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Abstract

This research paper is about time series of count data. The common
methods, like the Autoregressive Moving Average model, are not prof-
itable to use, because they do not account for integer-valued positive
numbers. That is why other methods will be proposed. The Integer-
valued Autoregressive model and the newly suggested Autoregressive
Conditional Integer-valued model will be explained and compared.
This article concludes three things: the theoretically best method to
use with count data is the ACI-model, because of few violated assump-
tions, such as possibly negative correlations and the assumption of the
presence of a Poisson distribution; the best method on the basis of
a simulation study is the INAR-model, shown by the fact that this
model is even doing good when data is simulated by another method;
the best method for particular purchase data is the Poisson-model, but
that is mostly due to the low existence of autocorrelation. All in all,
the INAR-model seems most useful for time series of count data.
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1 Introduction

For time series certain models are commonly known, like an Autoregressive
Moving Average, or ARMA, model. This method takes into account that
past information influences the variables of today. For example, the rate of
inflation of a few days ago influences the rate of inflation today. Or import
and export data can be predicted by using information on how many is
imported and exported in the past few months. Many examples can by
given and these ARMA-models work pretty well in modeling the time series.

A problem occurs when count data have to be modeled. The num-
ber of counts in a certain period can only be an integer and that is why
the commonly used ARMA-model, which assumes real numbers, seems not
very useful anymore. For this integer-valued regressions, methods can be
used which make use of the Poisson Distribution. These methods will be
proposed in this paper. The methods can be used for more than a few
practical situations. For example, the number of traffic accidents in the
past can be used to predict or prevent accidents in the future (Quddus,
2008, p. 1734). An other example is about the number of purchases of a
product in the near past which can be used to model the purchases of a
store (Böckenholt, 1999, p. 328).

The goal of this paper is to find out which method can be used best
for modeling count data in time series. Different methods will be proposed
and compared, like the ARMA-model, the Integer-valued Autoregressive,
or INAR, model and the Autoregressive Conditional Integer-valued, or
ACI, model. In Section 2 the methods appropriate to use are proposed
and explained. Furthermore, this section looks at the assumptions made
by the different methods. In Section 3 it will be shown how a method can
be selected. This will be done by simulating data such that a comparison
can be made of which kind of data can be modeled by which method.
In Section 4 purchase data of five households are modeled, by using the
appropriate methods. At the end of this paper, a conclusion is drawn about
which method suits best for time series of count data.
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2 Model Proposals

For time series of count data different types of methods can be used. First
of all, this paper will present the ARMA-model, which is commonly used
for time series, but probably not good enough to handle integer-valued
variables. The ARMA-model has the assumption that the error term is
normally distributed and with count data, this assumption seems not very
appropriate. That is why other methods will be used too: the Poisson-
model, the INAR-model and the ACI-model. The latter is a method which
is not yet proposed in other papers. In this section these methods will be
explained and it will be shown why these methods are applicable for time
series of count data.

An important question to be answered is which assumptions are in
line with time series of count data and which assumptions are not. When a
method has many assumptions which are not in line with count data, this
method would theoretically be not very useful for this kind of data. This
section also takes a look at these assumptions.

2.1 ARMA(p, q)-model

In the Autoregressive Moving Average model two different components can
be used to model a time series: an autoregressive and a moving average
part. The first takes into account relations to previous observations: yt is
correlated with yt−1, ..., yt−p , where yt is the counted observation at time
t, while the second part correlates previous error terms with the current
observation. This model is defined as

yt = αt + ψ1yt−1 + ...+ ψpyt−p + εt + θ1εt−1 + ...+ θqεt−q, (1)

where αt, ψi and θi are the parameters and εt is the error term, which is
N(0, σ) distributed (Franses and Van Dijk, 2009, p. 60-62). By choosing
the numbers for p and q, one chooses how many lags should be used in the
ARMA(p, q)-model. From now on, p and q will be equal to 1, for simplicity.

This ARMA(1, 1)-model can be extended by adding a trend (upward
or downward) or adding seasonal effects. Also, aberrant observations can
be detected and non-linearity can be solved (see for a detailed description
Franses and Van Dijk, 2009). This method can even account for the
restriction of positive numbers by changing yt in ln(1 + yt). Furthermore,
this method has some assumptions. The mean of the error terms should
be equal to zero, all error terms should have the same variance and their
is no correlation between the error terms. When these three assumptions
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hold, the error term in the model is said to be ’white noise’ (Franses and
Van Dijk, 2009, p. 51-52). For count data, it is not harmful to have these
assumptions. However, the residuals in a ARMA-model should be approx-
imately normally distributed. This assumptions is violated when using
count data, because negative observations cannot occur. The symmetric
form then will not be found, because negative values can be predicted,
while only positive values should be found. Lastly, the ARMA-model does
not take into account the fact that data is only integer-valued and this
missing fact makes this method less appropriate.

2.2 Poisson model

Because integer-valued data should be accounted for, the Poisson distribu-
tion is probably a good replacement for the ARMA-model. This distribution
will only use positive and integer numbers. This distribution is given by

P (y = k) =
e−λλk

k!
, (2)

where λ is the parameter which has to be estimated by Maximum Likeli-
hood. This parameter should be a positive real number. This distribution is
applicable for count data, because y and k are always integer-valued, which
is also the case for count data. However, any autocorrelation cannot be
covered by this distribution, so an extended version will be useful. These
expansions are done in Section 2.3 and 2.4.

2.3 INAR(p)-Poisson model

The Integer-valued Autoregressive model is a method which is applicable
to time series of count data, which uses the commonly known Poisson
distribution.

The idea is that the data is decomposed in two parts: the first part
will handle the autocorrelation in the data and the second part handles
new arrivals. For example, a shop has some customers which will always
go there, and probably some new customers which can not yet be covered
by the autoregressive function. These new customers can than be added to
the model by the new arrivals. This INAR-Poisson model is defined as

yt = α1 ◦ yt−1 + ...+ αp ◦ yt−p + It, (3)

where yt is the observation at time t and the ◦ in this function is called the
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binomial thinning operator, which means that there is a chance of αi ∈ [0, 1]
that a previous count will be transferred to the current period. This part
can also be written as

α ◦ yt−p ∼ B(α, yt−p), (4)

where B(α, yt−p) is the binomial distribution for yt−p trials with probability
of success α (Böckenholt, 1999, p. 321). From now on, p will be equal to 1,
for simplicity.

It in (3) is a Poisson arrival process. These It are independently distributed
Poisson variables with mean λ. This part can handle new information
which was not observed yet, as in the example about customers given before.

Other variables can be included too. That can be done by replacing
α or λ by a function of explanatory variables. Because α ∈ [0, 1],

αt =
ex

′
tγ

1 + extγ
(5)

can be used (Freeland and McCabe, 2002, p. 704). While λ can only be
positive,

γt = ez
′
tβ (6)

seems to be a good replacement. In (5) and (6), xt and zt respectively are
the possibly explanatory variables and γ and β are parameters.

This INAR-model seems applicable for count data, because it reckons
with new arrivals which are not yet known from past information. Further-
more, it uses the fact that the variables are only positive and integer-valued.
The INAR(1)-Poisson model assumes that the counts are Poisson dis-
tributed. This assumption seems better than the assumption of normality
in the case of an ARMA-model. An other assumption of this method is
that there is positive correlation between the observations, caused by the
fact that αi ∈ [0, 1] in (3). The autocorrelation function

ρt,t−1 = αt

√
λt−1

λt
, (7)
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where λ is the positive Poisson parameter, shows that, according to the
INAR-model, a high number of observations in yt−1 will lead to more
observations in yt and a low number in yt−1 will cause less observations in
yt (Böckenholt, 1999, p. 322). Probably, there is negative correlation in a
certain count data set and than the INAR-model can not cover that. For
example, one day a person buys a lot a bread. Than he will probably not
buy that again the next day, because he still has enough. In this example,
many counts yesterday can lead to less counts today. In this case, the
INAR-model is probably less applicable.

All in all, the INAR-model seems to be pretty good for time series
of count data: it reckons with the fact of positive and integer-valued
variables.

2.4 ACI(p,q)-model

Another possibility of modeling time series is by using the newly suggested
Autoregressive Conditional Integer-valued model. This method is inspired
by the Autoregressive Conditional Duration model, introduced by Engle and
Russell, 1998. Two things have to be accounted for: the distribution of the
data and the parameter(s) which have to be calculated for this distribution.
Because this article is about count data, the Poisson distribution with pa-
rameter λ is most valid, while this distribution makes use of integer-valued
numbers. Again, other variables can be added by replacing the parameter
for a formula, and so

λi = ω + α1yi−1 + ...+ αpyi−p + β1λi−1 + ...+ βqλi−q (8)

can be used (Engle and Russell, 1998, p. 1133). ω, αi and βi in this
equation are parameters which can be estimated by using Maximum
Likelihood and λi is the conditional expectation of yi, E(yi|yi−1, ...y1),
which can be used as the parameter in the Poisson distribution shown in (2).

Again, by choosing the numbers for p and q, one chooses how many
lags should be used in the ACI-model. This paper will only use the
ACI-model with p and q equal to 1. Of course, other distributions can
be chosen, for example the Negative Binomial distribution. This choice
depends on the data and which distribution describes this data best.

An asset of the ACI-model is that lags can be used, as shown in (8).
Furthermore, by choosing the right distribution, the fact that only integer-
valued variables are present can be taken into account. In contrast with
the INAR-model proposed in Section 2.3, this method can handle negative
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correlations, by making αi and/or βi negative in the ACI-model in (8),
which can be useful in the example given in Section 2.3. These properties
are useful for the time series of count data, so probably this method can
handle the count data pretty well.

To conclude, the ACI-model seems theoretically most applicable. This
method has the least bounding assumptions which can harm the time series
of count data. In the next section, simulations will be used to see which
method is best in that particular view.

3 Model Selection by simulation

In Section 2 the different methods are shown and in this section, these
methods will be compared by looking at a simulation. In this section
simulations will be done to see if data generated by a certain method
(such as a INAR- or ACI-model) can also be described by one of the other
methods. This will show which method is applicable to different types of
count data.

Simulation is a way to see which method is useable for all kind of
data. First, in this section the simulation will be explained and after that,
it will be shown which method can explain different simulated data in the
best way, using different criteria, represented in Section 3.1.

In this paper, eight types of data, shown in Table 1, will be simulated:
four types using the INAR(1)-model and four using the ACI(1,1)-model. In
these types, some different simulations are included: with high or low au-
tocorrelation and with many or little zeros. Than, the ARMA(1,1)-model,
the INAR(1)-model, the ACI(1,1)-model and the Poisson distribution will
be used to see which method is able to model the simulated data sets. In
any further research, one can take a look at what happens when more lags
are added. This is beyond the scope of this paper.

Some expectations can be made. In the first two simulations, the Poisson-
model will do not so bad, because there is a low autoregressive part. In the
fifth en sixth simulation, the INAR-model will not have the best outcome,
because this method can not handle negative correlations. In the fourth
and eighth simulation, the ARMA-model will stand a chance, due to a high
autoregressive part and not so many zeros simulated in the data set. The
presence of zeros indicates that the ARMA-model possibly will return some
negative values, which is not applicable for count data.
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Simulation Parameter values % zeros Autocorrelation
1 INAR α ∈ [0.1, 0.25]

λ ∈ [1, 6] 7.21 0.17

2 INAR α ∈ [0.1, 0.25]
λ ∈ [7, 12] 0.01 0.17

3 INAR α ∈ [0.75, 0.9]
λ ∈ [1, 6] 7.47 0.80

4 INAR α ∈ [0.75, 0.9]
λ ∈ [7, 12] 0.01 0.80

5 ACI α ∈ [−0.2,−0.4]
β ∈ [−0.2,−0.4] 8.14 -0.34
λ ∈ [1, 6]

6 ACI α ∈ [−0.2,−0.4]
β ∈ [−0.2,−0.4] 0.03 -0.34
λ ∈ [7, 12]

7 ACI α ∈ [0.2, 0.4]
β ∈ [0.2, 0.4] 8.03 0.33
λ ∈ [1, 6]

8 ACI α ∈ [0.2, 0.4]
β ∈ [0.2, 0.4] 0.03 0.33
λ ∈ [7, 12]

Table 1: Simulations

The simulation is done as follows (Ross, 2006, p. 49-56):

1. Generate a random variable U from the Uniform distribution between
0 and 1.

2. If U < p0 set y = 0

3. If U < p0 + p1 set y = 1

4. If U < p0 + p1 + p2 set y = 2
. . .

where pi is the chance that y is equal to i, P (y = i). For pi different
distributions can be chosen, for example the probability distribution of the
INAR-model or the ACI-model. By doing this for a complete series of y,
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a time series data set is created, which can be used to see which method
reflects this data best.

To see which model is best to use on a particular simulated data set,
some criteria can be used. These criteria, which be explained in the next
section, can be used to compare the methods for their ability to cover the
data set.

3.1 Criteria

First, the Akaike and Schwartz Information Criteria (AIC and respectively
SIC) are commonly used. By comparing two methods, the one with the
lowest AIC or SIC is said to be the best. These criteria can be found in (9)
and (10), where l(θ̂) is the log-likelihood value with optimal parameters, k
the number of parameters used and n the number of observations (Franses
and Paap, 2001, p. 42):

AIC =
1
n

(−2 l(θ̂) + 2k) (9)

and

SIC =
1
n

(−2 l(θ̂) + k ln(n)). (10)

Second, one can have a look at how good the methods can forecast the
values of the simulated data set. These forecasts are done by looking at
the expectations of the counted number yt+h, which makes the Root Mean
Squared Prediction Error (RMSE), defined by

RMSE =

√√√√ 1
m

m∑
h=1

(yt+h − ŷt+h)2 (11)

appropriate to use. In this equation, m is the number of observations which
have to be predicted and ŷ is the forecast which is done. This forecast can
be any real number. In this case, a part of the data is used to create the
model, while the other part will be predicted using this model. Again, the
model with the lowest value is said to be the best (Heij et al., 2004, p. 570).

Third, the power of prediction can be tested by using

1√
m

(2B −m), (12)
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where m is the number of observations and B is a counted value of the
times the prediction of model 1 differs less from the actual value than model
2 does. This equation is asymptotically N(0, 1) distributed. If this value is
significantly smaller than 0, model 2 is better than model 1, and vice versa
(Heij et al., 2004, p. 570).

Now, these criteria can be calculated every run of the simulation and
than the average values can be compared to see which method is applicable
to that data set.

3.2 Outcome of simulation

In Appendix A, the results of the simulation are shown. On the basis of
this AIC, SIC and RMSE, a pecking order is made, which is represented in
Table 2. Some interesting things can be noted.

Simulation ARMA INAR Poisson ACI
1 4 1 2 3
2 4 2 1 3
3 2 1 4 3
4 3 1 4 2
5 4 3 2 1
6 3 4 1 2
7 3 2 4 1
8 3 2 4 1

On average 3 1 4 2

Table 2: Pecking order

First of all, the simulation using an INAR-model can be covered by the
Poisson-model pretty well, which can be seen by the value for the RMSE in
the first simulation. But a problem with this method occurs when big au-
toregressive correlations are simulated, which can be seen by the big Akaike
Information Criteria in the fourth simulation. So, the Poisson-model will
not be safe to use when dealing with count data in time series. Moreover, it
is obvious from Appendix A that the ARMA-model does not act very well,
shown by high values of Akaike and Schwarz Criteria. Almost all of the
times the ARMA-model is ranked third or fourth. Only when new arrivals
are relatively low, as in simulation 3, the ARMA-model can cover the data.
Furthermore, when the data is from the INAR-model, the ACI-model is
moderate: most of the times it is ranked third in row.
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Of course, the ACI-model is best when simulating data with this method.
Furthermore, one can see that in simulations 7 and 8, INAR-model is not
doing badly. Only when negative correlations are simulated, as happened in
the fifth and sixth simulation, INAR is more worse than any other method.
This indicates that the INAR-model is doing good, when simulation with
the ACI-model is done with positive correlation.
Altogether, Table 2 shows that on average the INAR-model is doing best in
explaining count data in time series.

It should be said that the criteria shown in Appendix A can not be
tested very accurately. One can not say that one of the models is signif-
icantly better. That is why (12) is used too, and its values are shown
in Appendix B. When the value in this Appendix B is greater than 1.96,
method 1 is significantly better. When the value in this table is smaller
than -1.96, method 1 is significantly worse. What can be seen from the first
two simulations, is that the ACI-model does not significantly differ from
the INAR-model. A problem occurs when a relatively high autoregressive
part is added. Then the ACI-model does not predict the data very well.
When looking at the simulation using an ACI-model, one can see that
the INAR-model is not working when the data is simulated with negative
correlations. But, it is also clear, that this method does good when
the autocorrelation is positive: it does not significantly differ from the
ACI-model in the seventh and eighth simulations.

By looking at these simulations, it can be concluded that the ARMA-model
is always doing badly when dealing with count data. The Poisson-model can
not handle high autocorrelations, so this model seems not appropriate too.
The ACI-model is not always capable of reproducing the data simulated
by the INAR-model, especially in the presence of a high autoregressive
part. The other way around seems to be much better: only when negative
correlations are present, the INAR-model is significantly worse. And, as
seen in Appendix B, in the last two simulations, the INAR-model does
not significantly differ from the ACI-model. Also, in Appendix A, the
INAR-model is on average the best method to use. That is why, according
to simulations, the INAR-model seems best to use for count data in time
series.
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4 Application on Purchase Data

After simulated data, in this section real data will be used to see which
model does best. The data that will be used in this paper is about the
number of purchases of a certain product of a household every week. Obvi-
ously, the product which is observed will not always be bought, so this data
set contains some zeros. Furthermore, different households will be looked at.

First, an initial analysis of the data can be done. In Table 3 some
descriptive statistics of five of the observed households can be seen.

Minimum Maximum Median Mean Variance
Household 1 0 4 0 0.294 0.732
Household 2 0 2 0 0.490 0.455
Household 3 0 3 1 0.863 0.921
Household 4 0 6 1 1.235 2.024
Household 5 0 8 2 1.588 3.167

Table 3: Descriptive Statistics

Most of the times, the product is not bought, which is shown by the
low value of the median. The mean values found should be looked at in
combination with the variance. This variance is in four out of five cases
even higher than the mean, which is called overdispersion. Furthermore,
there seems to be correlation between lagged observations, so probably an
autoregressive model is recommended.

In Appendix C the Information Criteria, AIC and SIC, are indicted.
Because not so many weeks are available, the decision is made not to use
part of the data for prediction. That is why it is not possible to use the
Root Mean Squared Prediction Error (RMSE). The first thing to note is
that none of the methods is good for this data set. That is because no other
explanatory variables are added, which could have made the methods more
appropriate for the data. Not surprisingly, the ARMA-model is doing worst,
caused by the high number of zeros in the purchase data. Furthermore,
what we can see is that in all cases, the Poisson-model is doing pretty good.
In this model, no lagged variables are added, so this indicates that these
lagged observations do not have very significant influence. But, it is also
clear that the ACI-model does well too, especially when autocorrelation
seems to be relatively high. In the Poisson-model, for every point in data
the same parameter λ, shown in Table 4, is used and this can be seen as
the expected value of the number of purchases.
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Household 1 2 3 4 5
Parameter value 0.24 0.50 0.88 1.26 1.58

Table 4: Poisson parameters

Using the ACI-model from (8), the parameters in Table 5 are found.

Household 1 2 3 4 5
ω 0.084 0.118 0.411 0.111 0.849
α 0.116 0.257 0.121 0.357 -0.175
β 0.493 0.528 0.421 1.220 0.630

Table 5: ACI parameters

It can be concluded that when the purchase data are not really autoregres-
sive, the Poisson-model should be used and when more autocorrelation is
found, the ACI-model is a good replacement.
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5 Conclusion

After having shown the assumptions in Section 2, the simulation in
Section 3 and the purchase data in Section 4 three conclusions can be
drawn: a theoretical one, a conclusion based on simulations and a practical
conclusion based on household purchases.

Theoretically, the Autoregressive Condition Integer-valued model is
best for count data in time series. This model accounts for new arrivals,
autocorrelation and for negative as well as positive correlations.
Based on simulations, the Integer-valued Autoregressive model does pretty
well. This model can even handle data which is simulated by another
method, such as the ACI-model. The only problem is that negative
correlations will not be covered properly by the INAR-model.
Practicallly, for purchase data used in this paper, the Poisson-model
and ACI-model do best. This is mostly due to the fact that no lagged
variables are really significant to use, which makes the ARMA-model and
the INAR-model less appropriate. When there is small autocorrelation, the
ACI-model covers this best.

All in all, because the INAR-model is in almost all simulations ac-
ceptable, this model seems best to use in time series of count data. The
ACI-model is good, but when autocorrelation is high, the INAR-model is
significantly better than this method. Only when it is clear that negative
correlations will occur, the ACI-model is better to use.

6 Further Research

Some additional things can be watched at in further research. First, as
already mentioned in Section 2, the methods can be extended by adding
other (possibly) explanatory variables. This will make the methods better
in predicting than they are now, in this paper. Second, maybe a Negative
Binomial Distribution will do better in this kind of data than the Poisson
Distribution does. This can be investigated too. Third, the methods can be
extended by adding more lags. This will probably return different answers,
but for the INAR(p)-model, this is not a simple task. Moreover, other data,
with a bigger autoregressive part, will give another answer than is given in
this paper. These are just four possible further items which can be looked
at. Probably more research can be thought of.
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A Simulation: Information Criteria

Simulation Parameter values Criteria ARMA INAR Poisson ACI
1 INAR α ∈ [0.1, 0.25] Akaike 5.27 3.87 3.88 3.87

λ ∈ [1, 6] Schwarz 5.33 3.91 3.90 3.93
RMSE 1.836 1.824 1.818 1.826

2 INAR α ∈ [0.1, 0.25] Akaike 6.67 5.00 4.98 5.00
λ ∈ [7, 12] Schwarz 6.73 5.04 4.99 5.06

RMSE 3.054 3.068 3.043 3.076
3 INAR α ∈ [0.75, 0.9] Akaike 3.75 2.72 3.81 3.23

λ ∈ [1, 6] Schwarz 3.81 2.76 3.83 3.29
RMSE 1.685 1.787 1.823 1.805

4 INAR α ∈ [0.75, 0.9] Akaike 5.23 3.87 4.96 4.38
λ ∈ [7, 12] Schwarz 5.29 3.91 4.98 4.44

RMSE 2.879 3.037 3.099 3.045
5 ACI α ∈ [−0.2,−0.4] Akaike 5.37 4.07 4.05 3.90

β ∈ [−0.2,−0.4] Schwarz 5.43 4.12 4.07 3.96
λ ∈ [1, 6] RMSE 1.997 1.988 1.987 1.988

6 ACI α ∈ [−0.2,−0.4] Akaike 6.76 5.20 5.16 5.03
β ∈ [−0.2,−0.4] Schwarz 6.82 5.24 5.18 5.09
λ ∈ [7, 12] RMSE 3.277 3.282 3.271 3.279

7 ACI α ∈ [0.2, 0.4] Akaike 5.34 3.89 4.00 3.88
β ∈ [0.2, 0.4] Schwarz 5.40 3.93 4.02 3.94
λ ∈ [1, 6] RMSE 1.966 1.978 1.980 1.979

8 ACI α ∈ [0.2, 0.4] Akaike 6.78 5.05 5.16 5.04
β ∈ [0.2, 0.4] Schwarz 6.84 5.09 5.18 5.10
λ ∈ [7, 12] RMSE 3.268 3.287 3.289 3.287

On average Akaike 5.65 4.21 4.50 4.29

Schwarz 5.71 4.25 4.52 4.35

RMSE 2.495 2.283 2.539 2.536

Information Criteria per simulation: the lower, the better it is.
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B Comparing methods

Method 1 ARMA ARMA ARMA INAR INAR Poisson
Method 2 INAR Poisson ACI Poisson ACI ACI
Simulation 1 -18.300 -17.969 -18.220 2.343 0.501 1.512
Simulation 2 -16.824 -16.672 -17.280 2.835 0.590 0.787
Simulation 3 -59.847 -63.808 -60.508 8.953 3.515 -3.640
Simulation 4 -55.446 -61.733 -60.052 5.510 3.801 -5.769
Simulation 5 -12.02 -11.99 -13.81 -11.42 -2.80 -2.56
Simulation 6 -12.44 -12.47 -11.19 -9.56 -2.39 -2.42
Simulation 7 -26.52 -26.81 -28.14 2.58 -1.47 -0.82
Simulation 8 -26.79 -27.45 -27.30 2.61 -0.95 -1.12

Comparing methods by using (12). When significantly positive, model 1 is
better, when significantly negative, model 2 is better.
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C Data: Information Criteria

ARMA INAR Poisson ACI
Household 1

Akaike 2.60 1.43 1.41 1.44
Schwarz 2.72 1.51 1.45 1.56
Household 2

Akaike 2.04 1.83 1.84 1.82

Schwarz 2.15 1.91 1.87 1.93
Household 3

Akaike 2.83 2.53 2.50 2.55
Schwarz 2.94 2.60 2.53 2.66
Household 4

Akaike 3.61 3.25 3.21 2.87

Schwarz 3.73 3.33 3.25 2.98
Household 5

Akaike 4.04 3.81 3.77 3.78
Schwarz 4.16 3.89 3.81 3.89

Information Criteria per household: the lower, the better it is.


