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Abstract

This study investigates the socioeconomic determinants of life expectancy using a quantile

regression approach, looking into pre- and post-COVID differences in specific. By employing

adaptions of a quantile regression forests (QRF) with and without recursive feature elimina-

tion (RFE), various socioeconomic factors are analysed yielding insights into their respective

importance in light of life expectancy inequalities. It is shown that economic determinants

are of the greatest importance in predicting life expectancies, however, the importance of

this role decreases post-COVID. Furthermore, the role of healthcare has become more im-

portant due to the COVID-19 pandemic. The contributions of this research to the existing

literature are not only limited to providing insights into life expectancy inequalities and the

development thereof but also offer valuable future research directions for further assessing

the impacts of COVID-19 on socioeconomic inequalities.

1



Contents

Contents 2

1 Introduction 3

1.1 Current State of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Methodology 5

2.1 Quantile Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Recursive Feature Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Discrete Quantile Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Data 10

3.1 Model Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Socioeconomic Life Expectancy Determinants . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Descriptives and Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Results 12

4.1 Model Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Socioeconomic Life Expectancy Determinants . . . . . . . . . . . . . . . . . . . . 15

5 Conclusion 18

5.1 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Bibliography 19

A Additional Tables and Figures 22

B Programming Overview 26

2



1 Introduction

Life expectancy is a measure of lifespan as well as an indicator of socioeconomic inequality

that influences our society. In addition to changing the fundamental social structure of our com-

munities, COVID-19 may have also transformed the fundamental determinants of life expectancy

inequalities as we recover from the turbulent environment of an international pandemic. One

certainty in these uncertain times, however, is that socioeconomic factors have a significant im-

pact on life expectancy (Mirowsky & Ross, 2000). This impact could be magnified by major

changes in global economics that disproportionately affect the most vulnerable. In order to

provide light on the interrelated factors influencing human health and lifespan and to provide

important insights for policymakers as well as individuals, this research sets out on a mission to

unravel these complexities and provide new insights into the post-COVID-19 state of inequality.

1.1 Current State of Research

Socioeconomic inequalities have been a long-standing field of research(Deaton & Paxson, 2001),

leading to the great importance of researching the determinants of socioeconomic status to un-

cover these inequalities. The healthcare sector is one of the most notable settings in which

socioeconomic status effects are closely monitored with life expectancy being a central topic of

study (Mirowsky & Ross, 2000; Lallo & Raitano, 2018; Bär, Wouterse, Riumallo Herl, Van Ourti,

& Van Doorslaer, 2021; Sanzenbacher, Webb, Cosgrove, & Orlova, 2021). Life expectancy differ-

ences of up to 5 years are not out of the ordinary for individuals of low and high socioeconomic

status and insights into the development of these inequalities are thus of great importance.

Furthermore, in light of the recent COVID-19 pandemic life expectancy determinants and their

effects can have changed significantly (Strozza, Vigezzi, Callaway, & Aburto, 2024).

Research conducted by Mirowsky and Ross (2000) highlights the significant differences in

subjective adult life expectancy between socioeconomic groups in the United States. They found

an increase in subjective life expectancy of 0.7 years for each extra year of schooling, while a

long period of economic hardship can decrease an individual’s subjective life expectancy by 4

years. Expanding on these results, the research of Sanzenbacher et al. (2021) supports the idea

that disparities in life expectancy are becoming more widespread in America. They highlight the

nuanced effects of specific socioeconomic factors on the level of inequality observed, providing

more insight into the relationship between socioeconomic status and life expectancy results. It

is for example shown that even when taking an individual’s education level relative to their

birth cohort, inequalities based on socioeconomic status are persistent. A study conducted by

Lallo and Raitano (2018) on the socioeconomic factors that influence life expectancy in Italy,

also shows similar evidence of inequality.

Research on the same topic in the Netherlands provides a comprehensive analysis that goes

beyond effects solely at the mean (Bär et al., 2021). Through the analysis of differences between

various age groups, they uncover evolving patterns in the dynamics of inequality, most notably

pointing out a decline in inequality among younger age groups in contrast to an alarming rise

among older individuals. The growing inequality among older age groups may result from two

factors: either the wealthier individuals benefit more from recent healthcare advancements, or
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the inequality may shift from young to old groups due to the aging of those members. A third

possible explanation for this result is found by Luo, Zhang, Jin, and Wang (2009), which observe

inequality in the access to healthcare for the elderly, possibly explaining the rising inequality

among older individuals as they generally rely relatively more on healthcare compared to younger

individuals.

Research from Strozza et al. (2024) shows that the COVID-19 pandemic has sparked changes

in life expectancy and its determinants. It is shown that post-COVID-19 life expectancies for

both men and women in Denmark have relatively decreased in groups of lower socioeconomic

status compared to those in higher socioeconomic status groups. Their results highlight the

pandemic’s unequal effect on lower socioeconomic groups and show the complex dynamics in

the context of recent international events like the COVID-19 pandemic.

As previously noted, Bär et al. (2021) in their research on life expectancy determinants

adhere to an empirical strategy, which looks beyond effects at the mean and provides insights

into effect sizes across different age groups. A comparable methodology is a quantile regression

as proposed by Koenker and Bassett Jr (1978), which looks at effect sizes across the distribution

of the outcome variable, revealing information that ordinary regressions analysing effects at the

mean would have missed. This well-established methodology, however, can be further improved

by utilizing random forests and recursive feature elimination (Breiman, 2001; Zhou, Zhou, Zhou,

Yang, & Luo, 2014) and as shown by Meinshausen and Ridgeway (2006) these techniques can

be combined to improve the predictive accuracy of these quantile regressions.

1.2 Research Outline

The question central to this research is: ”What are the socioeconomic factors influencing life

expectancy”. This research direction provides insights into inequalities, which could also be

present outside of solely life expectancy. The methods used for analysing these inequalities build

on the quantile regression forests introduced by Meinshausen and Ridgeway (2006), which are

adapted to the case of discrete outcome variables. Firstly, a benchmark is created for assessing

the performance of these new models, for which widely used datasets contained in R are used

to improve the comparability of the performance of these models. The research subsequently

moves on to analysing socioeconomic life expectancy determinants using the previously tested

models and microdata on individuals in the Netherlands from the Central Bureau of Statistics.

Data ranging from 2015 - 2022 is used where effect sizes across multiple quantiles are estimated

for the entire dataset and solely for the pre- and post-COVID-19 eras, providing insights into

the effects of COVID-19 on life expectancy as well as inequality.

Firstly, it is shown that quantile regression forest based models outperform alternative meth-

ods. After this, the socioeconomic life expectancy determinants analysis is carried out, This ana-

lysis shows that economic determinants are the most important socioeconomic status category

for life expectancy inequalities, however, there is a large uncertainty in predictions especially for

lower ages of passing, highlighting the hardships in predicting an individual’s life expectancy.

Furthermore, the pre- and post-COVID analysis indicate that the importance of socioeconomic

determinants has changed, showing decreasing importance for economic and social determinants,

while healthcare is becoming increasingly important.
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The remainder of this paper starts with an overview of the models employed for the analysis

in Section 2. This is followed Sections 3 and 4, in which the data samples are presented and the

results are discussed, respectively. Lastly, in Section 5 the main findings are summarized and

discussed, and possible future research directions are presented.

2 Methodology

This section introduces the selection of models used in this research. Firstly, the quantile

regression is introduced, followed by an explanation of the random forests and how these methods

can be combined. After this, the recursive feature elimination algorithm is discussed as well

as an adaptation on the quantile regression forest (Meinshausen & Ridgeway, 2006) to handle

discrete outcome variables. Lastly, this section is concluded by presenting the model performance

evaluation metrics.

2.1 Quantile Regression

Quantile regressions provide a more nuanced understanding of the relationships between pre-

dictor variables and outcomes (Yu, Lu, & Stander, 2003). Researchers can investigate potential

heterogeneity in these effects more thoroughly and gain a greater knowledge of how different

variables affect outcomes across different segments of the joint distribution of the data. This

versatility has shown to be extremely beneficial in a variety of research fields, such as envir-

onmental studies, healthcare, and finance by Koenker (2017). Showing the ability of quantile

regressions to find patterns that might otherwise go unnoticed when concentrating only on the

mean.

The ability to create prediction intervals is an additional benefit of quantile regressions

(Meinshausen & Ridgeway, 2006). Wider prediction confidence intervals indicate less precision

in the prediction, offering important insights into the accuracy of predictions. This accuracy

indicator helps researchers better understand the reliability of their forecasts and models.

Koenker and Bassett Jr (1978) introduced the quantile regression approach and the basis for

these quantiles comes from the conditional cumulative distribution function of outcome Y :

F (y|X = x) = P (Y ≤ y|X = x). (1)

Consequently, the definition of the α-quantile is the probability being equal to α that outcome

Y is smaller than Qα(x) conditional on a fixed X:

Qα(x) = inf{y : F (y|X = x) ≥ α}. (2)

The definition is for the case of a continuous outcome variable, as the distribution function

needs to be continuous for the equation to hold. A second application of quantile regressions

is that of constructing prediction intervals. Equation (3) displays a 95% prediction interval of

outcome variable Y , which can be interpreted as Y being inside this interval at the 95% level

for a given X:

5



I(x) = [Q0.025(x), Q0.975(x)]. (3)

2.2 Random Forests

By using the principle of building multiple decision trees, random forests can predict results

based on related explanatory data (Breiman, 2001). This methodology, which is closely related

to boosting, has shown to be an effective tool for both regression and classification tasks. Non-

etheless, unlike boosting, which makes use of data residuals from previously built trees, random

forests use the raw data to create each tree (Meinshausen & Ridgeway, 2006). Meinshausen and

Ridgeway (2006) provide an excellent example of combining random forests and quantile regres-

sions to create a quantile regression forest. This novel method utilizes random forests’ ability

to determine the conditional distribution of outcome variables. Additionally, random forests

can determine a range of quantiles with a single model, saving computational time, particularly

for large datasets. An alternative for random forests such as XGBoost, for example, requires

training a separate model for each quantile by design (Zhang, Quan, & Srinivasan, 2018).

Breiman (2001) shows how applying boosting to random forests can significantly improve

performance, especially when it comes to improving predictive accuracy for larger datasets.

Additionally, Granitto, Furlanello, Biasioli, and Gasperi (2006) shows how feature selection can

be optimized by using feature importance rankings to reduce computation time and improve

performance by limiting the number of features. It is concluded by Granitto et al. (2006) that

recursive feature elimination works best when combined with random forest compared to other

machine learning methods such as support vector machines. A possible explanation for this

could come from the built-in ability of random forests to rank the importance of features in

predicting outcomes.

Random forests in the case of a regression operate by averaging over a multitude of decision

trees (Breiman, 2001). The decision trees are trained using a random selection of explanatory

variables to split on and each tree uses a random subset of the data, called a bag. This research

uses the notation used in Meinshausen and Ridgeway (2006) which is based on Breiman (2001).

A tree is denoted by T (θ) and has corresponding leaves l = 1, .., L, where the vector θ contains

the random split variable selection used in each node of the respective tree. B is defined as the

space of X and B consists of multiple rectangular subspaces defined as Rl, which are linked to

the leaves l. If x ∈ B is dropped down tree T (θ) one and only one leaf is obtained where x ∈ Rl,

this leaf is denoted by l(x, θ). To obtain a prediction from T (θ) for x a weighted average of

the observed values at the corresponding leaf l(x, θ) is used. The Equation for the weights is

provided in (4) and the corresponding prediction is shown in Equation (5):

wi(x, θ) =
1{Xi∈Rl(x,θ)}

#{j : Xj ∈ Rl(x,θ)}
for i = 1, . . . , n, (4)

µ̂(x) =

n∑
i=1

wi(x, θ)Yi. (5)

Xi corresponds to an observation and the sum of the weights is constrained to one, i.e.,∑n
i wi = 1. Consequently, the prediction can thus be seen as the weighted average of Yi given
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X = x. Random forests use the previously discussed single-tree predictions by averaging over

k trees. The Equations (6) and (7) display the determination of the weights and subsequent

prediction, respectively:

wi(x) =
1

k

k∑
t=1

wi(x, θt) for i = 1, . . . , n, (6)

µ̂(x) = E(Y |X = x) =
n∑

i=1

wi(x)Yi. (7)

With t = 1, .., k corresponding to the respective trees T (θ) and the vectors θt are independent

and identically distributed. The prediction is an approximation of the conditional mean of the

outcome E(Y |X = x).

The above-provided definition of random forests can be used in combination with quantile

regression to create Quantile Regression Forests (QRF) (Meinshausen & Ridgeway, 2006). Equa-

tions (8) and (9) show how the distribution function of Y can be rewritten:

F (y|X = x) = P (Y ≤ y|X = x) = E(1{Y≤y}|X = x), (8)

F̂ (y|X = x) =

n∑
i=1

wi(x)1{Yi≤y}. (9)

The estimate of the conditional distribution F̂ (y|X = x) can subsequently be used to create

estimates for the quantiles.

2.3 Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a backward selection method, that iteratively evaluates

each feature’s relevance and keeps only those that are thought to be the most explanatory for the

outcome variable. By eliminating less important features, this iterative process helps to improve

the model’s predictive accuracy (Guyon, Weston, Barnhill, & Vapnik, 2002). RFE works best

when combined with random forests, and does not require any (fine-)tuning. Random Forests

Recursive Feature Elimination (RF-RFE) is an algorithm proposed by Zhou et al. (2014) and

the algorithm is specified below.
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Algorithm 1 Recursive Feature Elimination using Random Forest

Require: Explanatory training set X, outcome training set Y , and the initial model trained
with all features included

1: Initialize lists F ← {list of initial features}, R← {empty list to store the removed features}
2: while F is not empty or a threshold for removing features is not reached do
3: Update X to only contain features specified in F
4: Train a random forest model on X and Y
5: Calculate importance scores of the features in F
6: Define fleast important as the least important feature in F
7: Append fleast important to R
8: Remove fleast important from F
9: end while

10: return R

In Algorithm 1, it can be seen that one feature is removed in each iteration of the recursion

leading to the final output R, which contains the removed features. Combining the RF-RFE

algorithm with QRF leads to the Quantile Regression Forest with Recursive Feature Elimination

(QRF-RFE) proposed by Zhang et al. (2018). This model uses the RF-RFE algorithm to select

which features to exclude and uses the updated feature selection to construct a new QRF. The

new QRF-RFE model is then subsequently used for constructing the quantiles in the same

manner as in Section 2.2.

2.4 Discrete Quantile Regression

The quantile regression and quantile regression forests discussed in Meinshausen and Ridgeway

(2006) concern a continuous outcome, however, little to no attention has been given to the case

of discrete quantile regressions. Discrete quantile regression can be implemented with jittering,

which involves adding a variable U to the outcome variable. This jittered variable generally has

a uniform distribution between 0 and 1 (Carcaiso & Grilli, 2023), transforming discrete integers

to decimals. This method produces a new continuous outcome variable with a bounded domain

that can be utilized in continuous quantile regressions.

An alternative to jittering is proposed by Geraci and Farcomeni (2022) this approach adapts

the original distribution function of the discrete outcome variable such that it can be used in

quantile regressions. The adapted distribution is called the mid-distribution function. This

method has been shown to outperform jittering-based approaches for multiple discrete variable

types. Furthermore, as the quantile regression forests proposed in Meinshausen and Ridgeway

(2006) utilize the distribution function of the outcome variable obtained from regression forests,

these mid-distributions can be of great value in extending the quantile regression forests to

predicting discrete outcomes.

The new quantile regression model using the mid-cumulative distribution function is named

mid-Quantile Regression (mid-QR) and introduced by Geraci and Farcomeni (2022). The

method uses the original cumulative distribution function to construct a new continuous cu-

mulative distribution, however, for this research, the method is slightly altered to combine the

mid-QR with QRF.

The conditional cumulative distribution function G(y|X = x) is constructed as specified
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in Equation (10). This function consists of two parts with the first being the original condi-

tional cumulative distribution function and the second being a down-shifting factor using the

probability density function:

G(y|X = x) = F (y|X = x)− 0.5 ∗ f(y|X = x). (10)

Alternatively to what has been done in Geraci and Farcomeni (2022), this research proposes

to use the distribution obtained by the previously discussed RF in Section 2.2. Using the

F̂ (y|X = x) in Equation (10), Ĝ(y|X = x) can be obtained and subsequently used in a QR

in the same way as proposed for the QRF. To the best of our knowledge, this model has not

been proposed in earlier works and is thus named mid-Quantile regression forests (mid-QRF)

or mid-Quantile regression forests with Recursive Feature Elimination (mid-QRF-RFE) in case

REF is applied.

2.5 Evaluation Metrics

To assess the quality and performance of the previously proposed models the same evalu-

ation metrics, which are employed by (Meinshausen & Ridgeway, 2006), are used in light of

comparability. The quantiles used in the analysis of the performance of the models are thus

α ∈ {0.005, 0.025, 0.05, 0.5, 0.95, 0.975, 0.995}. The loss function indicating the accuracy of the

model is specified in Equation (11) in which q is the prediction of the model. The average result

of this loss function is used in combination with a 5-fold cross-validation design for training and

testing.

Lα =

{
α | y − q | y > q

(1− α) | y − q | y ≤ q
(11)

Moreover, bootstraps are performed to create 95% confidence intervals of the average loss.

These confidence intervals are subsequently used in assessing significant differences between the

proposed models.
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3 Data

In this section, the data samples used in this paper are presented. The first data sample discussed

is used to assess the predictive performance of the employed models, while the second dataset

is analysed to retrieve insights into socioeconomic life expectancy determinants.

3.1 Model Performance Analysis

To assess the performance of the models proposed in Section 2, this research firstly applies

the models to the same datasets as in the paper of Meinshausen and Ridgeway (2006). The

results retrieved from this analysis are used as a benchmark for the performance of the models.

Meinshausen and Ridgeway (2006) use five datasets taken from the R packages mlbench and alr3

(now updated to the alr4 package) (R Core Team, 2023), however, only four of these are still

available. The datasets included in the mlbench and alr4 packages are listed below including a

short description of the contents (Blake & Merz, 1998; Weisberg, 2014; Leisch & Dimitriadou,

2024).

• BostonHousing : Housing data from a census conducted in 1970 in Boston. The data

contains 506 entries with 14 variables of which the target variable is medv: median value

of owner-occupied homes in USD 1000’s

• Ozone: Ozone pollution data from Los Angeles in 1976 containing 366 entries and 13

variables with the target variable being Daily maximum one-hour-average ozone reading.

• BigMac2003 : Labor time data for the production of Big Macs containing 69 entries and

10 variables with the target variable being BigMac: Minutes of labor to purchase a Big

Mac.

• fuel2001 : Fuel consumption in the United States containing 51 entries and 6 variables, after

combining gallons sold and estimated miles driven to create the target variable average

gas-mileage (Meinshausen & Ridgeway, 2006).

3.2 Socioeconomic Life Expectancy Determinants

For analysing socioeconomic life expectancy determinants microdata from the Central Bureau of

Statistics (CBS) is used. It must thus be noted that results obtained in this research are based

on calculations by the author using non-public microdata from Statistics Netherlands. Under

certain conditions, these microdata are accessible for statistical and scientific research1.

The data used ranges from 2015-2022 and is on an individual level. The target variable is Age

of Passing and as explanatory variables a set of variables indicating socioeconomic status (SES)

are selected. SES variables can be classified into the five categories: (1) economic, (2) education,

(3) environment, (4) social, and (5) healthcare (Rój & Jankowiak, 2021). The variables selected

in this research for these respective categories are listed in Table 1.

1For further information: microdata@cbs.nl.
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Table 1: Explanatory socioeconomic determinants by socioeconomic category
Category Variables

Economic (1) household wealth

Education (1) proportion low education
(1) proportion middle education
(1) proportion high education
(2) amount of primary school students
(3) amount of secondary school students

Environment (1) population density
(2) nearby trade and catering
(3) nearby government, education, and healthcare
(4) nearby culture and attractions

Social (1) household size
(2) unemployment benefits
(3) social assistance benefits
(4) disability benefits

Healthcare (1) chronically ill
(2) social support act
(3) long-term care

Control Variables (1) gender (women)

The outcome variable Age of Passing is defined as the age an individual has reached in the

year of passing. Proportion level education, amount of school type students, nearby facilit-

ies, population density, unemployment benefits, social assistance benefits, and disability benefits

are taken CBS StatLine, which provides macro-data from the Netherlands (Centraal Bureau

voor de Statistiek, 2024). These variables are linked to individuals via their municipality of

residence. The variables of the sort nearby facilities concern the number of facilities in an indi-

vidual’s respective municipality. Additionally, unemployment benefits, social assistance benefits,

and disability benefits are the amount of individuals receiving such benefits in an individual’s

municipality. Chronically ill is a binary variable where individuals are classified as being chron-

ically ill based on their medicine usage in combination with the index proposed by Huber, Szucs,

Rapold, and Reich (2013). Additionally, the variables social support act and long-term care are

also binary variables and indicate whether an individual receives care out of the Dutch care

policies wet maatschappelijke ondersteuning and wet langdurige zorg, respectively.

3.2.1 Descriptives and Sample

The entire dataset used in this research is of the size n = 1.390.975 with the pre and post-COVID

subsets being of the size n = 659.454 and n = 563.836, respectively. As the COVID pandemic

started in 2019, the pre and post-COVID samples exclude individuals who have passed in 2019.

Table 2 provides an overview of the average values of each variable for the respective samples.

The full, pre-COVID, and post-COVID samples are very similar in their descriptives, however,

there are some notable differences. These differences can be found in the variables on nearby

facilities and benefits received, where it can be noted that there is a relative increase in nearby

facilities for the post-COVID sample compared to the pre-COVID sample. Furthermore, the

number of people receiving unemployment and social assistance benefits has decreased, while the
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amount of individuals receiving disability benefits has stayed constant. A possible explanation

for these differences can be due to a more favourable economic climate post-COVID leading to

more newly opened nearby facilities and less demand for unemployment and social assistance

benefits.

Table 2: Sample averages for the full, pre-COVID, and post-COVID samples

Variable Full Sample Pre-COVID Post-COVID

Age of Passing 78.52 78.35 78.79
nearby trade and catering 2765.87 2632.81 2977.39
nearby government, education, and healthcare 2440.02 2143.41 2885.37
nearby culture and attractions 2211.59 2051.58 2434.44
unemployment benefits 2326.15 2670.26 1891.96
social assistance benefits 5385.19 5605.16 5104.98
disability benefits 5780.25 5787.97 5762.75
proportion low education 29.07 30.20 27.30
proportion middle education 41.95 41.86 42.19
proportion high education 28.98 27.94 30.52
population density 1561.07 1556.19 1560.67
amount of primary school students 11068.06 11124.18 10935.21
amount of secondary school students 6900.95 6889.53 6877.15
gender (women) 0.51 0.51 0.50
household wealth 232757473.8 231789162.3 234499508.8
household size 1.89 1.87 1.94
long-term care 0.33 0.33 0.35
social support act 0.22 0.21 0.24
chronically ill 0.74 0.74 0.73
sample size 1390975 659454 563836

Due to the computational complexity of the models proposed in Section 2, a random subset

of the datasets of size n = 10.000 is taken from the non-missing value entries of the entire sample.

The descriptive statistics of these subsets are very similar to those of the entire datasets and are

provided in Appendix A.

4 Results

The results presented in this section consist of two parts: a performance analysis and a life

expectancy determinants analysis. All computations are conducted in R (R Core Team, 2023)

and an overview of the performed runs is contained in Appendix B. R version 4.3.0 is used in

combination with the quantregForest package (Meinshausen, 2017).

4.1 Model Performance Analysis

The datasets presented in Section 3.1 are used to investigate the performance of the QRF

and QRF-RFE models. A selection of benchmark models which are also used in Meinshausen

and Ridgeway (2006) are compared with the random forest based models. Linear Quantile

Regression (LQR), linear quantile regression with interactions (QQR), and three Regression
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Tree based models with a second-degree polynomial without interactions (TRP), multiple linear

terms (TRM), and solely a constant term (TRC) make up the benchmark models. The QQR

model is constructed starting from the LQR model and adding interaction terms via forward

selection until the model does not improve any further. Based on the loss function defined

in Section 2.5, a 95% confidence interval of the average loss of the predictions is constructed

for each model and their quantiles. For every model, 100 bootstraps are performed in order

to determine these 95% confidence intervals. The seven quantiles used in this analysis are

α ∈ {0.005, 0.025, 0.05, 0.5, 0.95, 0.975, 0.995}. For training and testing the models, a 5-fold cross-

validation split is used. This entails that the model is trained using 80% of the available data,

and predictions are made using the remaining 20% of the data. Subsequently, the average loss

is computed using these predictions. For the random forest based models the mtry parameter is

maintained at its default value, and the number of trees used in the QRF and QRF-RFE models

is fixed at 1000. Furthermore, the threshold for the RFE is set at 75% meaning that 25% of the

explanatory variables are removed.

Figure 1 shows the 95% confidence intervals of the employed models. It can be seen that

the TRC, TRM, and TRP models are excluded from this figure and the figure containing these

models is presented in Appendix A. The TRC, TRM, and TRP models are excluded as the

confidence intervals for these models are much higher than the other models and this leads

to the confidence intervals of the other models not being visible on the graph. Normally this

indicates that the TRC, TRM, and TRP models are largely outperformed, however, closer

inspection of the loss calculations reveals a different result. Due to a lack of data availability

at the leaf nodes, some leaf models can not be estimated sufficiently to provide reliable results

leading to some predictions having a loss comparable to that of the other models, while other

predictions lead to a loss of over 100 significantly increasing the average loss.

Inspection of Figure 1 reveals that the QRF and QRF-RFE models outperform the LQR

and QQR models on all occasions, as the confidence intervals of these two sets of models do not

overlap. The LQR and QQR models have relatively similar performance and are not significantly

different in most cases, however, the LQR can on some occasions perform close to the QRF

and QRF-RFE models, as can be seen for the very extreme quantiles of the fuel2001 dataset.

Furthermore, it becomes clear from the figure that the QRF and QRF-RFE models are very

similar in performance with only a significant difference in performance for the 0.95 quantile of

the fuel2001 dataset, where the QRF-RFE outperforms the QRF.
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To analyse the performance of the random forest based models in the discrete outcome

variable setting the previously used datasets are transformed to have a discrete outcome variable.

The datasets are discretized using truncation, where the values are cut off at the decimal point

leaving only integers. These transformed datasets are then subsequently used by the QRF,

QRF-RFE, mid-QRF, and mid-QRF-RFE models to make predictions. Via the same method

as previously described, these predictions are used in constructing the 95% confidence intervals

for the average loss, as can be seen in Figure 2.

Figure 2: 95% Confidence intervals of the average loss for the employed datasets and quantiles
in the discrete outcome variable case

Looking into the performance of the models for the discrete outcome variable case Figure

2 reveals that the four models have on average a similar performance. The models do not

differ significantly on most occasions, however, the mid-QRF and mid-QRF-RFE models are

outperformed by the QRF and QRF-RFE in some cases as can be seen for the BostonHousing

dataset. On the other hand, the mid-QRF and mid-QRF-RFE models outperform the QRF

model for the fuel2001 dataset, while not being significantly better than the QRF-RFE model.

In conclusion, There thus seems to be no generally outperforming model with slight variations

in performance for different datasets and quantiles.

4.2 Socioeconomic Life Expectancy Determinants

To investigate socioeconomic life expectancy determinants, the dataset presented in Section 3.2

is analysed using the QRF, QRF-RFE, mid-QRF, and mid-QRF-RFE models. Similar to the

model performance analysis, these models use a 5-fold cross-validation split with 1000 trees and

mtry set at the default value. Additionally, the threshold for the RFE is kept at 75% and the
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quantiles investigated are α ∈ {0.005, 0.025, 0.05, 0.25, 0.5, 0, 75, 0.95, 0.975, 0.995}.
Figure 3 provides an overview of the average loss of the predictions for the employed models

on the full sample. The QRF, QRF-RFE, and mid-QRF models are very similar in predictive

accuracy with the mid-QRF-RFE being outperformed slightly. Further research is, however,

necessary to determine if this difference in performance is also statistically significant. Looking

into performance differences across quantiles it becomes evident that the predictive accuracy of

all the models is higher for the higher quantiles as indicated by the lower observed average losses.

It can thus be concluded that life expectancies at the top of the outcome variable distribution

can be better predicted, possibly due to more data availability. The average losses of the pre-

and post-COVID models show similar results and are presented in Appendix A.

Figure 3: The average loss of the random forest based models on the total life expectancy dataset

The 95% prediction confidence intervals for the full sample are presented in Figure 9 where

the actual outcomes are ordered from small to large with their respective confidence interval.

The results for the pre- and post-COVID samples are again similar to the full sample results and

are thus presented in Appendix A. The lowest outcomes lie outside of their prediction confidence

interval on a relatively large number of occasions compared to the higher outcomes, showing the

uncertainty in predicting low ages of passing. Furthermore, it can be observed that the ranges

of the confidence intervals relatively decrease for higher outcomes indicating that these values

can be predicted more precisely. However, the confidence interval ranges do not differ much

throughout the outcome distribution, highlighting the uncertainty in predicting life expectancy.
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Figure 4: The 95% prediction confidence intervals of the random forest based models on the
total life expectancy dataset

Table 3 shows the importance of the socioeconomic variables in making predictions of the

QRF model. The QRF model is selected to analyse the socioeconomic determinants of life ex-

pectancy, as this model has the lowest average loss on most occasions. The importance estimates

for the full sample reveal that household wealth is the most important feature in determining

life expectancy. followed by long-term care, household size, and population density. Further-

more, variables related to education level and social benefits are relatively more important than

variables related to facilities in the nearby environment. This thus shows that economic de-

terminants are most important in explaining life expectancy inequalities, while environmental

determinants are relatively unimportant. Education and social determinants are approximately

equal in importance. The high estimates of household size and population density highlight the

importance of an individual’s social network in growing old, while long-term care indicates the

importance of healthcare for a higher life expectancy.

The pre- and post-COVID importance estimates displayed in Table 3 are quite similar at first

glance, however, some important differences can be seen on closer inspection. Household wealth

has become relatively less important post-COVID, while the variables related to healthcare have

become more important. Furthermore, household size and population density are relatively more

important pre-COVID. These differences indicate a shift in the socioeconomic determinants of

life expectancy due to COVID-19, where inequalities in life expectancy are relatively more likely

to arise due to differences in received healthcare provisions. Additionally, economic determinants

as well as an individual’s social network have become less important post-COVID.
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Table 3: Importance estimates (scaled to 100) of the QRF model for the full, pre-COVID, and
post-COVID samples (percentages)

Variable Full Sample (%) Pre-COVID (%) Post-COVID (%)

Household wealth 17.48 20.29 18.76
Household size 11.10 12.41 12.06
Long-term care 13.84 12.36 13.19
Population density 5.20 5.15 5.01
Proportion low education 4.62 4.45 4.39
Proportion middle education 4.52 4.42 4.46
Unemployment benefits 4.45 4.11 3.96
Proportion high education 4.39 4.26 4.20
Social assistance benefits 4.33 3.92 3.95
Disability benefits 4.21 3.85 3.92
Amount of secondary school students 3.93 3.50 3.49
Amount of primary school students 3.91 3.67 3.56
Nearby government, education, and healthcare 3.86 3.64 3.55
Nearby trade and catering 3.81 3.57 3.86
Nearby culture and attractions 3.74 3.43 3.41
Chronically ill 2.02 2.44 3.46
Social support act 1.93 1.83 1.90
Gender (women) 2.67 2.71 2.85

5 Conclusion

The research question central to this study is: ”What are the socioeconomic factors influencing

life expectancy”. To answer this question this research builds upon the QRF as proposed in

Meinshausen and Ridgeway (2006) to uncover insights into the importance of socioeconomic

determinants in life expectancy inequalities. A sample of n = 1.390.975 individuals from the

Netherlands who passed away between 2015-2022 is employed for this cause, where not only the

full sample but also the pre- and post-COVID subsamples are analysed, providing insights into

changes in socioeconomic inequalities due to COVID-19.

This research starts by looking into the performance of the QRF model as well as the

newly proposed QRF-RFE model by comparing the predictive accuracy of these models to the

benchmark models: LQR, QQR, TRC, TRM, TRP. These models are compared for multiple

quantiles and multiple datasets contained in R packages mlbench and alr4 (Blake & Merz, 1998;

Weisberg, 2014; R Core Team, 2023; Leisch & Dimitriadou, 2024). It is shown that the random

forest based models outperform the benchmarks on all occasions, while not significantly differing

from each other. Subsequently, the mid-QRF and mid-QRF-RFE models are introduced to be

used in the case of a discrete outcome variable, however, the four random forest based models

showed similar predictive accuracies across all quantiles and datasets. This result thus indicates

the robustness of the QRF model in the case of discrete outcome variables.

After the performance analysis, the QRF, QRF-RFE, mid-QRF, and mid-QRF-RFE models

are used in predicting life expectancy using socioeconomic determinants. The mid-QRF-RFE

model is slightly outperformed by the other models in this case, however, recursively selecting

the least relevant feature might run into problems when there are a lot of correlated variables

in high-dimensional datasets (Darst, Malecki, & Engelman, 2018), underscoring the need for

additional research into the statistical significance of performance differences of the models.
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Furthermore, it is shown that the accuracy of predictions is relatively higher for outcomes at the

higher part of the distribution, while predictions at the lower part of the outcome distribution

are more likely to be wrong. Overall, however, the 95% prediction confidence intervals illustrate

the challenges in predicting life expectancy as these intervals are shown to be quite large.

The importance of the socioeconomic determinants in making life expectancy predictions

shows that economic determinants are the largest contributor to life expectancy inequalities for

both the pre- and post-COVID cases. However, it can be seen that there is a shift in the re-

spective contribution of the socioeconomic variables, with economic determinants becoming less

important post-COVID. Furthermore, healthcare-related determinants have shown to be more

important post-COVID while an individual’s social network has become less important. These

results illustrate how COVID-19 has fundamentally changed the socioeconomic inequalities in

life expectancy and highlight the need for additional research into the effects of COVID-19 on

our society.

5.1 Future research

The results of this research are promising, however, due to the usage of random forests effect sizes

can not be estimated. Future research can improve upon this by for example also employing the

LQR and QQR model. While these models are shown to be outperformed in predictive accuracy,

they can provide insights into not only the most important socioeconomic determinants but also

the magnitude of the effect these determinants have on life expectancy. Furthermore, due to data

availability education level and social benefits are retrieved on the municipality level instead of

the individual level. Incorporating individual education levels as well as the individual usage of

social benefits can provide a better understanding of the effects these determinants have on life

expectancy. Subsequently, looking specifically into the lower ages of passing can help improve

the predictive accuracy of these outcomes and provide insights into life expectancy inequality

differences for younger and older individuals.
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A Additional Tables and Figures

Table 4: Sample averages for the full, pre-COVID, and post-COVID random sub-samples

Variable Full Sample Pre-COVID Post-COVID

Age 78.59 78.35 78.76
Nearby trade and catering 2855.70 2614.60 3024.16
Nearby government, education, and healthcare 2520.71 2131.28 2929.92
Nearby culture and attractions 2288.39 2045.24 2485.06
Unemployment benefits 2427.35 2643.79 1919.51
Social assistance benefits 5651.61 5531.56 5192.25
Disability benefits 5985.49 5743.40 5847.57
Proportion low education 28.95 30.17 27.38
Proportion middle education 41.85 41.84 42.19
Proportion high education 29.21 27.98 30.44
Population density 1592.79 1549.59 1571.33
Amount of primary school students 11450.04 11028.14 11084.53
Amount of secondary school students 7121.81 6832.52 6960.59
Gender (women) 0.50 0.51 0.50
Household wealth 250190913.7 180180682.5 180228037.3
Household size 1.90 1.87 1.93
Long-term care 0.33 0.32 0.34
Social support act 0.22 0.22 0.24
Chronically ill 0.74 0.74 0.73
sample size 10000 10000 10000

Figure 5: 95% Confidence intervals of the average loss for all datasets, models, and quantiles
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Figure 6: The average loss of the random forest based models on the pre-COVID life expectancy
dataset
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Figure 7: The average loss of the random forest based models on the post-COVID life expectancy
dataset
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Figure 8: The 95% prediction confidence intervals of the random forest based models on the
pre-COVID life expectancy dataset
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Figure 9: The 95% prediction confidence intervals of the random forest based models on the
post-COVID life expectancy dataset

B Programming Overview

An overview of the programming runs performed during this research is presented in this section.

R version 4.3.0 is used in combination with the quantregForest package (Meinshausen, 2017),

which contains quantile regression functionalities. Table 5 contains an overview of the code

files with their respective result section. The files with the name ReplicationCode ..... all run

the respective model on the respective dataset as specified in the name, ultimately providing

the average loss confidence intervals shown in Section 4.1. Additionally, Replication plot.R and

save results code.R are used to provide an interpretable overview of the model performance

analysis results. The remainder of the code files is used for the results in Section 4.2 where the

distinction between 3 file types can be made: (1) code files for creating the data sample, (2)

code files for running the models, and (3) code files for generating the figures and descriptive

statistics presented in this paper.
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Table 5: Overview of the analysis code files

Filename Section

address dataframe.R 4.2
descriptives.R 4.2
df household.R 4.2
df household wealth link.R 4.2
Life expectancy dataframe.R 4.2
mid-QRF-RFE.R 4.2
mid-QRF.R 4.2
QRF-RFE.R 4.2
QRF.R 4.2
ReplicationCode LQR ConfidenceInterval BigMac2003.R 4.1
ReplicationCode LQR ConfidenceInterval BostonHousing.R 4.1
ReplicationCode LQR ConfidenceInterval fuel2001.R 4.1
ReplicationCode LQR ConfidenceInterval Ozone.R 4.1
ReplicationCode mid-QRF-RFE ConfidenceInterval BigMac2003.R 4.1
ReplicationCode mid-QRF-RFE ConfidenceInterval BostonHousing.R 4.1
ReplicationCode mid-QRF-RFE ConfidenceInterval fuel2001.R 4.1
ReplicationCode mid-QRF-RFE ConfidenceInterval Ozone.R 4.1
ReplicationCode mid-QRF ConfidenceInterval BigMac2003.R 4.1
ReplicationCode mid-QRF ConfidenceInterval BostonHousing.R 4.1
ReplicationCode mid-QRF ConfidenceInterval fuel2001.R 4.1
ReplicationCode mid-QRF ConfidenceInterval Ozone.R 4.1
ReplicationCode QQR ConfidenceInterval BigMac2003.R 4.1
ReplicationCode QQR ConfidenceInterval BostonHousing.R 4.1
ReplicationCode QQR ConfidenceInterval fuel2001.R 4.1
ReplicationCode QQR ConfidenceInterval Ozone.R 4.1
ReplicationCode QRF-RFE ConfidenceInterval BigMac2003.R 4.1
ReplicationCode QRF-RFE ConfidenceInterval BostonHousing.R 4.1
ReplicationCode QRF-RFE ConfidenceInterval fuel2001.R 4.1
ReplicationCode QRF-RFE ConfidenceInterval Ozone.R 4.1
ReplicationCode QRF ConfidenceInterval BigMac2003.R 4.1
ReplicationCode QRF ConfidenceInterval BostonHousing.R 4.1
ReplicationCode QRF ConfidenceInterval fuel2001.R 4.1
ReplicationCode QRF ConfidenceInterval Ozone.R 4.1
ReplicationCode TRC TRM TRP ConfidenceInterval BigMac2003.R 4.1
ReplicationCode TRC TRM TRP ConfidenceInterval BostonHousing.R 4.1
ReplicationCode TRC TRM TRP ConfidenceInterval fuel2001.R 4.1
ReplicationCode TRC TRM TRP ConfidenceInterval Ozone.R 4.1
Replication plot.R 4.1
result plots tables.R 4.2
save results code.R 4.1
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