proportions per variable from a multivariate normal distribution, which is estimated on

the full empirical covariance matrix of the data, the included information about the relationship

between all variables could provide a relevant level of structure that the imputeLM model can

still learn. For QMNAR, one can argue that it is a pure version of MNAR, only depending

on the one unobserved variable itself at a time. The difference in performance for these two

scenarios can then be taken as a hint towards the hypothesis that in a general MNAR case, the

imputeLM can still capture the effect of the observed variables on the missingness but struggles

in the pure case. In other words, as long as the missingness does depend on any observed

variables, the imputeLM will learn that structure and thus perform better, but if there is no

such dependence, it has no advantage. For the MCAR scenario, it could be expected that the

DAE performs better, possibly because its corruption mechanism is already highly similar to

the missingness mechanism, and the additional moving parts in the imputeLM model (PDAE-

Encoder and MP model) would have to be calibrated near-perfectly to match the effectiveness
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of the simple corruption process.

A visualization of the imputation performance of all four models can be found in Figure 4.2.1.

For illustration purposes, it shows imputation where the missingness mechanism is a fixed patch.

It is thus not placed randomly on the vertical axis as in the PATCH mechanism but always in

the same position. This is an easy pattern for the MP model to pick up, resulting in it generating

the exact same patch in the training of the ADAE model. With the corruption process perfectly

matching the missingness, the imputeLM model generates solutions to this inpainting task that

are much more plausible than the other models. The setup of this experiment can be seen as the

(unrealistic) scenario in which the difference between imputeLM and a vanilla DAE is maximized

in terms of the divergence between the deterministic patch and the uniform corruption process.

This scenario is included to show one end of the spectrum of scenarios in which the imputeLM

model should have the largest advantage.

Figure 4.2.1: Examples of the imputation behavior of different models on several samples. The first row
is the ground truth, the second row is with missingness applied, and the other rows show the respective
imputed sample. The noise mechanism that was applied here is a fixed patch covering 30% of the image.

In Table 4.2.2, we evaluate the same models with the same missingness processes as before

but now look at the effect on downstream task performance. For this, we use the classic MNIST

classification task where each handwritten digit needs to be classified as the correct one from 0

to 9. To keep the additional complexity low, we only use a simple multinomial regression model

to do this classification task on top of the imputed and fully observed images.

Table 4.2.2: Evaluation of models on downstream task: digit classification on imputed images. Dis-
plays classification accuracy and standard deviation. Simulated missingness level of 20% for different
missingness mechanisms. The highest accuracies are highlighted. The dataset is MNIST.

Accuracy Patch Patches MAR MNAR MCAR QMNAR

imputeLM .878±.0017 .880±.0014 .915±.0014 .915±.0013 .916±.0006 .907±.0011

DAE .876±.0012 .878±.0016 .907±.0045 .905±.0053 .916±.0004 .912±.0006

VAE .854±.0013 .852±.0013 .876±.0105 .871±.0112 .907±.0006 .892±.0020

Mean .883±.0009 .890±.0007 .900±.0061 .897±.0066 .910±.0007 .903±.0013
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What catches the eye about these results is that the MAR, MNAR, MCAR and QMNAR

results align with the RMSE results, but the other two do not. For PATCH and PATCHES, it is

the mean imputation that yields the best accuracy, while the same is never true for the RMSE.

This also holds for the other datasets and missingness levels. One possible explanation could

be that the more sophisticated imputation models make a stronger guess about the underlying

digit in the imputation. This could lead to situations where if the patch covers the complete

middle part of the digit and multiple inpainting solutions seem plausible to the human eye,

the imputeLM model would make an imputation that matches only one of those closely. The

downstream classification model would then confidently follow the direction indicated by the

imputeLM model and possibly misclassify. The more blurry, unspecific imputation from the

mean imputation does not take a stance as to the concrete underlying data instance whatsoever

so it also is unlikely to misguide the classification model.

4.3 Denoising Autoencoders (Replication)

In this section, we briefly showcase the reconstruction performance of our own Denoising Au-

toencoder implementation. This serves as an approximate replication of the paper by Vincent

et al. (2008), which introduces the Denoising Autoencoder idea and serves as the reference paper

for this thesis. In the left part of Figure 4.3.1, we show example images of the MNIST dataset

together with their corrupted version that we generate for the training of the DAE. The last row

represents the output of the DAE, which is a reconstruction of the first row, only being given

the input of the second row. One can see that the model learns to capture the characteristic

shape of the digits and also replace the masked values accurately.

Figure 4.3.1: Visualization of Denoising Autoencoder reconstructions (left) and first layer weights per
neuron. The dataset is MNIST.

As we mentioned in the theory section of the DAE, its main purpose is usually to extract

meaningful higher-level representations from the input data. Vincent et al. (2008) demonstrate

that their Denoising Autoencoder does that by visualizing a few sets of weights of the hidden

layers. In their study, they find that black dots and edge-like structures in the weights indicate

the model learning meaningful features such as edge- and stroke-detectors. Our implementation

of the DAE shows similar behavior in the first layer weights displayed in the second subfigure

of Figure 4.3.1.

4.4 Missingness Prediction Task

In this section, we examine the MP model itself. In Table 4.4.1, different performance measures

with respect to the generated masks are shown. We show here the results for the FashionMNIST
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dataset (see Appendix D for more). For the fully-observed samples of the dataset, we generate

masks with different simulated missingness mechanisms and compare those masks to the ones

generated by an MP model with a PDAE-Encoder in front (MP) and without a PDAE-Encoder

in front (MPnoEnc) trained on the respective partially-observed samples. The comparison is

in terms of RMSE between the generated and true masks, correlation between the masks and

exact match ratio when regarding the mask generation as a multi-label classification task.

The model with PDAE-Encoder outperforms the one without in all measures and all mech-

anisms except for the RMSE for MNAR and MCAR. Especially for the PATCH scenario the

PDAE-Encoder results in better generated masks. These results can be taken as an indication

that such an Encoder can help substantially but also does not hurt otherwise as it does not

perform worse in all measures for any of the mechanisms. For the correlation, one would not

expect there to be a significant correlation in the MCAR case as the MP model is supposed

to learn to emulate the random uniform distribution, which, if done correctly, would result in

the generated mask being another independent and identically distributed draw from the same

distribution thus implying a correlation of zero.

Table 4.4.1: Evaluation of masks generated by the MP model with and without a PDAE-Encoder in
front. All three performance measures are computed between the MP-generated mask and the mask
generated by the simulated missingness mechanism for the same image. Missingness level is 20%, dataset
is FashionMNIST.

Criterion Model Patch MNAR MCAR

RMSE
MP Enc 0.176 0.359 0.100

MP 0.265 0.353 0.065

Correlation
MP Enc 0.218 0.061 -0.002

MP -0.678 0.056 -0.032

Accuracy
MP Enc 0.625 0.644 0.620

MP 0.560 0.640 0.606

The fact that the correlation is negative for PATCH without a PDAE-Encoder can also be

seen visually in Figure 4.4.1. In this figure, we visualize an example of a simulated missingness

pattern together with the mask generated by the two models. The last three columns show

the same but averaged over all masks, corresponding to an observation in the fully-observed

samples of the FashionMNIST dataset. If we look at the examples of the PATCH scenario,

we see that both models generate a noisy version of what resembles a patch. In the average

case, the simulated patch is found more often vertically in the middle, but the MP models seem

to place their patch preferably at the top or bottom. Especially for the MP model without

PDAE-Encoder, we see that the average image is almost a reversal of the simulated average.

This is a visual confirmation of the negative correlation seen in the previous table. For the MP

model with PDAE-Encoder, more patches seem to be placed in the middle, in line with the

non-negative correlation.

One can imagine an extensive placement of the patches at the top or bottom to be problematic

for the imputation and downstream task performance, especially for MNIST and FashionMNIST.

This is because these images are only black in those areas; therefore, covering these areas as

a corruption process does not pose a meaningful reconstruction task in the training of the
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ADAE model. For the FashionMNIST dataset, this argument is supported by the difference in

performance attributed to the PDAE-Encoder model in Table 4.5.1 keeping in mind that making

use of the PDAE-Encoder seems to generate more patches in the middle.

Figure 4.4.1: Simulated and learned masks for different missingness mechanisms. White pixels are missing,
and black are observed. The first column shows one true mask, the second column the generation of the
MP model, third column the generation of an MP model without PDAE-Encoder in front. The last three
columns show a mask that represents the average over all generated masks for these three models. The
dataset is FashionMNIST.

For the MNAR and MCAR scenarios, we do not have a substantial negative correlation,

and this is also represented in the visualization. One can see that both MP and MPnoEnc

generate masks that adhere to a visually non-random structure in the MNAR case, albeit the

exact structure and missingness level do not perfectly match the simulated mask. In the MCAR

case, the model seems to replicate the completely random nature of the mask well and even

generates a similar missingness level.

When looking at the same visualization but for the other datasets in Appendix D, the effect

of the PDAE-Encoder seems less clear. While it never hurts the accuracy of the generated

masks, it does yield a small negative correlation for CIFAR10, where the model without PDAE-

Encoder gives a positive one. Thus, we cannot say that the theoretical advantage of using the

PDAE-Encoder materializes in practice in general.

However, taking a broader view of these MP model results, one can see that although the

exact pattern generation is imperfect in general, the MP model-generated averages all look sub-

stantially different across the different missingness mechanisms and reasonably close in structure

to the simulated average, admitting the interpretation that the model takes a step in the direc-

tion of learning the missingness. This holds for all three datasets equivalently.

4.5 Further Experiments

To analyze the behavior of the imputeLM model further, we provide four more experiments

in this section. Table 4.5.1 presents the results of the first two. The first three rows compare

the imputation performance of the imputeLM model with a PDAE-Encoder in front, without

a PDAE-Encoder and with a PDAE-Encoder but zero as the replacement value instead of a

uniform random one.

We can see that the model with PDAE-Encoder and uniform random replacement performs

best across all three mechanisms. This is expected due to the analysis of the MP model with
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and without the Encoder. In Section 3.2.3, we argued how a uniform replacement should be

better than a fixed value, which is supported by these data.

Table 4.5.1: Imputation RMSE results of the following experiments: The first row is a regular imputeLM
model with uniform random replacement for the MP model. The second row is the same model but
without PDAE-Encoder. The third row is a complete imputeLM model but with zero replacement for the
MP model. The last two rows compare how much a vanilla DAE can improve by using the true underlying
missingness mechanism as a corruption process. Missingness level is 20%, dataset is FashionMNIST.

RMSE Patch MNAR MCAR

imputeLM .267±.006 .128±.019 .116±.001

imputeLM no Enc .297±.007 .144±.023 .132±.001

imputeLM zero .314±.007 .147±.034 .116±.001

DAE .382±.008 .252±.088 .110±.002

DAE true .149±.001 .237±.056 .112±.002

The second experiment in this table (last two rows) evaluates one of the core hypotheses

of this imputation approach: The hypothesis that the imputation model can perform better if

trained on the right missingness mechanism as its corruption process. We compare the vanilla

DAE with a DAE that is trained on the true simulated missingness mechanism. While this

mechanism is unknown in practice, we can use it here to establish an upper bound on how well

we can do if the MP model were to generate perfectly similar masks. We can see that for PATCH

and MNAR, the knowledge of the true mechanism results in a significant increase in imputation

performance, while this is not the case for MCAR.

Finally, we provide a sensitivity analysis of our results with respect to the missingness level

and the size of the partially-observed dataset in relation to the fully-observed set in Figure

4.5.1. We can see that the imputeLM model outperforms the other approaches across various

parameter choices for the FashionMNIST MNAR scenario.

Figure 4.5.1: Imputation RMSE for varying missing rates and proportion of incomplete observations. In
(a) the proportion of incomplete observations is 0.4 and in (b) the missing rate is 0.2. VAE was excluded
due to inferior performance in the main results. The dataset is FashionMNIST and the missingness
mechanism is MNAR.

5 Conclusion

In this paper, we propose a new imputation model that modifies the well-known Denoising

Autoencoder model. The question of how to deal with missing values is encountered frequently

by anyone dealing with real-world datasets. Especially for high dimensional datasets it is not

a possibility to discard all incomplete samples, thus the missing values need to be imputed
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with reasonable values. Common challenges for previous imputation methods are that many

of them estimate one supervised learning model per variable, which makes them unsuitable

for high-dimensional cases such as image datasets. This disqualifies them from a large array

of image-related reconstruction tasks that can also be tackled in the imputation framework.

Many deep learning-based imputation methods - such as using a standard DAE or Variational

Autoencoder for imputation - have the problem that they either suffer from an unrealistic data

scenario, relying on data not available in practice or they train only on the fully-observed portion

of observations (Yoon et al., 2018). This leaves out valuable information that one can gain from

the missingness itself.

The approach taken in this study solves these problems. It applies just as well to high-

dimensional datasets as to regular tabular datasets and is based on a realistic dataset scenario.

We propose the imputeLM method, which adapts a Denoising Autoencoder model, training it

on a learned model of the missingness mechanism. In this way, it takes into account all available

information and provides for a more flexible imputation model.

We demonstrate the performance of the new model on three image datasets for several miss-

ingness configurations and present an analysis as to which part of the model acts in which way.

The model performs better than the benchmark models consistently for all levels of missingness

and dataset configurations for all but the MCAR and QMNAR scenarios. We show that the

MP component of the imputeLM model can learn different missingness scenarios and that using

an additional Encoder in front of the MP model can help it generate better masks.

The approach presented here has several limitations. Training three separate models and

chaining them together makes the imputation task a more complicated endeavor that is less

stable than simpler imputation models. For optimal performance, one would need to tune each

hyperparameter of the three models, which would require a considerable investment of resources.

However, the fact that in this study - where the models were not tuned extensively - performance

increases could already be observed indicates that for situations in which a proper imputation is

crucial, and the missingness shows a substantial amount of structure, using the more thorough

approach presented here could pay off. Another limitation is that the experiments of this study

are limited to datasets of small images.

For further research, one could easily extend this approach to other datasets and datatypes.

Since the interaction between learning missingness patterns and using them for imputation makes

for a conceptual framework that can be filled with a neural network of choice, one could explore

different architectural choices, such as Convolutional Neural Networks or Residual Networks for

different applications. An interesting direction could also be to use a Generative Adversarial

Network (GAN) as a missingness predictor model. While a proper discussion of this variant is

out of scope for this study, first results showed promising performance increases over the regular

model - at the cost of GANs being more unstable and difficult to train. Another possibility

is to use this framework for multiple imputation. One can also extend this research by using

the model to perform Sequential Active Information Acquisition (SAIA) as in Ma et al. (2018).

Finally, it could be of interest to explore the connection between learning missingness and the

idea of learning generated noise and removing it as in diffusion models.
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datasets in Figure A.1.

23

https://github.com/pytorch/vision
https://github.com/pytorch/vision


Figure A.1: MNIST, FashionMNIST and CIFAR10 examples.

Figure A.2 shows some examples of the PATCHES and QMNAR missingness mechanisms

applied to CIFAR10. PATCH, MNAR and MCAR are also shown in Figure 4.4.1. Visually the

MAR missingness is comparable to MNAR.

Figure A.2: Missingness examples.

B Derivation Missingness Simulation

In this section, we show the equivalence between our formulation of the MAR and MNAR

processes and those taken from Yoon et al. (2018). We denote the probability that observation

xij is missing with the shorthand pij . For the MAR process, this is defined as

pij =
pj · n · exp(−Ψ(i, j))∑n

l=1 exp(−Ψ(l, j))
, (B.0.1)

where

Ψ(i, j) =
∑
k<j

(wksikxik + bk(1− sik)) . (B.0.2)

We first rewrite Ψ(i, j) in matrix notation. For this, we define the vector Ψj which has as

elements Ψ(i, j),∀i ∈ I, i.e. the scores corresponding to the variable j across all observations.
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We can write it as

Ψj = diag



x1,1 x1,2 . . . x1,j−1

x2,1 x2,2 . . . x2,j−1

...
...

. . .
...

xn,1 xn,2 . . . xn,j−1



w1 0 . . . 0

0 w2 . . . 0
...

...
. . .

...

0 0 . . . wj−1



s1,1 s1,2 . . . s1,j−1

s2,1 s2,2 . . . s2,j−1

...
...

. . .
...

sn,1 sn,2 . . . sn,j−1


T


+
[
b1 b2 . . . bj−1

]

1− s1,1 1− s1,2 . . . 1− s1,j−1

1− s2,1 1− s2,2 . . . 1− s2,j−1

...
...

. . .
...

1− sn,1 1− sn,2 . . . 1− sn,j−1


T

.

We denote the matrices as X,W,S,b and S∗ in order of appearance in the previous equation.

We can then write the equation in terms of submatrices new and old. Old refers to all columns

1, . . . , j − 2, and new denotes the column j − 1. The submatrices can then be written as a

separate summation of old and new parts as in

Ψj = diag

([
Xold Xnew

] [Wold O

O Wnew

] [
Sold Snew

]T)
+
[
bold bnew

] [
S∗
old S∗

new

]T

= diag

([
XoldWold XnewWnew

] [ ST
old

ST
new

])
+ boldS

∗T
old + bnewS

∗T
new

= diag
(
XoldWoldS

T
old +XnewWnewS

T
new

)
+ boldS

∗T
old + bnewS

∗T
new

= diag
(
XoldWoldS

T
old

)
+ boldS

∗T
old + diag

(
XnewWnewS

T
new

)
+ bnewS

∗T
new.

Then defining A = XW with the same column subsets as before, we obtain

Ψj = diag(A1:j−2S
T
1:j−2) + b1:j−2S

∗T
1:j−2 + diag(Aj−1S

T
j−1) + bj−1S

∗T
j−1), (B.0.3)

which is the formulation introduced above and used for the implementation.

One difference to note is that Yoon et al. (2018) define pj as the average missing rate of the

j-th variable but pij as the probability that xij is not missing. To make it more consistent, we

interpret pij as the probability that xij is missing. This should not make much of a difference,

especially since the exact parameters of the sigmoid, which determine the missingness level, are

chosen via line search. Regarding the efficiency of this computation, it is worth noting that with

the matrices inside the diag(·) operation, we still calculate several unnecessary values that are

simply discarded by extracting only the diagonal. However, in practice, this formulation is still
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quicker than a for-loop implementation.

For the MNAR process, the computation boils down to finding A and using one column after

another.

C Model Visualization

In this section, we provide a full illustration of the sequential training process of the imputeLM

model. In the illustration, a dataset is shown in which the first two observations are fully

observed, and the last two observations have one missing value each. For each part of the

imputeLM model, we show the training setup followed by the actual imputation in Figures

C.1-4. Some of the design choices are inspired by the model visualization in Yoon et al. (2018).

Figure C.1: Training setup of the PDAE-Encoder model.

Figure C.2: Training setup of the Missingness Predictor (MP) model.

Figure C.3: Training setup of the Adapted Denoising Autoencoder (ADAE), which is used to impute the
missing values.

Figure C.4: Demonstration of imputation task.
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D Additional Results

Table D.1: RMSE for all datasets. Missingness levels are listed as percentages in the header.

RMSE Patch (10%) Patch (20%) Patches (10%) Patches (20%) MAR (10%) MAR (20%) MNAR(10%) MNAR (20%) MCAR (10%) MCAR (20%) QMNAR(10%) QMNAR(20%)

M
N
IS
T

imputeLM .231±.0016 .269±.0030 .268±.0023 .272±.0031 .127±.0153 .121±.0147 .129±.0147 .123±.0141 .107±.0014 .110±.0011 .144±.0083 .153±.0038

DAE .270±.0019 .282±.0029 .315±.0025 .295±.0027 .242±.0406 .194±.0352 .257±.0438 .211±.0389 .130±.0019 .113±.0009 .145±.0071 .137±.0031

VAE .299±.0028 .337±.0018 .343±.0030 .349±.0023 .262±.0437 .248±.0362 .278±.0479 .263±.0394 .133±.0032 .161±.0032 .144±.0106 .170±.0047

Mean .386±.0006 .404±.0005 .439±.0007 .437±.0005 .405±.0339 .366±.0279 .413±.0328 .373±.0279 .367±.0003 .367±.0001 .353±.0133 .345±.0026

F
M
N
IS
T

imputeLM .192±.0038 .227±.0031 .191±.0027 .199±.0055 .122±.0139 .127±.0167 .122±.0154 .128±.0194 .111±.0011 .116±.0010 .162±.0069 .220±.0063

DAE .268±.0051 .308±.0059 .236±.0061 .223±.0058 .238±.0759 .228±.0783 .257±.0843 .252±.0884 .115±.0041 .110±.0016 .151±.0063 .188±.0056

VAE .267±.0153 .360±.0108 .251±.0164 .286±.0142 .247±.0732 .268±.0741 .264±.0818 .286±.0810 .135±.0042 .169±.0048 .169±.0074 .226±.0038

Mean .426±.0004 .429±.0005 .452±.0005 .452±.0004 .415±.0291 .406±.0264 .418±.0291 .407±.0264 .416±.0002 .416±.0001 .417±.0085 .425±.0043

C
IF
A
R
10

imputeLM .197±.0027 .219±.0043 .183±.0009 .186±.0021 .131±.0109 .138±.0094 .134±.0155 .149±.0203 .112±.0009 .118±.0019 .223±.0073 .314±.0063

DAE .263±.0133 .336±.0084 .209±.0098 .200±.0047 .248±.0539 .261±.0482 .267±.0622 .289±.0571 .101±.0036 .107±.0018 .196±.0067 .268±.0054

VAE .293±.0064 .380±.0051 .240±.0069 .266±.0065 .245±.0448 .283±.0443 .258±.0505 .300±.0485 .124±.0090 .160±.0103 .216±.0161 .313±.0068

Mean .333±.0006 .331±.0006 .330±.0006 .330±.0002 .335±.0058 .335±.0049 .335±.0059 .335±.0050 .336±.0001 .336±.0001 .418±.0010 .419±.0006

Table D.2: Classification accuracy for all datasets. Missingness levels are listed as percentages in the
header.

Accuracy Patch (10%) Patch (20%) Patches (10%) Patches (20%) MAR (10%) MAR (20%) MNAR(10%) MNAR (20%) MCAR (10%) MCAR (20%) QMNAR(10%) QMNAR(20%)

M
N
IS
T

imputeLM .900±.0014 .878±.0017 .896±.0013 .880±.0014 .916±.0011 .915±.0014 .916±.0010 .915±.0013 .916±.0005 .916±.0006 .911±.0010 .907±.0011

DAE .897±.0007 .876±.0012 .892±.0010 .878±.0016 .907±.0039 .907±.0045 .906±.0045 .905±.0053 .916±.0009 .916±.0004 .913±.0007 .912±.0006

VAE .885±.0012 .854±.0013 .878±.0015 .852±.0013 .885±.0086 .876±.0105 .882±.0098 .871±.0112 .912±.0006 .907±.0006 .907±.0014 .892±.0020

Mean .905±.0006 .883±.0009 .903±.0010 .890±.0007 .905±.0043 .900±.0061 .903±.0049 .897±.0066 .914±.0007 .910±.0007 .911±.0009 .903±.0013

F
M
N
IS
T

imputeLM .796±.0022 .784±.0021 .796±.0015 .789±.0020 .835±.0031 .832±.0054 .835±.0040 .831±.0072 .838±.0019 .836±.0015 .834±.0012 .825±.0018

DAE .822±.0015 .808±.0015 .820±.0015 .812±.0019 .831±.0079 .828±.0098 .830±.0102 .825±.0126 .840±.0018 .839±.0022 .838±.0026 .832±.0021

VAE .807±.0014 .788±.0017 .804±.0021 .792±.0019 .804±.0105 .795±.0140 .801±.0128 .791±.0191 .833±.0015 .828±.0013 .831±.0016 .804±.0025

Mean .835±.0011 .824±.0015 .832±.0010 .824±.0014 .831±.0060 .826±.0079 .830±.0072 .825±.0093 .838±.0020 .835±.0019 .836±.0015 .829±.0015

C
IF
A
R
10

imputeLM .244±.0061 .240±.0066 .251±.0063 .244±.0064 .279±.0053 .277±.0049 .278±.0054 .274±.0053 .282±.0089 .280±.0085 .282±.0058 .264±.0064

DAE .258±.0062 .241±.0070 .265±.0054 .257±.0052 .281±.0077 .278±.0077 .280±.0076 .275±.0076 .285±.0075 .284±.0074 .285±.0067 .269±.0070

VAE .259±.0067 .246±.0064 .266±.0058 .257±.0063 .273±.0076 .266±.0094 .271±.0085 .264±.0101 .285±.0061 .284±.0057 .284±.0074 .260±.0053

Mean .284±.0053 .278±.0054 .284±.0059 .281±.0052 .283±.0073 .281±.0082 .283±.0075 .281±.0076 .287±.0055 .285±.0054 .288±.0053 .281±.0077

Table D.3: Evaluation of masks generated by the MP model with and without a PDAE-Encoder in front.
All three performance measures are computed between the MP-generated mask and the mask generated
by the simulated missingness mechanism for the same image. The missingness level is 20%.

Criterion Model Patch MNAR MCAR Patch MNAR MCAR Patch MNAR MCAR

RMSE
MP Enc

M
N
IS
T

0.237 0.308 0.100

F
M
N
IS
T

0.176 0.359 0.100

C
IF
A
R
10

0.178 0.362 0.101

MP 0.291 0.306 0.091 0.265 0.353 0.065 0.143 0.366 0.077

Correlation
MP Enc -0.416 0.092 0.005 0.218 0.061 -0.002 -0.114 0.114 -0.003

MP -0.792 0.092 -0.031 -0.678 0.056 -0.032 0.210 0.109 0.037

Accuracy
MP Enc 0.591 0.652 0.620 0.625 0.644 0.620 0.613 0.656 0.620

MP 0.546 0.649 0.616 0.560 0.640 0.606 0.588 0.657 0.611
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Figure D.1: Simulated and learned masks for different missingness mechanisms. White pixels are missing,
and black are observed. The first column shows one true mask, the second column the generation of the
MP model, third column the generation of an MP model without a PDAE-Encoder in front. The last
three columns show a mask that represents the average over all generated masks for these three models.
The datasets are MNIST (left) and CIFAR10.

E imputeLM Pseudo Code

This section gives a detailed description of how to train and use the imputeLM model. Algorithm

1 contains the pseudo-code the notation of which is inspired by Yoon et al. (2018).

For the model setup and training, it is worth noting that in this model chain, one has to

pay close attention to which observations are used at which point and in which form (encoded

or with replacement values) and with matching replacement values for training and inference.

For example, the ADAE model is trained with the mask applied as zero-masking noise (see

above), so the partially observed samples used for inference with the ADAE model should have

the missing values replaced with zero, while the same observations used for the training of the

MP model should have the missing values replaced in the same way as the PDAE-Encoder was

trained on (which in this study is uniform replacement).
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Algorithm 1 imputeLM Training and Imputation

1: Choose batch sizes kE , kMP , kADAE

2: Choose number of epochs rE , rMP , rADAE

3: (1) Train PDAE-Encoder lη(x)

4: Choose corruption proportion p

5: for iterations ≤ rE do

6: while not all observations in Io have been seen do

7: Draw kE samples from dataset {xi}i∈Io
8: for i = 1, . . . , kE do

9: Corrupt sample by setting a proportion p of variables to iid draws from U(0, 1) to

obtain x∗
i

10: x̂i ← mϕ(lη(x
∗
i ))

11: end for

12: Update ϕ, η using Stochastic Gradient Descent on ∇ϕ,η −
∑kE

i=1 L(xi, x̂i)

13: end while

14: end for

15: (2) Train MP model hλ(z)

16: for iterations ≤ rMP do

17: while not all observations in Im have been seen do

18: Draw kMP samples from dataset {x̃i}i∈Im
19: for i = 1, . . . , kMP do

20: Encode sample: zi ← lη(x̃i)

21: Predict mask: ŝi ← hλ(zi)

22: end for

23: Update λ using Stochastic Gradient Descent on ∇λ −
∑kMP

i=1 L(si, ŝi)
24: end while

25: end for

26: (3) Train ADAE model gω(fδ(x))

27: for iterations ≤ rADAE do

28: while not all observations in Io have been seen do

29: Draw kADAE samples from dataset {xi}i∈Io
30: for i = 1, . . . , kADAE do

31: Generate mask from encoded sample: ŝi ← hλ(lη(xi))

32: Use mask to corrupt sample: x̃i ← ŝi ⊙ xi

33: Reconstruct sample: x̂i ← gω(fδ(x̃i))

34: end for

35: Update ω, δ using Stochastic Gradient Descent on ∇ω,δ −
∑kADAE

i=1 L(xi, x̂i)

36: end while

37: end for

38: (4) Impute missing values

39: for all i ∈ Im do

40: Reconstruct x̂i ← gω(fδ(x̃i))

41: Replace xij by x̂ij , for all i, j s.t. sij = 0

42: end for
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F GAN as MP Model

Replacing the generic MP model with a Generative Adversarial Network (GAN, (Goodfellow

et al., 2014)) model to produce realistic missingness patterns could increase the overall perform-

ance of the imputeLM model additionally. Preliminary experiments showed promising results

in visual inspection of the masks that a GAN can produce. However, these experiments are not

followed up on or included in this study due to time and space constraints paired with the com-

plexity of tuning a GAN. In this section, we briefly describe one possible approach to training

a GAN in this context.

In general, a GAN consists of two models that are trained adversarially. A generator model

(G) generates samples that are as realistic as possible in the context of a dataset of true samples.

A discriminator model (D) is a classification model with the aim of distinguishing the generated

samples of G from the set of real samples. The idea is that G can trick D the best when the

generated samples are the most realistic, and D can classify the most accurately if it recognizes

even minor differences. In this interplay, G can learn to generate highly realistic samples.

In our case, G needs to generate (binary) missingness masks and the discriminator tries to

distinguish them from the actual missingness masks found in the partially-observed dataset. To

mimic an MCAR process, it would then be theoretically sufficient to provide G pure noise as

the input and let it generate arbitrary masks. Similarly, the discriminator only receives the

pure mask as input. However, then the generator could not learn to extract the information

that is given in MAR and MNAR processes as it does not see the observed variables and thus

cannot learn to infer missingness from their interplay. We should, therefore, condition both the

generator and the discriminator on the actual observation.

A simple way to do this would be to concatenate the observation vector to the noise vector in

the input of the generator. The generated mask could also be concatenated to the full observation

for the input of the discriminator. However, at this point, a similar problem as for the regular

MP model appears, which is that of recognizing replacement values. Because we also need to

pass the partially-observed samples as conditioning information to the discriminator (together

with the corresponding mask), the discriminator will likely not learn to distinguish real masks

from generated masks based on the realism of the mask, but rather it would learn to recognize

whether an observation is fully observed or has missing values (replaced with some value or

noise). We thus need to encode the conditioning value in a way that ideally does not give the

discriminator the information about the missingness. We propose two ways to do this.

A first possibility is not to concatenate the conditioning information to the mask and instead

use the mask to corrupt the actual observation. The discriminator would then only see corrupted

observations - be they corrupted by reality or by the generator. This could provide a more

accurate learning signal for G since D would likely be able to spot unrealistic masks irrespective

of the underlying information. However, in practice, this did not converge to realistic masks.

What could be observed is that the generator would initially learn accurate masks but eventually

begin to cover the whole image. One possible interpretation of this could be that a sufficiently

strong discriminator seems to learn to distinguish which observations are fully observed vs.

partially observed based on the (corrupted) conditioning information. Instead of evaluating the

interplay of mask and observation, it would remember which observations are real. In response
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to that, G learns to corrupt the observation so much that D cannot recognize it anymore. This

results in generated masks that remove almost all information from the observation instead of

being similar to the observed missingness. It is possible that with a more granular tuning of

the parameters and relative strength of both models, a balance could be achieved where this

collapse does not happen.

The second possibility to avoid the problem of replacement values is to use a PDAE-Encoder

approach similar to what is done in the regular imputeLM model. If you learn a model to encode

similar fully-observed and partially-observed samples to a similar latent representation, such a

missingness-robust encoding could provide a useful set of conditioning information. One could

then concatenate the encoded version of the reference observation to the noise for G and to the

generated/real mask for D, based on the idea that the encoding is sufficiently abstract such that

the discriminator neither recognizes the missingness in it nor recognizes the specific observation.

It would then require careful tuning of the size of the latent dimension since a large size might

not be robust enough, but a small size could lose a substantial amount of information about the

variables, which would then impede G and D from learning the MAR and MNAR information.

G Hyperparameters and Neural Network Architecture

The total runtime of the experiments for which the results are listed in this study is approx-

imately 55 hours on a notebook GPU. Therefore additional hyperparameter optimization and

more experiments were not feasible.

All of the choices for the neural network architecture are a combination of empirical ex-

ploration of different options and taking the results of similar works as a guide - Pereira et al.

(2020) give an overview of common practices. All models except the VAE use ReLU activa-

tion functions. The VAE uses a Leaky ReLU function with a negative slope of 0.0001. The

PDAE-Encoder model has two hidden layers with 2000 and 700 neurons, respectively. It is

trained with uniform-replacement noise randomly applied to a proportion of the features, which

is determined by the missingness level in the data. The MP model has three hidden layers of

2000 neurons each. After each hidden layer, there is a dropout layer with a dropout probability

of 0.5 to aid generalization capabilities. Its last layer is followed by a sigmoid nonlinearity. The

ADAE model has six hidden layers of 2000 neurons each. In the corruption process of the ADAE

model, we use the MP model-generated masks to corrupt the observations by setting the masked

variables to zero. The benchmark DAE model has four hidden layers with 2000 neurons each.

The benchmark VAE encoder and decoder each have one hidden layer of 2000 neurons and a

layer corresponding to the latent dimension of 500. For the experiments in Section 4.4, we set

the size of the last PDAE-Encoder layer to 50 to examine the effect of the Encoder in a more

pronounced scenario.

We train all models for a maximum of 10 epochs with possible early stopping if the out-of-

sample loss does not decrease any more. The learning rate is set to 3e − 4 without decay for

all models. The Adam optimizer by Kingma and Ba (2014) is used with β = (0.9, 0.999) and

ε = 1e− 8 for optimization of the neural network parameters.

The parameters of the missingness generation algorithms are as follows: The size of each

patch in PATCHES is 5x5 pixels. For the generation of pj in MAR and MNAR, we add 1e− 6
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times the identity matrix to the estimated covariance matrix to make it positive definite. For

the sigmoid function applied to the samples from the multivariate normal, the offset is 0.05 for

a missingness level of 0.2 and 0.15 for a level of 0.1. The sigmoid scaling factor is always 10.

For QMNAR, we assign 20% of the variables to have missing values in their highest and lowest

20% of values with a probability of 0.8.

H Implementation

All neural network components are implemented in PyTorch (Paszke et al., 2019). For the Vari-

ational Autoencoder, the Generative Adversarial Network and the downstream classification

model code from Raschka (2019) were adapted. For the computation of the QMNAR miss-

ingness, we rely on the Python implementation by Muzellec (2019). The tutorial code on the

PyTorch website was used as a starting point for the neural network implementations.

In Table G.1, we list all the Python (Van Rossum and Drake, 2009) packages that were used

together with their purpose.

Table H.1: A table that indicates which python package was used in the implementation for which
functionality.

Task Python Package Reference

Neural Network Models PyTorch Paszke et al. (2019)

GPU Acceleration CUDA NVIDIA et al. (2020)

Model logging TensorBoard, Weights and Biases Abadi et al. (2016), Biewald (2020)

Image Data Handling TorchVision TorchVision maintainers (2016)

Mean Imputation, Preprocessing sklearn Pedregosa et al. (2011)

Line Search scipy Virtanen et al. (2020)

Basic operations numpy, pandas Harris et al. (2020), McKinney (2010)

Visualizations matplotlib Hunter (2007)

The full implementation of the model proposed here, together with scripts to replicate the

experiments, can be found in this GitHub repository. The repository is structured in the follow-

ing way. It has one main notebook imputation_models.ipynb. This notebook brings together

all parts of dataset generation, model training, testing and visualization, making use of all the

helper_*.py files. This notebook can be used to do manual experiments with the model. It

contains the implementation of the imputeLM model as well as the DAE, VAE and Mean im-

putation benchmark models. At the top of the notebook, a dictionary is included, which specifies

all the data parameters (which dataset and which missingness parameters to use). Then for each

model, there are another two dictionaries that specify the model configuration parameters and

the model training. The MP model is implemented with the option to use a VAE or GAN

instead of the vanilla neural network that is used in this study.

There is one file for each subsection of the results section to reproduce the experiments.

These scripts are named with experiment_* in front. They produce a set of CSV files for

each seed separately. Additionally, they produce an Excel file that contains the averages and

standard deviations, if applicable. The experiment_mask_prediction.ipynb produces its table

and plots inside the notebook.
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In the code, the ADAE model is mostly referred to as the SDAE model, and noise and

missingness are often used interchangeably. The benchmark DAE model is referred to as BDAE

and the PDAE-Encoder as Encoder.
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