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Abstract 
 
Due to different circumstances, major disruptions on a railway network do frequently occur. 

When the problem that caused the disruption is solved, large amounts of passengers are 

gathered in the stations. Most railway companies start with running the initial schedule as 

soon as possible. To the best of our knowledge, until now no attempts have been made to 

establish a temporary shuttle service to disperse the passengers to the surrounding stations. 

In this thesis, we will formulate a model that maximizes the total number of transported 

passengers from the station in which the initial disruption occurred to the stations around it. 

We focus on the allocation of rolling stock to the different directions using an Integer Linear 

Program (ILP) and we check whether the given solutions can be translated into a feasible 

timetable using a complete enumeration of the leaving orders of the trains. 

We report some computational results on three different scenarios and discuss those results. 
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Chapter 1 – Introduction 

 

Every day all over the world millions of passengers are transported by train. Those of them 

who drive by train know that sometimes things go wrong and they miss their appointment. In 

some countries many even are prejudiced against the railway companies, saying that it is 

extraordinary when everything goes well. However, most people do not know what has gone 

wrong and what the role of the railway company in the solution of the problems is. 

 

For example, in the Netherlands, every day approximately 1.2 million people are being 

transported by train without experiencing big troubles. However, every passenger that uses 

the train regularly has some experience with frustrating delays. A lot of those delays are 

minor delays, but on average three major disruptions (that block an entire route) occur per day. 

Many of those disruptions have causes that can be considered to be external factors and thus 

cannot be foreseen. 

 

Because huge delays are one of the most annoying experiences for railway passengers and 

have a significant impact on passenger satisfaction, the Operations Research (OR) community 

develops methods to improve the so called railway disruption management process. At 

Netherlands Railways, thus far railway disruption management had as its primary goal to 

reschedule the original timetable. 

 

In this report, we present an innovative idea to approach a totally new timetable for a given 

period in the case of a complete blockage of a major station. We introduce a timetable that 

will use the available rolling stock within the problem station at the moment of the disruption 

to transport huge amounts of passengers to the surrounding stations before returning to the 

initial timetable. In this report, we focus on the first step, the allocation of the different trains 

to the different directions and after a solution has been found, we show whether it could 

deliver a feasible timetable. In this initial stage of the research, many complicating factors are 

not considered in the model. Some of them will be discussed in the problem statement or in 

the conclusion. 

 

The remainder of this report is organized as follows. In chapter 2 the problem will be 

explained in more detail and we give an overview of the assumptions we made while defining 
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the exact problem. A brief literature overview on railway timetabling and disruption 

management is given in chapter 3. In chapter 4 we define a mathematical formulation, which 

we use to solve the problem. The scenarios we use for testing our approach are introduced in 

chapter 5. Computational results accompanied by some observations are given in chapter 6. 

We finish with some concluding remarks and directions for further research in chapter 7. 
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Chapter 2: Problem description 

 

In this chapter we will define the problem we deal with. First, we will describe the situation in 

which the proposed model can be used, and then we define the objective of the research. 

Finally, we give an overview of the assumptions we have made in order to arrive at our 

specific problem. 

 

Situation 

Due to many different causes, many of which are the result of external, uncontrollable 

circumstances, it happens that a route between two stations or a station itself have suddenly to 

be closed for a considerable amount of time. In this thesis we focus on the situation that a 

major station (in the Netherlands, for example, these would include Utrecht, Rotterdam and 

Amsterdam) is not accessible for any train for a considerable amount of time. As a result of 

this, thousands of passengers will come together in the closed station, while many others have 

to wait to reach the particular station. 

Until now, when the problem was solved, the objective was returning to the initial schedule as 

soon as possible. In this report we will take a look at an alternative, in which the available 

rolling stock and crew at the ‘problem station’ is used to transport the enormous amounts of 

passengers in a convenient way to one of the stations around the major station. Those stations 

should be those from which the passengers can continue their journey in different directions. 

That is, for example in the case that Rotterdam Central should be closed, the passengers are 

transported to Den Haag, Gouda and Dordrecht. 

 

Objective 

The objective of this research is to formulate a method to establish a temporary (acyclical) 

railway timetable that transports the passengers to the closest stations around the ‘problem 

station’. There is no need for the timetable to be cyclical, because it will only be in use for a 

short period. The railway timetable should be able to divide the enormous mass of passengers 

over different stations in a given amount of time, for example an hour. For practical 

considerations, the calculations must be performed within only a few minutes. After some 

time interval, the objective is to return to the standard timetable, but that part will not be 

included in this research.  
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Assumptions 

In order to be able to establish a temporary timetable, we made a number of assumptions.  

We assume that when a problem appears, the following information can be considered to be 

available within a small amount of time: 

- the estimated numbers of passengers that will pile up within the station until the moment 

the problem is solved 

- the estimated numbers of passengers that will arrive at the station during the period that 

the alternative timetable is running 

- the available rolling stock within the station with its capacity 

- the infrastucture of the region with its restrictions 

- the set of nodes that should be reached by the timetable 

- the interval during which the timetable will be in use. 

 

Furthermore, we make the following assumptions or simplifications of the otherwise complex 

problem: 

- We leave the original timetable out of the model. That is, we do not take into account the 

trains that are stuck on a route between the major station and the stations that we try to 

reach. Furthermore, we do not try in this stage of the research, to make the temporary 

timetable in such a way that the connection with the standard timetable is optimal. 

- When the first trains are going to drive, enormous amounts of passengers are set in motion. 

In order to minimize the chaos within the station there will be a period of at least five 

minutes between two consecutive train departures into a given direction. 

- The planning within the station is a complex problem itself. Because it is not the objective 

of this research to implement that problem, we assume that it is possible in each major 

station to assign a number of inbound and outbound routes to the different directions, in 

such a way that no problem will occur between departures and arrivals of the different 

trains. 

- We stated above that we take the available rolling stock and its capacity as given in the 

specific situation. Because the major stations often contain a crew depot, we assume that 

the required amount of train drivers and conductors is always available. 

- We assume that the number of passengers that wants to leave the ´problem station´ is 

always bigger than the number that wants to reach it from one of the surrounding stations. 

As a result of that, a train that leaves in the direction of one of the minor stations has 

always enough capacity for the opposite direction. 
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Chapter 3: Literature Overview 

 

Although the specific problem we consider in this report has to the best of our knowledge 

never been handled in the scientific literature, there are some results in literature that provide 

background information about railway timetabling, delay management and rerouting. In this 

chapter we will give a brief overview of some papers that are interesting for our own case.  

 

Kroon et al. (2009) provide the background for the current research. They explain the way in 

which the current timetable in the Netherlands was established and introduced in December 

2006. The objective of the introduction of this timetable was to facilitate the growth of the 

passenger and freight tranport on a highly utilized railway network and improve the 

robustness of the timetable, thus resulting in fewer operational train delays.  They explain a 

number of subproblems that have to be taken into account when establishing a new timetable, 

like routing trains through stations, rolling stock scheduling and crew scheduling. 

 

Hansen and Pachl (2008) present a wide range of issues relating to the modelling of a railway 

timetable. Especially the chapters about the analysis of train delays and about rescheduling 

provide some helpful information. However, these parts of their book focus on relative minor 

delays that require some adjustments to enable the system to return to its regular schedule. 

They do not mention options that can be considered when a major delay occurs due to 

problems on one of the important stations of the available infrastructure. 

 

Huisman et al. (2005) provide a more general overview of all the areas in which Operations 

Research is of value in the processes concerning the timetabling for passenger railway 

transportation. They present state-of-the-art models and techniques. They show the usefulness 

of results in the strategical, tactical and operational stages of the planning process. 

Furthermore, they provide some helpful ways for reliability analysis and some suggestions for 

improvements. They use the situation at NS Reizigers for showing the ways the models they 

present are implemented in practice. 

 

These are all pretty general with respect to the problem we have under consideration in this 

report. Potthoff et al. (2008) are somewhat more specific, focusing explicitly on problems 

related to major disruptions. They provide helpful information on the occurrence of 
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disruptions that are not within the control of the railway organisation. The point of their 

article is, however, not related to the passenger side of the disruption problem, but to the crew 

side. They present an innovative approach to reschedule the crew, where we are looking for 

an innovative approach to reschedule a part of the timetable in order to solve the passenger 

side of the problem. 

 

Another article focusing on major disruptions and related problems is Jespersen-Groth et al. 

(2009). These authors describe the roles of the different actors in the disruption management 

proces. Furthermore, they discuss the three main subproblems, namely timetable adjustment, 

rolling-stock and crew rescheduling. Finally, they give some remarks about the integration of 

these three re-scheduling processes. 

 

Although all the literature forementioned provides us with information about part of the 

situation we handle, the main problem with most of them is that they use results for cyclical 

timetables. Therefore, the most relevant article for our current research is the one from 

Caprara et al. (2002). They describe a model for solving the train timetabling problem using 

an acyclical approach. They propose a graph theoretic formulation using a directed multigraph. 

This formulation is then used to derive an integer linear programming model that is relaxed in 

a Lagrangian way. 
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Chapter 4: Model Formulation 

 

In this chapter we will present the model we use for establishing an acyclic timetable for a 

given time interval. In the model two major parts are to be integrated: The allocation of trains 

to destinations and the times on which the different trains will leave in the various directions, 

that is, the actual timetable. Combining those two parts in one model would be optimal, but 

because we have to deal with a very complex problem when we want to do both parts in one 

single model, we decided to divide the problem into two parts. This makes the model and 

corresponding calculations somewhat easier. As a result, however, we are likely to arrive at a 

suboptimal solution. In the first part of the model, we formulate a model to allocate the 

available rolling stock to the different destinations. Then with the obtained allocation, we try 

to establish a timetable for the different sets of trains and destinations. However, we focus on 

the first part of the problem and will use an easy solution to show whether a feasible solution 

exists. Furthermore, we will give some suggestions for solving this second part more exact. In 

Chapter 6 we will show the results and we will provide some remarks about the supposed 

suboptimality. 

 

4.1 Rolling Stock allocation 

In this first part of the problem, we have to find a way to allocate the available rolling stock to 

the different destinations. The objective is to find an allocation for the different trains with 

their given capacities to the different groups of passengers. 

 

In order to formulate a model we define the following sets: 

- The set of destinations D.  

- The set of passengers P, with pd denoting the total number of passengers in the direction of 

destination d. That is, both passengers with destination d and passengers for the stopping train 

in the direction of d are included in pd.  

- The set of stopping train passengers S, with sd denoting the number of stopping train 

passengers in the direction of destination d. This group of stopping train passengers is defined 

as homogeneous, that is, the exact destination of the passengers is not taken into account. By 

definition, for every d ∈ D it follows that .dd ps ≤  

- The set of available trains T characterized by their capacities. 
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Furthermore, we have two vectors ud and vd with the total travelling times from the major 

station to each of the destinations d for stopping trains and intercity trains, respectively. 

The parameter ct denotes the capacity of train t. Furthermore, we know the length l of the time 

interval in which the alternative timetable is to be used. The parameter ct denotes the capacity 

of train t. 

 

Now, in order to be able to formulate a model that takes all this information into account, we 

have to make a decision about the following important issue: 

 

In practice, there is the possibility that passengers that are on their way to the final destination 

(and thus ‘should’ make use of the intercity train) will use the stopping train when a stopping 

train leaves before an intercity. This would result in a lot of complexities in the formulation of 

both the objective function and the constraints. Therefore we have to make an extra 

assumption, assuming ‘reasonable behaviour’ of the passengers. That is, we model an optimal 

situation in which a stopping train is first filled by stopping train passengers, and only when a 

fraction of the capacity remains, those places will be filled by intercity passengers. With this 

assumption, we can include the two different passenger groups in the model, but we do not 

have to make the model more complex or make the two problems disjoint. 

 

In order to formulate the model we introduce the following decision variables: 

- ytd  is the number of times train t ∈  T travels towards destination d ∈ D as a stopping train. 

- ztd is the number of times train t ∈  T travels towards destination d ∈ D as an intercity train. 

- xtd is 1 if train t ∈ T travels towards destination d ∈ D, 0 otherwise. In the model, xtd is split 

up in qtd for stopping trains and rtd for intercity trains. By definition (all are binary variables) 

it should hold that xtd = rtd + qtd. 

- The variables gd, hd and jd denote penalty variables for the various restrictions and will be 

explained in more detail below. 



 12 

Now the model can be formulated as follows: 

 

Objective function: 

∑
∈
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ddd jhg )(min γβα          (1) 
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∑
∈
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Tt

dtd Ddjx 1          (7) 

∑
∈

∈∀≤
Dd

td Ttx 1           (8) 

DdTtrqx tdtdtd ∈∈∀∈ ,}1,0{,,         (9) 

DdTtzy tdtd ∈∈∀Ζ∈ + ,,         (10) 

Ddjhg ddd ∈∀Ζ∈ +,,          (11) 

 

The objective function (1) is defined as the sum of the penalties for the differences between 

the total capacity that goes to a destination and the amount of passengers that want to go in 

that direction plus an additional penalty when no train heads in a given direction. By 

definition, those differences all are non-negative. The parameters α, β and γ can be varied 

according to the weights that are given to the different situations. Intuitively, α should always 

exceed β, because passengers for destination d can use both stopping and intercity trains, but 

stopping train passengers can only use the stopping trains. Furthermore, in some cases it can 

be helpful to define α and β in such a way that the objective function is piecewise linear. In 

chapter 6 we will show which options we tried to obtain optimal results. 
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Constraints (2) impose that for every destination d the sum of the total capacity of the 

stopping trains leaving towards that destination plus the penalty for the number of passengers 

that cannot reach their destination is at least equal to the total amount of stopping train 

passengers towards the destination. 

Constraints (3) are quite similar to constraints (2), the difference being that this one states that 

the capacity of all trains plus a penalty are at least equal to the total number of passengers 

towards each destination.  

 

Constraints (4) and (5) state that, for stopping trains and intercity trains respectively, the 

number of times a train t drives towards destination d is smaller or equal to a factor Md or Nd 

times a binary variable xtd indicating whether the train t leaves for destination d at all. Md and 

Nd denote the maximum that the combination of the total interval time and the travelling time 

from the major station to a destination impose on the number of times a given train t leaves 

for a destination d. The factor 0.5 denotes that a train will have to get back before leaving 

again. As a result, each train will be either at the central station or at one of the destinations at 

the end of the period l. 

 

Constraints (6) state that the variable xtd, denoting whether train t leaves towards destination d, 

is the sum of the variables qtd, denoting whether train t leaves towards destination d as a 

stopping train, and rtd, denoting whether train t leaves towards destination d. Thus, a train can 

leave towards a given destination being either a stopping train or an intercity train. 

 

Constraints (7) impose that for every destination the sum of all trains that reach it plus a 

penalty should be at least equal to one. This means that a penalty is imposed when a 

destination is never reached within the solution. 

 

Constraints (8) impose that every train is able to reach only one destination. 

 

Finally, constraints (9) – (11) denote the range of the variables. 

 

4.2 Piecewise Linear variant 

The model presented in the previous section is a linear model, minimizing the total number of 

passengers that is not transported in the given solution. However, it is possible that more than 
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one solution gives the same minimum. In that case, we have to choose between different 

options, but the given model will give only one solution.  

In the case of two equally good solutions with respect to the minimization, we prefer the one 

with the lower variance in the undercapacities. For example, when we have an undercapacity 

of 1000 passengers, we prefer the solution with undercapacities of 400 and 600 in two 

directions to the one with undercapacities of 0 and 1000 passengers. This is because the given 

capacities of the trains are in practice somewhat lower than the total numbers of passengers 

that fit within the train when people do not know how long they have to wait for a better 

option. Thus spreading the undercapacity will reduce the total number of passengers that is 

not transported. 

We can formulate the model to achieve this using a piecewise linear objective function. This 

could be done, for example by introducing dummy variables that are related to α or β (the 

weights of gd and hd, respectively) in the following way: 

Suppose that the dependence of the objective function on gd is continuous and piecewise 

linear with slope α for gd ≤  a and with slope α + δ for gd > a. This can be formulated as 

follows. Let D be a dummy variable with Dd = 0 if gd ≤  a and 1 otherwise; then the objective 

function becomes 

 ∑
∈

++−+
Dd

ddddd jhDagg ))((min γβδα  

Of course, it is possible to split up the values of the slope into more parts, using various 

breakpoints. The same could be done for β, and the weights and ranges can be changed when 

the scenario changes. 

 

4.3 Timetabling 

In this stage the objective is to establish a way to obtain a feasible timetable between the 

major station and the surrounding stations, based on the results of the previous section. 

Because we know which trains drive which number of times in a certain direction, we can 

split up the problem for each of the directions. Because we assumed as given that we use one 

route to reach a given destination and one to get back, the problem in this stage is a relatively 

easy one. We just have to find the order in which the trains leave and the optimal times at 

which they leave. 

 

Because we know how long a certain train will take to reach its final destination (given that it 

is used as an intercity or an stopping train), the minimum time the trains have to wait at the 
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different stations and the minimum distance that should at each moment on the route exist 

between two consecutive trains, this problem can be solved using a number of different 

methods. 

In this section we will suggest three ways to obtain a (optimal) feasible solution, of which we 

will use only the first, because of the small scale problems we investigate. 

 

Complete enumeration 

The most straightforward way for solving the problem for a given destination and the 

corresponding set of trains is the complete enumeration of the orders in which the trains can 

leave and checking whether a certain order is feasible. In small scale problems, this could be 

done by hand within a few minutes and by a computer within a few seconds. This method will 

by definition find the optimal solution whenever a solution exists. However, in practice it 

possibly takes too much time when the number of trains and trips increases. We use it in this 

report as a means to show whether the results of the first half of the problem are usable for 

obtaining a feasible solution. 

 

Heuristic methods 

Another possibility is the use of a greedy heuristic. In our case, the heuristic could be based 

on ordering of the trains based on the gap between the total interval time and the total time 

needed for performing the given amount of trips, on the capacity of the trains (the bigger one 

first), or on the type of train (an intercity before a stopping train). Using a few simple steps, it 

should be fairly easy to check whether a feasible solution exists. However, we most likely add 

to the suboptimality because the solution will itself again most likely be suboptimal. In case 

of small scale problems, this solution will almost be identical to complete enumeration. 

 

Linear Programming 

When the size of the problem increases, the number of possibilities within the complete 

enumeration increases very fast. Therefore, modelling the problem using an (integer) linear 

program is perhaps the best solution. That way, it will be also possible to obtain an optimal 

solution in this part of the problem, based on the results of the previous part. We suggest 

using a simplified version of the graph theoretic model Caprara et al. (2002) introduce. Using 

a graph G = (V, A) with V the set of the central station and the destinations and A the set of 

arcs between the central station and the various destinations at every (discretized) moment of 

time. 
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Chapter 5: Scenarios 

 

In order to be able to test our model, in this chapter we will introduce three quite different 

scenarios in which the model will be tested. First, we will check how the model works in an 

‘easy’ scenario, that is, a scenario in which the capacity of the trains exceeds the amount of 

passengers that is to be transported. The second scenario will be an ‘impossible’ scenario, in 

which the number of passengers will greatly outnumber the capacity of the trains. This way, 

we can see whether the model indeed maximizes the total number of passengers that are 

transported. The third scenario we will introduce will be the most ‘tight’ one. That is, in this 

scenario the total capacity within the planning horizon will be almost as much as the total 

number of passengers to be transported.  

 

In this chapter we define the different scenarios. First we will give a few general facts that 

hold in all cases. After the framework is introduced we will split up between the different 

scenarios. 

 

General framework 

In all three scenarios we will use for our calculations in this report, some parts of the situation 

will remain stable. 

First of all, we will use the same problem station in every scenario. We will name this central 

station A from now on. Furthermore, we will use a set of destinations containing three stations, 

named B, C and D. As a result of this, in station A we will have six groups of passengers. For 

each of the stations B, C and D we have passengers heading towards that station itself, and 

groups of passengers for the stopping trains in that direction. 

Following our earlier assumptions, there are two paths between A and each of the other 

stations, one in the direction of those stations, and one back in the direction of station A. 

For all of the destinations we know the running times for stopping and intercity trains, 

respectively. The running times for the stopping trains are inclusive the dwelling times at the 

intermediate stations. Table 1 reports the running times. 

 

Destination B C D 

Stopping train 18 minutes 20 minutes 12 minutes 

Intercity 14 minutes 16 minutes 9 minutes 

Tabel 1: Running times 
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Furthermore, in all cases we will use a time period of two hours in which the trains can be 

used for the alternative timetable. 

 

Finally, at the moment the disruption occurs the following set of trains (table 2) is available at 

the station. Capacities denote de sum of seating and standing places. 

 

Train number Train type Capacity 

1 ICM_3+4 830 

2 ICM_3+4 830 

3 ICM_4+4 900 

4 VIRM_6 900 

5 DDAR_4 750 

6 SLT_4+4 800 

7 SLT_4+6 1000 

8 SGM_3+3 1000 

Total capacity  7010 

Tabel 2: Trains and Capacities 

This way, we consider the total infrastructure and rolling stock constant over all the scenarios 

and we will define the different scenarios by giving specifics about the amounts of passengers 

for the different directions. 

 

Scenario 1 

The first scenario will be a relatively easy one, in which all passengers can reach their 

destination. The problem that caused the disruption was solved within an hour, and so the 

amounts of passengers are not extraordinary high. Table 3 shows the numbers of passengers 

that are stuck in the central station A for each of the destinations. 

 

Destination B_s B_tot C_s C_tot D_s D_tot 

# Passengers 1500 4500 2250 6000 1200 3500 

Tabel 3:Passengers Scenario 1 

  

So, a total of 14,000 passengers is to be transported, of which 4,950 are stopping train 

passengers. 
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Scenario 2 

The second scenario will be the one in which we know beforehand that it will be impossible 

to transport all passengers. In that case, we will be able to check whether the model indeed 

maximizes the number of passengers transported. Furthermore, we will have the opportunity 

to check what influences the changes in α, β and γ in the objective function have and which 

preferences result in the best outcome. 

In order to obtain a difficult situation, we use the same set of rolling stock that we used in 

scenario 1, but we double the amounts of passengers. This results in the following passenger-

flows (table 4) towards the different destinations. 

Destination B_s B_tot C_s C_tot D_s D_tot 

# Passengers 3000 9000 4500 12000 2400 7000 

Tabel 4: Passengers Scenario 2 

Thus, in this case a total of 28,000 passengers have to be transported within the set period of 

two hours, of which 9,900 are stopping train passengers. 

 

Scenario 3 

The third scenario is the hardest one, because we try to make things tricky in this case. The 

groups of passengers and the total number of passengers are chosen in such a way that we do 

not know beforehand whether the model will succeed in transporting all passengers or not. In 

this way, varying α, β and γ will perhaps give possibilities for the problem just to be solved, 

or just to fall short. 

 

In this scenario, the following numbers of passengers are to be transported. 

Destination B_s B_tot C_s C_tot D_s D_tot 

# Passengers 2250 6750 3200 9000 1800 5250 

Tabel 5: Passengers Scenario 3 

So, in this case the total amount of passengers to be transported is 21,000, of which 7,250 are 

stopping train passengers. 
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Chapter 6: Results 
 
In this chapter we will present the results of testing our model in the scenarios we introduced 

in the previous chapter. We test the model using AIMMS 3.9. In all scenarios we tested the 

program was finished within a single second running on a Intel Celeron processor with 2 GB 

RAM clocked at 2GHz. 

In our description of the results we will start with the most obvious choices for α, β and γ. In 

the different scenarios we will explain our choices when we try out other specifications or 

when we make changes in the initial model. 

 

Results scenario 1 

In scenario 1, which is by definition an easy one, the following results are obtained. 

First, we show the case in which α = β = γ = 1, so that every part of the objective function gets 

equal weight.  

Scenario 1 B C D 

Total Capacity 4980 (+480) 9700 (+3700) 4000 (+500) 

Stopping train cap. 4980 6700 4000 

Total trips 6 11 4 

Total stopping trips 6 8 4 

Tabel 6: Results Scenario 1 

The numbers in brackets show the over- or undercapacities. Positive numbers denote 

overcapacities, negative numbers undercapacities. As is perfectly clear from those results, all 

passengers can be transported and the total overcapacity amounts to 4680 places. The only 

problem will perhaps be the schedule towards destination C. However, using complete 

enumeration it can be shown that this solution can be translated into a feasible schedule. 

Because the objective function has a value of 0 in this solution, any change in α, β and γ will 

have no influence on the results.  

 

Even though a solution is found, the enormous overcapacity in this solution suggests that 

there are options for improvements. A first and most intuitive try would be the reduction of 

the interval length l. Although we suppose this works fine, within the scope of our research it 

will be hard to say anything about it, because we do not know the influence of this interval 

reduction on the total amounts of passengers that are to be transported. 
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In scenarios like these, another option is an addition to the objective function. Although in the 

other cases minimizing the total number of trips is no goal, in this case it will reduce the over-

capacity and thus the unnecessary ‘empty kilometers’. 

 

This way, the objective function can be defined as 

)()(min td
Dd Tt

td
Dd

ddd zyjhg ∑∑∑
∈ ∈∈

++++ γβα       (12) 

Scenario 1_expanded B C D 

Total Capacity 4800(+300) 6020(+20) 4000 (+500) 

Stopping train cap. 4800 3320 4000 

Total trips 5 7 4 

Total stopping trips 5 4 4 

Tabel 7: Results Scenario 1 (expanded version) 

This way, the overcapacity is reduced from 4680 places to 820 places and the total number of 

trips is reduced from 21 to 18. It is clear that in a situation with relatively low amounts of 

passengers, this addition to the objective function proves to be helpful. 

 

Results Scenario 2 

In scenario 2, which beforehand will never result in travelling possibilities for all passengers, 

we will investigate how the model behaves with only a small capacity in comparison to the 

total number of passengers to be transported. In order to get an impression which choices for 

α, β and γ might be helpful we give the same results as in scenario 1, that is, with α = β = γ = 

1.  

Scenario 2 B C D 

Total Capacity 6000 (-3000) 7460 (-4540) 6920 (-80) 

Stopping train cap. 6000 (+3000) 4760 (+260) 6920 (+4520) 

Total trips 6 9 8 

Total stopping trips 6 6 8 

Tabel 8: Results Scenario 2 

For this outcome, feasible schedules are easy to obtain, again by using complete enumeration 

of the possible leaving orders. However, only 72.8% of the total passengers are transported 

within this solution. It appears that relatively many stopping trains are chosen in comparison 

to the fraction of stopping train passengers. This is because the stopping train passengers that 
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are not transported are both accounted for in the penalties gd and hd. Thus raising β should 

improve the solution. 

Indeed raising β to 2 (or any case in which α and β have a relation of 1:2) results in an extra 

capacity of 500 passengers, raising the total transported passengers to almost 75%. In al those 

solutions, changes in γ have no influence, because all destinations are reached. All β’s that 

exceed the relation 2:1 result in lower amounts of passengers transported due to neglected 

stopping train passengers. 

 

Results Scenario 3 

The third scenario promises to be the most interesting for testing, because it should somehow 

be possible to transport all passengers. In order to find out which improvements will be 

helpful, we first present the results for the ‘standard’ case with α = β = γ = 1.  

Scenario 3 B C D 

Total Capacity 6000 (-750) 8720 (-280) 6200 (+950) 

Stopping train cap. 6000 (+3750) 5120 (+3120) 6200 (+4400) 

Total trips 6 10 8 

Total stopping trips 6 7 8 

Tabel 9: Results Scenario 3 

This is actually quite a nice result, with more then 95% of the 21,000 passengers being 

transported. Furthermore, the undercapacity (maximum of 750 passengers in total on six trips) 

will in practice most likely be solved. 

However, in the result some things are remarkable and need further explanation or research. 

First of all, the total capacity in the initial solution exceeds the total capacity in scenario 2. 

This can be due to a different combination of destinations and trips, resulting in higher 

numbers of trips for bigger trains for example. 

Another result, one which perhaps will give room for improvements, is the fact that the 

overcapacity to destination D is almost equal to the undercapacity towards the two other 

destinations.  

 

In this case, raising the β does nog change anything. Furthermore, all destinations are reached, 

so changing γ will have no influence. 

However, there is another option for improvement. With the current model, all differences are 

weighed equally. However, it is better to have to undercapacities of 300 passengers than one 
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of 600 and one of 0 passengers, because the given capacities are not absolute maxima. When 

it is really busy people will prefer travelling uncomfortable to not travelling at all. This way of 

spreading the undercapacities could possibly be implemented into the model by making the 

objective function piecewise linear in the way declared in section 4.2. 

 

We implemented this by trying various combinations of breaks and weights, especially on the 

value of β and thus the influence of gd. For example, the case with break points at values of 

200 and 500 for gd turned out to reduce the variance of the undercapacities. However, in all 

cases we considered, this resulted in a considerable increase of the objective value. This is the 

result of the sum of small differences in capacities over a number of trips. In order to obtain a 

standard on which increase of the objective function is allowable in return for a decrease of 

the variance of the undercapacities, more research would be needed. 

 

In practice, we suggest to make a manual change in the solution by deleting a trip to D and 

rescheduling it towards B. In the given formulation, the model is unable to allocate a train to 

different directions. 
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Chapter 7: Conclusion 
 
In this final chapter we will summarize this thesis and derive some conclusions, remarks and 

points of discussion. 

 

The model we defined in this report seems to be able to solve the problem we defined in the 

second chapter. That is, given the list of assumptions we gave, we established a method for 

allocation of the trains to the different directions which seems to result in a solution that 

maximizes the number of transported passengers in such a way that a feasible timetable 

remains possible. Furthermore, all those solutions can be obtained within seconds after the 

needed information is gathered. We suggest that different scenarios, based on the relations 

between available capacity and waiting passengers, are pre-programmed. 

 

Within the solution, there is one crucial choice we have made, by splitting the allocation of 

rolling stock and the establishing of a timetable for each of the directions. This way the 

program will most likely end up in a suboptimal solution. We suggest further research on a 

graph-theoretic model like the one of Caprara et al. (2002) for combining the two stages. The 

most difficult difference with their model will be the combination of stopping train and 

intercity passengers that will result in a totally different cost function. 

 

Furthermore, we made a number of simplifying assumptions because we are in the first stage 

of thinking about this particular problem. However, a number of those assumptions should be 

changed or integrated into the model.  

First and most important is the assumption about the original timetable. We assumed that no 

trains were stuck underway in between the problem station and the surrounding station. In 

practice, at every moment of the day somewhere a train will be halfway its route or just about 

entering a station. The model should be adjusted in such a way that those can be taken into 

account. Furthermore, one of the extra goals of the model should be to allocate the trains and 

numbers of trips in such a way that they will end up at the end of the given interval l in the 

station that fits best into the original timetable. Also, the influence of the temporary timetable 

in a given area on the timetable in the surrounding area should somehow be measured. 

 

We made a few additional assumptions about rolling stock, available crew, infrastructure and 

the planning inside the station that should in reality be made part of the programming process. 
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However, methods for those subproblems exist for the planning of the regular timetable and 

can be used in the given situation. 

 

We conclude that the model we formulated works quite well given the assumptions we made, 

but that a lot of work is still to be done before a real comparison with the regular ways of 

railway disruption management will be possible. 



 25 

References 

 

Caprara, A., M. Fischetti, P. Toth. 2002. Modeling and solving the train timetabling problem.        

Operations Research 50(5), pp. 851-861. 

Jespersen-Groth, J., D. Potthoff, J. Clausen, D. Huisman, L.G. Kroon, G. Marόti, M.N. 

Nielsen. 2009. Disruption Management in Passenger Railway Transportation. Robust and 

online large-scale optimization vol. 5868, pp. 399-421. 

Hansen, I.A., J. Pachl (editors) 2008. Railway Timetable and Traffic. Eurailpress. 

Huisman, D., L.G. Kroon, R.M. Lentink, M.J.C.M. Vromans. 2005. Operations Reseach in 

passenger railway transportation. Statistica Neerlandica 59(4), pp. 467-497. 

Kroon, L.G., D. Huisman, E. Abbink, P.J. Fioole, M. Fischetti, G. Marόti, A. Schrijver, A. 

Steenbeek, R. Ybema. 2009. The new Dutch Timetable: The OR Revolution. Interfaces 

39(1), pp. 6-17. 

Potthoff, D., D. Huisman, G. Desaulniers. 2010. Column Generation with dynamic duty 

selection for railway crew rescheduling. Transportation Science (online). 

 


