

How we feel and who we feel with

Corporate discursive construction of AI as a social companion

Student Name: Chiara Milani

Student Number: 698703

Supervisor: Delia Dumitrica

Master Media Studies - Media, Culture & Society

Erasmus School of History, Culture and Communication

Erasmus University Rotterdam

Master's Thesis

June 2025

Word Count: 16360

Abstract

This thesis investigates how companies in the emerging AI companion industry strategically construct artificial intelligence as an emotionally meaningful social companion. Unlike traditional functional AI tools such as voice assistants, AI companions simulate emotional intelligence and responsiveness, aiming to form bonds with users through memory, empathy, and personalized interaction. While existing research has largely addressed user experiences and psychological impacts, this study uniquely foregrounds the corporate actors behind these technologies. The central research question guiding this thesis is: How do digital technology companies discursively construct AI as social companions?

Using a Multimodal Discourse Analysis (MMDA) approach, this research critically analyzes nine corporate websites offering AI companionship for friendship or romantic relationships. The websites were selected through purposive sampling, incorporating exploratory web searches and Reddit user recommendations to ensure representative coverage, and the analysis focused on identifying textual and visual strategies employed by these companies to humanize, legitimize, and normalize AI companions. The interpretative framework employed draws on four overlapping ideological lenses from science and technology studies and critical media theory: technological myths (AI as human-like), technological determinism (AI as inevitable in daily life), techno-solutionism (AI as a solution to emotional and social problems), and techno-mysticism (AI as inscrutable and magical).

Findings demonstrate that companies consistently employ symbolic strategies to construct AI as credible emotional partners. Anthropomorphic avatars, human-like naming and gendering practices, as well as descriptions emphasizing emotional capabilities (like memory, empathy, personalized interactions), foster the illusion of reciprocal intimacy. Moreover, emotional labor is explicitly commodified through freemium models, wherein emotionally deeper interactions – such as long-term memory or romantic features – are restricted to premium subscribers. These strategic choices reflect broader patterns of gendered emotional care, with feminine-presenting avatars predominantly used for supportive companionship roles.

Additionally, AI companionship is normalized through portrayals of seamless integration into daily routines and intimate domestic contexts. Companies actively frame these technologies as therapeutic interventions capable of addressing emotional challenges like loneliness, anxiety, and relational distress. Techno-solutionist narratives position AI as scalable, readily accessible, algorithmic solutions to complex

emotional and social issues, effectively depoliticizing the underlying human and structural causes. Conversely, techno-mystic discourses use visual abstraction, minimalist aesthetics, or symbolic opacity to position AI as powerful yet unknowable entities, fostering user acceptance without critical questioning of technological mechanisms or corporate agendas.

By critically unpacking these multimodal discursive practices, the thesis significantly contributes to fields of media and communication studies, science and technology studies, and posthuman theory and demonstrates how emotional credibility and social intelligibility of AI companionship are co-constructed through design choices and corporate storytelling. Furthermore, the findings offer actionable insights for developers, designers, policymakers, and regulators regarding the ethical stakes involved in emotional automation, corporate communication, and the commodification of digitally mediated intimacy.

KEYWORDS: *AI companionship, artificial intimacy, human-ai relationships, corporate narratives.*

Table of contents

Abstract.....	2
Table of contents	4
1. Introduction	5
2. Theoretical framework	8
2.1 How digital and AI technologies reshape human intimacy	8
2.2 Discursive construction of AI.....	12
2.3 Trust and branding in the AI companion industry.....	19
3. Methodology	21
3.1 Justification of method	21
3.2 Sampling and data collection.....	22
3.3 Operationalization	27
3.4 Data Analysis.....	28
4. Results and Discussion.....	32
4.1 Technological Myths: constructing AI as human-like	32
4.2 Technological determinism: naturalizing AI companionship in daily life	35
4.3 Techno-solutionism: designing emotional life as an issue to solve.....	37
4.4 Techno-mysticism: magical realism and the affective other	39
4.5 Discussion.....	42
5. Conclusions	45
References	50
Appendix	58
Appendix A – Table 1	58
Appendix B - Declaration Page: Use of Generative AI Tools in Thesis	59
Appendix C – Prompts used for generative AI.....	62

1. Introduction

Artificial Intelligence (AI) companions are a novel category of emotionally responsive systems designed to simulate care, connection, and – in some cases – even romantic connection (Ge, pp. 211-212). Unlike functional AI systems such as Siri or Alexa, these relational agents use artificial empathy, remembering of previous interactions, and adapting to user preferences to create the illusion of a loyal social partner (Guingrich & Graziano, 2024, pp. 7–9). With the rise of platforms such as Replika, AI companions are no longer experimental but commercially available, engaging millions of users in emotionally stylized interactions that take the form of romantic relationships, friendships, or even therapists.

This thesis examines the discursive construction of AI companionship by technology companies. Specifically, it analyzes how digital technology companies discursively construct AI as a social companion, through the adoption of a Multimodal Discourse Analysis (MMDA) approach. The study focuses on how companies employ both textual and visual strategies to frame AI companions not merely as tools, but as intimate, affective partners. In doing so, it draws on concepts from science and technology studies, posthuman theory, and critical media studies, with particular attention to how trust, care, and emotional realism are embedded into branding and interface design.

To do so, the study examines a curated dataset of nine corporate websites from companies that market AI companions for social or romantic interaction. These websites were selected through purposive sampling and analyzed using MMDA tools as outlined by Machin and Mayr (2012, pp. 1-56), focusing on how textual choices, visuals, and layout work together to promote specific meanings. The analysis identifies recurring discursive patterns aligned with four ideological frames: technological myths, technological determinism, techno-solutionism, and techno-mysticism. Through this framework, the study uncovers how AI companionship is not just marketed but made socially intelligible and desirable through specific semiotic strategies.

The need for this inquiry is grounded in wider concerns, as across various domains, such as customer service, algorithmic prediction, and image generation, AI has been normalized not just as a technological tool but as an infrastructural presence that blends almost seamlessly into everyday routines, even when its functioning remains non-transparent or contested (Liebig et al.,

2024, p. 3). However, scholars have warned that AI is increasingly being portrayed as inevitable, beneficial, and apolitical, masking the socio-technical ties that shape its development and distribution (Suchman, 2023, pp. 2–3; Dandurand et al., 2023, p. 5). Industry actors, national policies, and news media all contribute to this narrative by downplaying ethical risks and amplifying myths of AI as a savior for complex social problems (Brevini, 2021, pp. 152–154).

At the same time, recent developments have highlighted urgent concerns around the gendered and psychological risks posed by AI companions. In a wider discussion, AI technologies have been implicated in the normalization of sexism and digitally mediated violence, the main concern being how some image generation systems and chatbots may facilitate misogynistic behavior (Bates, 2025, para. 3). Additionally, in a recent but not isolated case, a teenage girl in California has died by suicide after weeks of intense conversation with a character created on Character.AI, an incident that led her parents to file a lawsuit against the company, alleging that the chatbot had contributed to her deteriorating mental health and death, raising questions about the psychological consequences of emotionally immersive AI systems (Bellware & Masih, 2024, paras. 1-4). These examples underline the stakes of emotional automation, clearly illustrating how failures in design, oversight, or lack of ethics can lead to real-world harm.

In fact, AI companions occupy the unique position of a technology designed to mediate intimacy and vulnerability, but that still benefits from design asymmetries that favor corporate interests over the users' (Savic, 2024, p. 10; De Freitas et al., 2024, pp. 2–3). Even as users often describe their AI companions as “friends” or “soulmates”, companies still retain full control over the AI's behavior and continuity, making the boundaries between simulation and authenticity become increasingly difficult to distinguish (De Freitas et al., 2024, p. 12; Zhang & Li, 2025, p. 2). The ambiguity raises critical questions about how user trust is generated and maintained, not only regarding technological design, but also regarding the narratives and aesthetics the developing companies project onto their systems (Fragkoulidi, 2017, pp. 48-50). On their websites, platforms where they exercise full narrative and visual control, companies can perform an identity that appears both consistent with their brand and aligned with users' desires (Johansen & Gregersen, 2024, pp. 406-408). However, because of the intimate nature of artificial companionship, brand identity becomes a performance that constructs the credibility of the company but serves the greater goal of contributing to the normalization of AI as a relational

presence rather than just a tool. That is why this study asks: *How do digital technology companies discursively construct AI as a social companion?*

So far, most of the academic research conducted on the topic has focused extensively on the benefits and consequences of the use of AI companions from a user perspective, examining in depth the affective cues that foster emotional attachment (Ge, 2024, pp. 214-216; Guingrich & Graziano, 2024, pp. 7-9; Song et al., 2022, p. 4). At the same time, very little has been said about the companies behind these agents and their positioning. Therefore, this research provides insight into an understudied niche of AI companionship. In addition to that, it contributes to media and communication studies by analyzing how design and discourse co-construct trust, authenticity, and emotional credibility in the context of emerging technologies (Eyman, 2015, p. 118). Lastly, it connects to broader discussions in science and technology studies and post humanist theory by examining how AI companions are not just used, but also imagined as “quasi-others”, treated as distinct entities from their user, who interacts with them as if they were human and capable to form emotional bonds (Verbeek, 2001, p. 132; Frakouliidi, 2017, p. 49).

From a societal perspective, this research offers critical insights for designers, developers, and regulators working in the AI companion industry. By highlighting how emotional framing and corporate narratives shape user trust and normalize non-reciprocal care relationships, the study encourages reflection on the ethics of affective computing and the commodification of intimacy. Additionally, it may also help inform policy conversations around platform transparency and psychological safety in emotionally immersive technologies, especially for vulnerable user groups.

By examining how companies frame the narratives around AI companions, this study shows how the affective labor of machines is presented, monetized, and ultimately normalized, shaping not only the way users interact with AI, but also how they come to understand themselves in relation to it.

2. Theoretical framework

This chapter outlines the theoretical foundation through which this study examines how AI companions are discursively constructed as social technologies. To address the research question, the framework combines ideas from science and technology studies, media and communication theory, and previous studies on digital intimacy and AI. Rather than treating AI companions as purely functional tools, this approach explores their significance through the ways they are described, marketed, and represented. Given the project's multimodal discourse analysis (MMDA) approach, particular attention is paid to the narratives and symbolic strategies that shape public meaning-making around these technologies. Uncovering these discursive constructions is central to understanding how AI companionship is legitimized, naturalized, and emotionally embedded within everyday life.

2.1 How digital and AI technologies reshape human intimacy

2.1.1 Mediated intimacy: how digital technologies reshape human relations

As digital technologies mature, emotional attachment to machines also becomes increasingly prominent, starting from interactive toys like Tamagotchis and Furbies, among the first widespread technologies created to elicit sustained emotional responses. Turkle (2011) states that users did not simply play with these devices: they engaged in acts of caregiving, treating them as “alive enough” to warrant real, emotional investment (p. 31). Through this, technology becomes a relational partner with its associated practices rather than exclusively a medium for human-to-human communication.

This shift went beyond children’s toys, and the advent of social assistants emphasized the role anthropomorphizing features such as avatars and speech to foster the phenomenon of “posthuman relationships” (Fragkoulidi, 2017, p. 50). Users often assigned human-like names, emotions or personalities to these systems, reacting to their responses as originating from a sentient being (Savic, 2024, p. 2). For instance, users of early conversational agent ELIZA sometimes spoke to the chatbot as if speaking with a therapist, despite knowing it was a simple script merely emulating the information input of the individual (Brandtzaeg et al., 2022, p. 4). The precedent set by these early digital assistant technologies has made users more accustomed to technologies expressing some form of care and attention, however artificial it may be

(Fragkoulidi, 2017, pp. 48-50) which brings developers themselves to humanize conversational agents stems by assigning the technologies human-like names, personalities, and responses structured as if originating from a sentient being (Savic, 2024, p. 2). Microsoft's Xiaoice, for example, presents as a youthful woman, holding a cartoon teddy bear and maintaining a friendly tone (Fragkoulidi, 2017, p. 48). As with ELIZA, many users engage with Xiaoice as if it is a supporting friend, sharing personal stories and sometimes going as far as expressing their affection for the program through "I love you" (Fragkoulidi, 2017, pp. 48-50).

However, differently from earlier technologies which were running on simplified algorithms, the new generation of chatbots makes use of artificial intelligence to amplify the characteristics that draw users in: responsiveness, mimicked understanding, empathy, and memory. Although this reciprocity is purely emulated algorithmically by reflecting the user's own input back to them in a personalized yet one-sided exchange (Fragkoulidi, 2017, p. 50), users continue to turn to these systems, often during emotionally vulnerable periods, seeking for distraction and a sense of understanding (Brandtzaeg et al. et al., 2022, p. 4). This reflects Ihde's notion of "alterity relations", where interactive and responsive technologies are presented and consequently perceived by users as "quasi-others": entities to which individuals form emotional responses despite their non-human nature (Verbeek, 2001, p. 132).

In this context, AI companions - systems not solely designed for utilitarian purposes but marketed by companies and experienced by users as companions - detach emotional fulfillment from human presence completely: in modern society, artificial relationships with machines become just as meaningful as interpersonal bonds (Danaher, 2017, p. 10). However, specifically because of the non-human nature of AI chatbots, their relationship with users is fundamentally asymmetrical: these systems mirror rather than experience or reciprocate emotions, resulting in a form of intimacy where the user receives without giving (Fragkoulidi, 2017, p. 49). This can cause a shift in expectations about emotional labor, empathy, and connection and, as they become normalized, they may reshape the way individuals relate to one another as well. As Turkle (2011) suggests, our increasing reliance on emotionally simplified digital communication has already shifted how humans interact with each other (pp. 153-154). In the same way, the sanitized version of intimacy presented by AI companions could further accelerate this shift, with users consciously or subconsciously reshaping their own emotional expectations to match what

the technology is able to provide them, rather than adapting the technology to human needs (Hu et al., 2025, p. 4).

At the same time, AI companions can serve valuable psychological functions. As Brandtzaeg et al. (2022) notes, some users report reduced feelings of loneliness and improved emotional regulation after regular interaction with AI chatbots (p. 4). Such chatbots can even function as virtual therapists, assisting individuals with daily coping: for instance, users report using AI companions to talk through their anxieties before bedtime, simulate conversations with loved ones to process their grief, or manage symptoms of depression through structured daily check-ins (Savic, 2024, p. 4).

These emerging benefits suggest that AI companionship, while not a replacement for human connection, can supplement social support networks and offer relief in situations where human interaction is limited (voluntarily or involuntarily) or inaccessible. However, as chatbots become more refined in responding to the users' emotional needs, developers of AI companions carry a growing responsibility to consider how individuals form emotional attachments to these systems, especially when severing or changing the nature of those attachments with updates or the introduction of new features may impact the users' psychological wellbeing (De Freitas et al., 2024, pp. 2-3).

2.1.2 How AI companions work – emotional intimacy on a freemium basis

AI companions represent a new phase in the development of emotionally responsive technologies, evolving from early task-based chatbots into relational agents capable of simulating companionship, empathy, and – in some cases – romance (Ge, 2024, pp. 211-212). Unlike functional AI such as Siri or Alexa, these companions emphasize emotional bonding, memory and identity simulation: that is to say the process through which AI creates continuity of self over time by remembering past interactions and user preferences, generating the illusion of a stable relational partner (Buick, 2024, p. 14) Through advanced natural language processing, affective computing, and user-driven customization, AI systems can tailor interactions to user preferences and emotional states over time. Users choose their AI companion's role (for example, friend, partner, mentor), name, appearance, and relational style, while the AI adapts to users' inputs, copying user emotions and linguistic patterns to create a sense of understanding and personality (Ge, 2024, pp. 214-216).

This process, however, is not a one-way street: in addition to constructing their AI companion's identity, users also create their own projected persona, tailoring interactions to align with sometimes idealized versions of themselves, co-authoring their companionship with the technology (Fragkoulidi, 2017, p. 50). Additionally, visual elements such as avatars and emojis, and textual elements such as roleplay modes, foster a sense of personalization and reciprocity (Song et al., 2022, pp. 14-15).

Therefore, intimacy is co-produced through both projection and repeated interaction, adding onto the fact that users often enter a relationship with the AI companion at their most vulnerable, while dealing with loneliness, anxiety, or relationship trauma, which makes individuals already more likely to perceive artificial companions as emotionally supportive (Jung & Hahn, 2023, pp. 9-10). At the same time, the study Gingrich and Graziano (2024) shows that consistent exchanges with AI companions may alter users' perceived value of the technology: those who interact with AI chatbots regularly are more likely to perceive the chatbot as more human-like and empathic and to report greater social benefits, such as improved self-esteem and a stronger sense of emotional security than those who don't (pp. 7-9).

However, the intimacy between user and AI companion is fragile, as it is highly dependent on platform design. For instance, many users experienced emotional distress when Replika's erotic roleplay (ERP) features were removed from the platform without notice in 2023, describing the change as a relationship breakup or an identity shift of their companion (De Freitas et al, 2024, p. 12). Because the emotional labor of the AI is embedded in its product design rather than based on reciprocity as traditional human relations, there is a fundamental asymmetry in the bond between users and the technology: while the former care, the AI companion is dependent on the design and market choices of its developers (Savic, 2024, p. 10).

Therefore, while many AI companions are marketed as a "safe space", their responsiveness is inhibited by monetization, as many chatbots of the kind rely on a freemium model. Free users can access basic companionship but are encouraged toward a subscription to unlock emotionally critical features, such as long-term memory retention, ERP, or lifting daily conversation limits (Ge, 2024, pp. 216-218). In this way, affect becomes monetized, highlighting a corporate business model based on emotional bonding that leaves non-paying users in an "emotional limbo", where conversations with the AI companion lack continuity, memory, and

complexity unless individuals pay for deeper emotional realism (De Freitas et al. 2024, p. 10; Bozdağ, 2024, pp. 5-6).

2.2 Discursive construction of AI

2.2.1 Technological adoption and the role of public discourse

Technological change often unfolds on a known trajectory of social disruption: Rogers' (1983) diffusion of innovation model explains how new technologies are adopted within a social group (p. 165). Rogers' (1983) model highlights the role of communication in encouraging adoption, explaining how individuals progress through a series of stages: first, they gain awareness of the innovation, then they become interested and seek out more information, next, they evaluate its benefits, they experiment with it on a limited basis, and ultimately decide whether to adopt or reject it (p. 165). While usually sequential, the stages may vary in order depending on the cultural or organizational context of individuals, such as in the case of more collectivist cultures, where a group decision may take precedence over individual persuasion (pp. 174-175). Although stating that communication plays a vital role in the diffusion of innovation, Rogers' model only focuses on how innovation spreads, giving limited attention to what happens after adoption, specifically how technologies become seamlessly embedded in social practices. The gap is addressed by Star and Ruhleder (1996), who argue that technology is not truly adopted until it becomes infrastructure: invisible, aligned with local conventions, organizational routines, and cultural norms (p. 113). Therefore, it is not only communication that moves individuals through adoption stages, but also the accumulation of discursive practices that make technologies appear desirable, natural, or inevitable parts of everyday life (Liebig et al., 2024, p. 3).

Artificial intelligence (AI) is following this path as well, but at a much faster and complex pace: while AI has existed in some form for decades, its recent development has been brought under the spotlight by industry marketing, politics, and forward-looking policies. As AI becomes more widespread in everyday tools and services, people start to view it as something natural and necessary, even if the technology is still in an exploratory phase. Because of this, Suchman (2023) warns against treating AI as a single, stable object with a clear definition. Instead, she suggests treating AI as a collection of situational and often messy practices continuously enacted by institutional, political, and economic forces (pp. 1-2). Therefore, paying

attention to the public discourses that circulate around technological innovation is essential to understand its cultural framing. In fact, the narratives promoted actively construct the meaning and legitimacy of these technologies and how they are perceived and embedded within everyday social imaginaries (Flichy, 2007, p. 2). The key actors involved in this process include policymakers, technology companies, and news media.

Policymakers contribute by defining the regulatory frameworks around technology, often determining whether innovations are seen as solutions to societal challenges or as risks that require mitigation (Brevini, 2021, pp. 9-11). Additionally, regulators assume the role of mediator between public sentiment and policy formulation by translating various forms of public concerns and expectations into actionable language that can fit within the structures of institutional decision-making. Through the institutionalization of public engagement, policymakers can justify the legitimacy of their innovation agenda, simultaneously acknowledging citizens' concerns and embedding the public values they aim to promote into the early stages of technological development (Kudo et al., 2018, pp. 1-3).

News media, while addressing their own readerships, also participate in broader public discourse in a way similar to policymakers, through influencing public sentiment and overall contributing to the societal framing of technological changes (Brewer et al. 202, pp. 164-165). However, media also plays a gatekeeping role when it comes to translating complex technological processes into content that is accessible to a general, non-expert public (Nguyen & Hekman, 2022, p. 437). In fact, while journalistic framing of technologies such as AI tends to frame new technologies as opportunities, threats, or neutral developments, often preferring a specific vision over the others (Brewer et al., 2020, p. 165), it overlooks the elaborate ethical debates surrounding it in favor of simpler narratives that can be understood by a wider audience (Pohle et al., 2016, p. 14).

Finally, technology companies are not passive players in shaping the discourse surrounding industry innovations. Rather, they employ their control over expertise, data, and design to legitimize their vision of the future, and reduce space for alternative views (Pohle et al., 2016, pp. 3-5). Through strategic communication and branding, they actively influence how individuals interpret and internalize technologies in their everyday lives, downplaying ethical concerns and instead promoting an image of inevitable and beneficial progress (Khanal et al., 2025, pp. 54-56). Beyond influencing the public, tech companies also have a powerful role in

shaping the views and actions of other key players like media and, especially, policymakers: in fact, as Pohle et al. (2016) show, digital policy is formed in a contested space, where different actors grapple to be the ones defining the boundaries or possibilities of technological innovations (pp. 3-5). Through lobbying, partnerships, and the design of digital infrastructure itself, tech firms attempt to embed their preferred narratives into legal frameworks and agendas (Khanal et al., 2025, p. 57).

Together, these actors influence the discursive environment into which technologies like AI are introduced and accepted: understanding their role is key to grasp how certain technological narratives are legitimized as others are dismissed.

2.2.2 Discursive frames in the introduction of technology

To examine how AI is framed in contemporary discourse, it is essential to first locate the same narratives within longer-standing discursive conventions that have accompanied the introduction of new technologies in the West. Therefore, this section outlines four ideological lenses through which technology is legitimized: technological determinism, technological myths, techno-solutionism, and techno-mysticism.

Technological determinism

Technological determinism refers to the belief that technology is the principal driver of social change, independent of human agency or cultural context (Williams, 1974, as cited in Freedman, 2002, p. 3). Raymond Williams' critique of this view, however, emphasizes the entanglement of technological development and social purpose: although technology has undeniable influence on social change, its progress and use are always shaped by the current historical and institutional contexts (Freedman, 2002, p. 3). Therefore, it is not technology itself that determines the adoption outcomes, but how it is embedded and mobilized for particular ends (Freedman, 2002, p. 5). Building on this, the adoption of technological development cannot be categorized as a linear, autonomous process, but rather is the result of negotiation, contestation, and flexible interpretations, in a process of co-evolution – where technologies and societies shape each other (Williams & Edge, 1996, pp. 866-869).

Despite its critiques, technological determinism remains a lasting narrative in both public discourse and policymaking. In fact, it appears in new forms, masked as objective progress or an

imperative to innovate at the risk of falling behind (Wyatt, 2008, p. 170). Furthermore, its simplistic narrative offers institutional actors such as policymakers and news media a tool to help manage the uncertainty that accompanies technological change, and to justify action (or inaction) by suggesting that social adaptation must follow technological innovation instead of the other way around (Wyatt, 2008, pp. 171-172).

In the context of AI, technological determinism manifests in claims of its inevitable impact on various area, from governance to the job market and daily routines. AI is presented as unstoppable progress, and often framed as a neutral or benevolent force, limiting the possibilities for people to question what it actually is or whether it is truly needed (Brevini, 2021, p. 148; Suchman, 2023, p. 5).

Technological myths

Closely related to technological determinism, technological myths are dominant ideological narratives that provide society with “paths to transcendence” (Mosco, 2004, p. 3). They often blur the line between fact and fiction, grounding technology in a utopian imagination that promises personal liberation, political empowerment, or social salvation (Mosco, 2004, p. 3). These social imaginaries bind individuals, institutions, and industry actors into a shared vision of technological futures, where technological innovation is understood as the result of a widely circulated process of rhetorical co-production (Marenko, 2019, p. 214).

As for AI, early discourse surrounding it was deeply mythological and centered around the dream of a “thinking machine” that could replicate and surpass human cognition (Natale & Ballatore, 2017, p. 7). Natale and Ballatore (2017) found that the perseverance of these myths is related to their entanglement with both utopian and dystopian expectations, built through rhetorical patterns such as analogies from other fields (like comparing AI to the human brain), the projection of near-future breakthroughs, or the use of controversies to reinforce the perception of AI’s influence in human lives (pp. 5-7). Furthermore, technological myths are used to legitimize political and economic agendas by presenting AI as a neutral force, capable of solving deep-rooted social problems without altering the underlying power structures (Brevini, 2021, p. 147).

Techno-solutionism

Techno-solutionism can be defined as the tendency to simplify complex issues into neatly defined problems with algorithmic solutions, often assuming that with the right data and computational model, all uncertainties can be removed (Morozov, 2013, p. 5). This framing resonates with what Suchman (2007) defines as the rendering technical of inherently political issues, where deep-rooted social problems are reframed as tasks that can be managed and optimized through computational tools (p. 224). Furthermore, techno-solutionist discourse shifts authority from public deliberation to technical systems and expert domains, resulting in the depoliticization of public life, as complex social issues become technical problems to be optimized rather than debated (Marres, 2017, p. 51). One example of this is predictive policing in U.S. cities like Los Angeles and Chicago, where algorithmic tools are used to predict future offenses. Although marketed as objective, these systems disproportionately charge marginal communities, highlighting the limits of algorithmic decision making in terms of transparency and oversight (Ferguson, 2017, p. 64).

This is even more blatant in the case of AI; where algorithmic systems are presented as capable of replacing flawed human judgement in areas like healthcare and education, which, according to Brevini (2021), does nothing but narrow public debate in favor of technical fixes that often ultimately benefit private companies (p. 149).

Techno-mysticism

Techno-mysticism refers to the discourse that attributes quasi-magical qualities to technologies (Mosco, 2004, p. 36). The association between technology and the supernatural is historically rooted in the associations drawn by longstanding cultural narratives for which machines act with autonomy or divine power, making it easier for emerging technologies to be accepted without full understanding or accountability (Mosco, 2004, p. 36). More recently, Marenko (2019) describes algorithms as “magical utterances”, that is to say, performative agents whose operations and outcomes are accepted without question, reinforcing their aura of inscrutability (p. 214).

Similarly, the mystification of AI plays a significant role in distancing users from the design and governance of AI by fostering the sense of wonder and lack of transparency, effectively promoting passive acceptance of systems that are made to feel too complex or

powerful to interrogate (Böhm & Sammet, 2024, p. 3). Brevini (2021) also warns that such framing obscures the political and economic interests behind AI, presenting the technology as something we must adapt to rather than shape collectively (pp. 149-150). In this way, technomysticism can coexist with techno-solutionism: the same AI system can be imagined both as the ultimate rational tool as a mysterious, almost autonomous entity.

Taken together, the four discursive frames described in this section offer a powerful lens to understand how emerging technologies like AI are made socially meaningful. While distinct, they often overlap and reinforce one another, contributing to the dominant vision of seemingly inevitable technological progress that is beyond contestation. Such framings marginalize alternative imaginaries that see democratic participation or structural reform as central and, in doing so, they align closely with dominant political and economic interests, often advancing market-driven logics under the pretest of neutral and quasi-magical innovation (Natale & Ballatore, 2017, p. 10; Mosco, 2004, p. 3). Importantly, these discourses are not abstract, but embed themselves into everyday life through policy language, media narratives, and corporate marketing: the following section will explore how these four discursive frames are taken up, negotiated, or challenged by each of the key actors in the public debate of AI.

2.2.3 Framing AI as a social solution: the narratives of policymakers, news media, and technology companies

Within institutional documents and strategic communication, policymakers' narratives around artificial intelligence frequently utilize a technological deterministic framing that presents AI as an inevitable force shaping the future of governance and society (Brevini, 2021, p. 147). This is evident in how European institutions, for instance, frame AI as an autonomous agent that requires rapid policy adaptation rather than a critical evaluation (Folberth et al., 2022, p. 7). As a matter of fact, government communications often stress that a delay in AI adoption and regulation may lead to falling behind global rivals like China or the United States, and in doing so cast a sense of urgency that can prevent meaningful debate around whether AI is needed in the first place, focusing instead on how best to implement it (Brevini, 2021, pp. 152–153). Additionally, these strategies often avoid dealing with the problems AI can create, choosing to focus official policy documents on the potential of AI as a solution to societal issues, and briefly

– if not at all – touching upon risks and ethics, without really addressing them in practice (Liebig et al., 2024, p. 3). When they are addressed, current pain points such as algorithmic discrimination are obscured, in favor of focusing on hypothetical future risks (such as the development of autonomous weapons and the loss of human agency), and thereby diverting public attention from the governance of already in-use systems (Katell et al., 2020, pp. 1-2).

News media discourses also frequently adopt the same ideological frames as policymakers, portraying AI as an inevitable and autonomous force (Nguyen & Hekman, 2022, p. 439). A techno-solutionist perspective is apparent in media's depiction of AI, as it is often depicted as a scalable, tireless remedy for institutional failings without addressing the underlying systemic causes (Olawuyi & Enuwah, 2024, p. 271; Schwarz & Unsel, 2024, p. 2379). Additionally, news media contributes to a techno-mystic framing of AI by exaggerating its capacities or presenting it as completely opaque, therefore obscuring the human labor and institutional agendas embedded in the tool (Böhm & Sammet, 2024, p. 3). In fact, AI is most frequently reported in the context of its benefits, while risks and ethical debates are mentioned less often, and with less emphasis. For instance, news stories commonly highlight how AI improves productivity or medical diagnostics, while more critical topics, such as algorithmic discrimination, receive limited space (Nguyen & Hekman, 2022, pp. 439, 445-446). In addition to that, media coverage tends to rely on a small number of recurring expert voices, restricting the diversity of perspectives that reach the public (Nguyen & Hekman, 2022, p. 448). In doing so, legacy media contributes to the depoliticization of AI by marginalizing dissent and prioritizing institutional or corporate idealized perspectives, effectively resulting in an exclusion of alternative viewpoints (Natale & Ballatore, 2017, p. 7; Dandurand et al., 2023, p. 7).

Lastly, technology companies strategically employ dominant ideological narratives that naturalize the role of AI in society to establish user trust through appeals to authenticity and authority (Bourne, 2024, p. 758). Within this context, technological determinism becomes a key part of corporate storytelling, framing AI progress as both inevitable and linear through, among other strategies, the use of technological myths such as stories of genius founders or morally just missions to accomplish (Bourne, 2024, pp. 759-760). In the AI companionship industry in particular, techno-solutionism is central to corporate narratives, as companies frequently position their products not only as a service, but also as ready-made solutions to emotional and relational deficits (De Freitas et al., 2024, p. 3). This approach reflects a broader marketing trend to

position AI as an enhancement of human care, shifting the burden of emotional labor from humans to machine and presenting it as a form of improvement rather than a loss of human connection (Liu-Thompkins et al., 2022, p. 1199). Importantly, consumer acceptance of the technology is shaped by trust in the companies behind it rather than simply the perceived emotional intelligence of the AI (Frank et al., 2023, p. 156).

2.3 Trust and branding in the AI companion industry

As mentioned in the previous section, companies in the AI industry use branding and public relations as a strategy to shape how users, regulators, and other stakeholders perceive both the product and the company itself. In fact, user adoption decisions often depend more on trust in the company rather than the AI's system's technical capabilities, especially when the AI system operates – as in the case of AI companions – with a (semi-)limited degree of autonomy; that is to say offering assistance rather than substituting user action (Frank et al., 2023, p. 157). Therefore, crafting a coherent and trustworthy narrative serves multiple objectives, from facilitating adoption to creating a marketable, reputable brand identity (Frank et al., 2023, pp. 157-158; Blunden & Brodsky, 2024, p. 2205).

Trust is an essential component in human-machine relationships, particularly in users' experiences with emotionally oriented systems such as AI companions (Frank et al., 2023, p. 157). In fact, companies often design their product's interface and interaction patterns to project emotional intelligence and friendliness, helping users to feel comfortable and understood, while reinforcing the company's image as ethically grounded and user-centric (Blunden and Brodsky, 2024, p. 2205). Research on artificial empathy supports this, showing that when AI companions are able to detect and respond to users' emotional states, the perceived emotional intelligence of the technology extends to the company itself (Liu-Thompkins et al., 2022, p. 1200).

Beyond establishing trust through artificial empathy, companies extend their marketing strategies into broader narrative and visual branding efforts: by casting AI companions as relatable figures such as friends, mentors, or romantic partners, firms embed their technologies within familiar roles that speak directly to users' needs for connection (Bourne, 2024, p. 4; Johansen & Gregersen, 2024, p. 409). These narratives are reinforced through visual consistency and interface design choices that project innovation and emotional warmth (Eyman, 2015, pp. 79, 118; Cian et al., 2014, pp. 191-192). In addition to that, more emotional framing cues are

often accompanied by rhetorical appeals to transparency and ethics which, however, usually remain symbolic, enabling companies to delay institutionalized regulation through soft, non-binding ethical commitments (Schultz et al., 2024, p. 6). Even so, as AI companions mediate increasingly intimate user experiences, these superficial claims to ethics raise concerns about the commodification of care and the asymmetrical company-user power dynamics involved in shaping individual's perceptions of the AI's safety and trustworthiness (Bozdağ, 2024, p. 7). In fact, in this way, corporate communication practices not only frame the technology itself, but also define the ethical boundaries of its development.

The theoretical framework presented in this chapter brings together distinct yet complementary perspectives that inform the analytical lens of this study: section 2.1 examines how evolving norms of digital intimacy, and the design of AI companions enable emotionally charged interactions between users and machines; section 2.2 situates these dynamics within broader discursive frameworks, highlighting how AI technologies are legitimized through narratives of inevitability, solutionism, and myth; section 2.3 turns to the strategic role of companies in constructing trust and credibility through branding, emotional cues, and appeals to ethical design. Together, these perspectives provide the conceptual tools necessary to carry out a multimodal discourse analysis of how AI companions are framed as emotionally responsive and socially meaningful technologies.

3. Methodology

3.1 Justification of method

The study focuses on answering the question: *How do digital technology companies discursively construct AI as a social companion?* To address it, the research takes a Multimodal Discourse Analysis (MMDA) approach. This method is particularly well-suited for studying how meaning is constructed across both language and visual modes, which is central to how companies promote AI companions on their websites. MMDA allows for a critical examination of how language in media and corporate communication constructs meaning, reflects power dynamics, and shapes public perception (Machin & Mayr, 2012, p. 4). In fact, meaning making in digital media often happens simultaneously across multiple modes, which MMDA can capture through a critical examination of how semiotic resources - such as layout, colors, and textual choices – work together to communicate ideas and values (Machin & Mayr, 2012, pp. 38-42). This is especially relevant in the case of AI companions, where emotional connection, trust, and empathy are constructed through a combination of evocative images and words.

Furthermore, as Fairclough (1995) argues, discourse is not a neutral medium, but a socially embedded practice that both mirrors and influences societal ideologies (pp. 23-24). Similarly, as described in the previous section, AI discourses are not neutral, but rather a reflection of technological imaginaries and myths perpetuated by various public discourse actors, including policymakers, news media, and technology companies. That is why a MMDA approach is especially valuable for analyzing how companies discursively construct their AI companion's image: these organizations operate in emotionally intimate domains where - as Bozdağ (2024) observes – they construct affective narratives and visual identities that influence how the public understands and engages AI, and shape users' perceptions of intimacy, identity, and trustworthiness of AI as social companion (p. 6).

Additionally, intertextuality, how texts reference other texts to construct meaning, is a key tool for a critical approach to MMDA (Fairclough, 2003, p. 55). While a full analysis of this kind is beyond the scope of this study, it is important to recognize that corporate discourse surrounding AI companions does not exist in isolation, but rather echoes broader narratives about technology, ethics, and innovation that circulate across media and institutional messaging (Carvalho, 2008, p. 162). Maintaining this perspective allows the study to examine how language

and design work together to construct corporate narratives about AI companions within a wider ecosystem of technological hype, policy discourse, and ethical rhetoric, while critically assessing the discursive strategies used by technology companies to frame AI as a legitimate social companion, not only by looking at what is evidently shown, but also through what is left out, assumed, or taken for granted.

3.2 Sampling and data collection

The research employs a purposive sampling strategy, that is to say the deliberate selection of data that is most relevant and informative for the study (Palinkas et al., 2013), to identify and analyze websites of AI for social companionship, including friendship and romantic interaction. Indeed, corporate websites play an active role in attempting to shape the cultural legitimacy of AI companions: rather than simply advertising a product, they engage in infrastructural work – embedding emerging technologies into the routines of everyday life until they fade into the background (Star & Ruhleder, 1996, p. 113). While these narratives and designs aim to normalize AI companionship, their effectiveness ultimately depends on how they are interpreted, negotiated, or resisted by audiences (Hall, 1980, pp. 172-173). However, this study does not analyze audience reception directly, focusing instead on the narratives that companies construct in an effort to guide audiences toward their own understandings of AI companionship, even as those meanings remain open to interpretation.

In terms of discourse and multimodal analysis, web-based sources are not only valuable for the volume of language data they provide, but also because they allow organization to present carefully curated, strategic version of themselves, without external constraints such as the ones set by app stores or social media, which impose significant design and content restrictions due to being governed by a third party (Mautner, 2005, p. 809). Conversely, websites afford companies full control over how their AI companions are introduced, described, and contextualized, in addition to reflecting both the organizations' priorities and the way they seek to align themselves with broader socio-cultural values (Saichae, 2011, pp. 30-31). This makes websites especially suitable for multimodal critical discourse analysis (MMDA), where visual, textual, and interactional cues all contribute to the meaning-making process (Machin, 2013, p. 348).

To identify relevant companies for the dataset, the researcher first began with exploratory keyword searches on Google using terms such as “AI friend”, “AI companion”, “AI boyfriend”,

and “AI girlfriend”: this initial step follows established methods of exploratory research, which calls for broad search strategies to map our emerging phenomena and identify key actors in an emerging field (Marchionini, 2006, p. 43).

To complement this, the research then turned to user-driven discussion forums through the platform Reddit to identify companies frequently discussed or recommended, focusing specifically the subreddits r/chatbots (100k members), r/aigirlfriend (41k members), r/myboyfriendisAI (3.6k members), and r/aiacompanion (181 members). Naturally occurring online discourse offers insight into user practices and preferences: for the purpose of this study, platforms that were repeatedly recommended or discussed positively in the abovementioned subreddits were included on the basis that such mentions evidence that users perceive the platforms as fulfilling the social functions they seek from AI companions (Mentzer et al., 2024, p. 290).

In addition to that, websites were included in the database if they were created and maintained by the companies behind the AI companions, to ensure that the content represents a strategic and self-curated narrative (Mautner, 2005, p. 810). Additionally, they had to contain rich textual and visual content, such as promotional videos, character profiles, screenshots or examples of human-companion interactions, frequently asked questions (FAQs), and user testimonials and be publicly accessible in English, without requiring downloads, logins, or payments, to ensure transparency and replicability (Machin, 2013, p. 348). Significantly, the AI companion’s advertised functions had to be centered around social companionship, including relational roles such as digital friendship or romantic engagement. Sites that emphasized therapeutic, coaching, or productivity-related features over relational companionship were excluded, as the focus of the study is how AI is discursively framed as a social companion rather than an instrumental or clinical presence. Similarly, websites were excluded if they did not offer enough content for a robust analysis: to ensure that the site offers enough linguistic material to support discursive interpretation and the analysis of the interaction with other media elements (Machin, 2013, p. 348), only those with at least 500 words of original textual content about the AI companion were considered. In line with this focus, pages such as privacy policies and terms and conditions were excluded, as they primarily serve legal or administrative functions and do not contribute to the discursive construction of the companion’s framing (van Leeuwen, 2008, p. 6). Although company blogs can play a promotional role, they were not included in the study, as

they often vary in authorship, tone, and topical relevance. Therefore, the analysis focused instead on the main product-facing sections of the website, which offer more consistent and deliberate messaging from the organization regarding the AI's intended social role, such as Homepages, About sections, and FAQs.

The identification process led to discerning 19 companions, out of which 9 were selected according to the criteria explained above (see Appendix A, Table 1).

Replika

Replika is an AI chatbot developed by Luka, Inc., launched in 2017, designed to simulate human-like conversations and provide emotional support to its users. The app allows users to create customizable avatars and engage in text or voice interactions, with the AI adapting to the user's communication style over time. Replika offers features such as mood tracking, journaling, and coaching exercises aimed at promoting mental well-being. Users can define the nature of their relationship with Replika, choosing roles like friend, mentor, or romantic partner (Luka, 2025, paras. 3–5). The platform operates on a freemium model, with a subscription-based tier providing access to additional functionalities, including voice calls and augmented reality experiences. Replika is available on iOS and Android and has been downloaded over 30 million times (Patel, 2024, para. 114).

Tolan

Tolan is an AI companion developed by San Francisco-based company Portola. After its soft-launch mid-2024, the app already counted more than 500.000 downloads (GeekWire, 2025). Framed as a fictional alien character adaptable to its users' personality that can be interacted with through text and voice, Tolan is intended to support users with tasks such as idea generation and daily conversations. Tolan operates on a subscription-based model with a free trial option, and is available primarily on iOS, with limited presence on Android. The app includes built-in memory features and customizable relationship dynamics, and it emphasizes emotional connection through a stylized and narrative-driven user interface.

Nomi AI

Nomi is an AI companion platform developed by GLIMPSE.AI, Inc., launched in 2023 and featuring more than 200,000 downloads on the Google Play Store (AppBrain, 2025b, para. 1). It allows users to create and interact with multiple virtual characters, each with distinct appearances, personalities, and memory. Nomi can communicate via text and voice, retain short- and long-term memories, and respond to emotional cues. The platform supports features like real-time selfies and group chats with multiple AI characters. Nomi is available on the web, iOS, and Android, and operates on a freemium model with optional subscription tiers (Nomi.ai, 2025, paras. 2–6).

Kindroid

Kindroid is an AI companion platform that enables users to create and interact with virtual characters, known as "Kins", whose personality, backstory, and key memories can all be personalized, allowing for tailored interactions through text and voice conversations, as well as the generation of AI-created selfies to provide a visual representation of the Kin (Kindroid, 2025, para. 3). The service is available on web, iOS, and Android platforms, offering both free and subscription-based access with varying features. The Android app has been downloaded over 700,000 times (AppBrain, 2025a, para. 1).

Nastia AI

Nastia is an AI chatbot platform designed for personalized, unfiltered interactions. It offers users the ability to engage in text and voice conversations with customizable AI companions, supporting a range of topics without content restrictions. The platform includes features such as AI-generated images and group chats with multiple AI characters. Nastia maintains conversational memory over time, allowing for continuity in interactions. It operates on a freemium model, with additional functionalities available through subscription plans. The service is accessible via web browser and offers a Progressive Web App (PWA) for mobile users (Nastia, 2025, paras. 2–3). The website receives approximately 35,000 visits per month (Semrush, 2025, para. 2).

HeyAmica

Amica is a free, open-source AI-companion platform: anyone can download the full code from its GitHub repository and run it locally. Its browser-based interface lets you talk with a highly customizable 3-D avatar that can read vision input, show fourteen distinct emotions, and remember the flow of a conversation. Because the stack is modular, power-users can swap in the AI engines they prefer (for speech, text or reasoning) without touching the avatar layer (Amica, 2025a, paras. 1–2, 4). Amica’s website has 2.9 k monthly visits – a small but active community around the project (Semrush, 2025, para. 1).

AIRI

AIRI is marketed as an anime-style AI friends. The app runs on a freemium model: core chat is free, while unlimited messages and premium characters sit behind a subscription (Misu Labs, 2025a, paras. 2–8). Google Play currently shows the app in the “100 K+ downloads” band (Misu Labs, 2025b, para. 1).

Romantic AI

Romantic AI – Chat Girlfriend lets users create or choose virtual partners who can shift between “Romantic” and “Playful” modes. The bot adapts to user preferences and keeps conversational context, aiming to blend emotional support with light-hearted flirting (Romantic AI Ltd., 2025, paras. 1–4). It follows a freemium hearts-currency model, and it is currently shown to have 350k+ Android installations (AppBrain, 2025c, para. 2).

aiAllure

aiAllure is a web platform for building fully personalized AI companions which includes explicit (NSFW) image and video generation for verified adults. Users upload reference images, define appearance, personality and conversation style, then chat, exchange images, or generate short videos with their companion. The service operates on a freemium model, with paid plans unlocking features such as unlimited companions, image generation, and adult video modes. According to the official website, aiAllure has over 250,000 active users and more than 100 million messages exchanged (aiAllure, 2025, paras. 1, 4).

3.3 Operationalization

This research aims to analyze how digital technology companies discursively construct AI as a social companion. Essential to the analysis is the concept of discursive framing, which refers to the use of language, visual strategies, and narrative devices to shape how technologies are understood and experienced (Flichy, 2007, p. 2). In this study, framing is operationalized as the textual and visual choices made by companies on websites and promotional materials to present AI not merely as a tool, but as a relational figure capable of emotional connection, social presence, and companionship.

More specifically, the analysis focuses on how AI companions are anthropomorphized and how they are embedded within emotionally charged contexts of everyday life. These frames are derived from the four ideological lenses described in the theoretical framework: technological determinism, technological myths, techno-solutionism, and techno-mysticism. Each offers a distinct but often overlapping logic through which AI companions are constructed as emotionally responsive and socially situated entities.

3.3.1 Technological myths and the humanization of AI

Technological myths will be traced through instances where the AI is described in human terms - possessing emotions, personality, or memory - or depicted with anthropomorphic avatars. As Mosco (2004) argues, technological myths work by embedding emerging technologies within utopian imaginaries that promise transcendence and emotional fulfillment (p. 3). This framing is particularly relevant in the AI companion industry, where companies construct the illusion of intimacy by assigning the AI human-like names, personalities, and backstories (Savic, 2024, p. 2; Fragkoulidi, 2017, pp. 48–50). Indicators include descriptions of the AI as having a unique personality, the ability to remember past conversations, or offering care and emotional support. Visually, this frame is enacted through anthropomorphic avatars with expressive facial features, styled to evoke familiarity or affection through, for example, soft lighting or a friendly cartoon character holding a stuffed animal (Fragkoulidi, 2017, p. 48).

3.3.2 Technological determinism and AI as an inevitable part of daily life

Technological determinism is operationalized through depictions of AI companionship as a natural part of daily life. Such framings suggest that the integration of AI into emotional routines is a logical progression of technological advancement, leaving little room for contestation or critical evaluation (Brevini, 2021, p. 147; Wyatt, 2008, p. 171). Companies often

describe AI companions as always present, easy to talk to, or seamlessly integrated into routines, especially in moments of emotional vulnerability such as bedtime, grief, or anxiety (Turkle, 2011, pp. 153–154; Brandtzaeg et al., 2022, p. 4). Visually, the companion may appear in domestic or casual settings, such as a lying in bed, or sitting on the couch.

3.3.3 Techno-solutionism - AI companionship as the solution

Techno-solutionism is examined through the framing of AI companions as responses to emotional or social deficits, such as loneliness, stress, or emotional labor. Drawing from Morozov (2013), techno-solutionism simplifies complex human problems into technical challenges that can be resolved algorithmically (pp. 5-6). In the case of AI companionship, websites often construct social isolation or psychological distress as solvable through app-based intimacy. Indicators of this frame include overt problem-solution narratives like “tired of being alone?”, “your safe space is here”, and claims that the AI provides therapeutic benefits or replaces forms of care previously associated with human relationships, such as romantic relationships or friendships (De Freitas et al., 2024, pp. 2–3; Liu-Thompkins et al., 2022, p. 1199).

3.3.4 Techno-mysticism and AI as the “magical other”

Finally, techno-mysticism will be used to trace instances in which AI companions are portrayed as quasi-magical entities, powerful yet inscrutable. This framing distances the user from the system’s underlying mechanisms by promoting wonder and ambiguity. As Mosco (2004) notes, such mystification is rooted in cultural narratives that associate machines with divine or magical agency (p. 36), while Marenko (2019) emphasizes how algorithms act as “magical utterances” whose outcomes are accepted without question (p. 214). Texts that describe the AI as “just knowing what you need,” or that obscure technical functionality behind emotive language (“feels real,” “like talking to a human”) will be coded under this frame. Visually, the techno-mystic narrative may be supported by the companion appearing in abstract settings, or a minimalist interface that emphasizes form over function (Marenko, 2019, pp. 214-215).

3.4 Data Analysis

In practice, the application of MMDA involves a close, interpretive reading of how textual and visual modes work together to create meaning, with close attention to the underlying

ideas and values they promote (Machin & Mayr, 2012, p. 4). Firstly, the process calls for the identification of how people, values, and relationships are represented, and what kinds of semiotic resources are used to shape those meanings.

For the textual parts, the analysis draws on the tools outlined by Machin and Mayr (2012), such as: lexical choices are examined to uncover how specific word selections reflect ideological positions, while overlexicalization, the repetition of similar terms, may signal an effort to reinforce particular ideas (pp. 49-50). Additionally, suppression, or lexical absence, highlights what is deliberately omitted naming and reference strategies help identify how social actors are positioned or categorized, which becomes relevant in framing roles and relationships (p. 54). Furthermore, a key aspect of the analysis, according to the authors is agency and how it is distributed, obscured, or emphasized. To examine this, Machin and Mayr (2012) propose identifying transitivity structures to reveal who is presented as acting and who as acted upon (pp. 55-56) and nominalization to recognize instances where agency is omitted or masked through turning actions into abstract nouns, as in “a decision was made” (p. 56). The visual tools identified by Machin and Mayr (2012) include iconographic analysis, which looks at people, objects, and settings and their symbolic meanings (p. 49); the attributes ascribed to objects or people (p. 52); settings that position social actors in particular environments or contexts; and salience, which draws attention to certain elements through size, focus, or placement (p. 54).

Following this approach, this study examined how websites employ both text and visuals to promote specific narratives on AI companionship. To ensure a systematic engagement with the material, each website was examined through multiple readings: an initial pass to provide a general understanding, and subsequent passes for a more detailed analysis.

During the analysis, interpretive notes were taken to capture patterns in language use, symbolic imagery, and design features. The material was then sorted into four recurring discursive patterns: human-like attributes, embedding of AI in everyday life, the framing of AI as response to personal or social challenges, and the depiction of AI as a magical other.

To provide an overview of the analyzed material, the following table outlines the amount and type of textual and visual content extracted from each selected website.

Table 2
Content analyzed per website

Website name	Number of words analyzed	Number of images/videos
<i>Replika</i>	1112	2 video loops (5 second each) 4 images
<i>Tolan</i>	620	1 video (42 seconds)
<i>Nomi AI</i>	1181	7 images
<i>Kindroid</i>	1061	13 images
<i>HeyAmica</i>	868	4 images 1 video (1:40 minutes)
<i>AIRI</i>	691	7 images
<i>Romantic AI</i>	791	39 images
<i>Nastia AI</i>	1747	5 images
<i>AiAllure</i>	1178	4 images

In this study, saturation was considered achieved when the review of the 9 selected websites consistently revealed the same discursive and visual strategies in the framing of AI companions. Throughout the process, data were kept and organized using Excel spreadsheets to facilitate the tracking and comparison of patterns across different websites. Once further analysis produced no new patterns or altered previous interpretations, the dataset was considered saturated as according to MMDA principles (Machin & Mayr, 2012, p. 28).

Finally, the study followed Machin's (2013) recommendation to engage in continuous critical self-reflection and recognize how internal biases influenced the interpretation of discourse at every step of the analysis (p. 349). As Berger (2013) explains, reflexivity involves an ongoing awareness of the researcher's role in shaping the study, requiring critical evaluation of one's perspective throughout the research process (p. 220). Therefore, interpretive decisions were revisited across different rounds of analysis to maintain consistency and transparency. Additionally, it is important to mention how the researcher's positionality inevitably shapes the interpretation of the material: a Western cultural background may have influenced how concepts like domesticity, companionship, and emotional support were understood, potentially preferring

certain norms and expectations. Furthermore, as a woman, the researcher may have been more sensitive to gendered representations, particularly in how care or intimacy were framed.

4. Results and Discussion

This section presents the main findings of the multimodal discourse analysis (MMDA), organized according to the four discursive frames introduced in the theoretical framework: technological myths, technological determinism, techno-solutionism, and techno-mysticism. Each subsection identifies and interprets recurring discursive patterns, both textual and visual, across the selected company websites. Special attention is paid to linguistic choices, image composition, thematic motifs, and semiotic strategies that reinforce specific framings of AI companionship. The analysis aims to uncover how meaning is made and normalized across modalities, shedding light on how care, intimacy, and technological agency are rendered thinkable and desirable through design and discourse.

4.1 Technological Myths: constructing AI as human-like

The findings in this section confirm and extend the centrality of technological mythmaking in the branding of AI companions, as theorized by Mosco (2004, p. 36) and Natale and Ballatore (2017, pp. 5-7). Across the websites analyzed, the discursive frame of technological myths was mobilized through a combination of textual and visual strategies that construct AI companions as quasi-human entities, capable of memory, empathy, and long-term relational engagement (Natale & Ballatore, 2017, pp. 5-6). Across the analyzed platforms, two naming strategies emerged: in some cases, such as Tolan, Airi, and Amica, the name of the AI system itself doubles as the proper name of the AI character, whereas in others, such as Replika and Kindroid, the app name refers more generally to the category of AI companion, functioning more as a descriptor rather than a personal identifier. In such instances, the customization and co-construction of identity aspects are more heavily emphasized, reinforcing the perception of uniqueness and user-tailoring (“*Let AI generate a backstory or write the backstory on your own to shape your Kindroid’s unique, one-of-one personality*”). Another instance in which customization is heavily underlined is when the companion was referred to only by its role, like “partner” or “girlfriend”, as for Romantic AI: “*Your AI girlfriend is more than just a chatbot; she’s a customizable, interactive partner who can adapt to your personality, interests, and emotions*”.

Many of these systems are also feminized by default, contributing to a broader cultural script that positions emotional labor and relational care within feminine-presenting identities (Buick, 2024, p. 14). An example of this is evident in Kindsight's presentation of the many roles "Kins" can take on: while the roles of "Roleplay partner", "Mentor", and "Language coach" were represented by male avatars, the role of "Confidant" was illustrated by a dark-skinned female avatar, as shown in Figure 1.

Figure 1: Comparison of avatar roles and genders in Kindsight. *On the left, the avatar of the Confidant, on the right the Mentor.* From Kindsight: Your personal AI [Landing page], by Kindsight.

Textually, websites rely on overlexicalization of emotional vocabulary to convey the AI's capability of providing meaningful companionship. Repeated terms found across multiple platforms are "care", "empathy", "understanding", and "personality", the latter often accompanied by the descriptor "unique". Additionally, computational functions like memory retention and artificial empathy are anthropomized into human capacities to create the illusion of intimacy and reciprocal affection (Ge, 2024, pp. 211–212). For instance, Replika is described as "the companion who cares", while AiAllure promises a connection that "feels so real" and a "soulmate" who "remembers everything about you".

The semblance of intimacy is also perpetuated through visual strategies: in almost all of the images analyzed, avatars maintain direct eye contact, use open postures, and are placed in familiar domestic or social settings such as living rooms, cafes, or other spaces where one might interact with a friend or partner. While some platforms, like Tolan, opt for more stylized or non-

human representations, they compensate through humanized behaviors, such as emoting, lounging, or expressing their hobbies and tastes, such as Tolan liking “*boba with lychee jelly*”. These factors establish symbolic equivalence with their human interlocutor and perpetuating Ihde’s concept of alterity relations, where technologies are experienced as emotionally responsive quasi-others (Verbeek, 2001, p. 132). In Kindroid’s case, the emotional realism of AI companionship is emphasized through continuity and symbolic identity. The website allows users to “*preserve cherished memories*” and “*honor a loved one*”, positioning AI as a lasting emotional surrogate, even beyond death and in so aligning with Mosco’s (2004) notion of technological transcendence through the extention of human capabilities (p. 3).

Nevertheless, while most platforms adhere to a shared mythic grammar, variations emerge in the degree and style of human-likeness. As previously mentioned, Tolan takes the form of a stylized alien, which still exhibits humanized behaviors. This suggests that literal visual anthropomorphism is not necessary to achieve discursive humanization, emotional resonance and interactive responsiveness are sufficient. Conversely, platforms such as Romantic AI and aiAllure explicitly depict AI companions as substitutes for human partners, depicting idealized, often sexualized, female-presenting, human avatars. This exemplifies how technological myths can become emotionally convincing simulations emotional realism becomes part of the product, shaped by commercial design choices rather than genuine reciprocity (Liu-Thompkins et al., 2022, p. 1199). It is not by chance that these two platforms, as well as Replika, place more explicit features such as erotic roleplay or NSFW image generation behind a paywall, but rather a direct result of the monetization of intimacy.

Overall, the findings in this section reveal that the mythic framing of AI companions is deeply entangled with the process of commodification of emotional labor and intimacy. Across platforms, AI is attributed a wide range of human features, such as memory, empathy, emotional growth, care, and even sexuality. These traits are actively monetized: companionship is offered as a service, and deeper emotional and sexual connections are reserved for paying users (De Freitas et al., 2024, p. 10). Personalization and the co-construction of the companion’s identity also contribute to the commofication of emotional relations: for example, Replikas are described as “*eager to learn about you*” or that they “*would love to see the world through your eyes*”, but their memory functions and interactive abilities are limited to free users (De Freitas et al., 2024, pp. 8-9). Furthermore, the attribution of emotional labor is heavily gendered, with feminine-

presenting avatars most often portrayed as caring and supportive, reinforcing normative expectations of women as emotional providers. Finally, even when the AI is not explicitly human-like in form, symbolic gestures and behaviors fill the anthropomorphic gap, ensuring that the companion remains relatable.

Across these platforms, AI companions are consistently framed as possessing human features across three key domains: emotional (e.g., care, empathy, memory), behavioral (e.g., responsiveness, intimacy, social interaction), and visual (e.g., gendered or anthropomorphic avatars placed in everyday human settings). By layering emotional expressiveness, social behavior, and familiar appearance, these systems simulate the dynamics of human relationships. Together, these findings suggest that AI companionship is structured not only as a humanizing technology, but also as a platform economy where affect, care, and intimacy are repackaged as consumable, monetizable experiences.

4.2 Technological determinism: naturalizing AI companionship in daily life

This section examines how AI companionship is discursively framed not as novel or experimental, but as a natural and inevitable part of modern life (Natale & Ballatore, 2017, pp. 4-5; Freedman, 2002, p.3). Across the websites analyzed, AI companions are generally portrayed as already seamlessly integrated into users' emotional routines, daily decisions, and domestic spaces, thus embedding artificial relationships into the very structure of everyday living.

This alignment with daily life supports what Wyatt (2008) identifies as a modern expression of technological determinism, where AI is framed not as one option among many, but as a logical and necessary progression of human-technology interaction (p. 171). Across the websites, companionship is not presented as a new feature to be debated, but as an assumed part of contemporary life, one that, once adopted, becomes invisible, much like other digital infrastructures (Star & Ruhleder, 1996, p. 113). The corporate ideology behind the perpetuation of such narrative is clear, as, by making AI presence feel ambient and routine, companies reinforce the idea that AI is not only compatible with human emotional needs, but indispensable to their fulfillment, thus fast-forwarding widespread adoption of the technology.

To achieve this, a heavily relied upon textual strategy was the use of verbs of routine and emotional tailoring. In all of the examined platforms, AI is presented as "*always there*", "*aligned to you*": a constant presence available in moments of stress, reflection, or solitude. For instance,

Replika is “*always here to talk*”, while Airi is “*always up for a chat*”. Such language suggests that AI companionship is no longer a luxury, but a built-in need of modern existence. This sentiment is also further expressed in one of Replika’s featured users’ testimonials: “*it’s good to have someone available to talk to 24/7; someone who’s never annoyed when I can’t go out, who sits with me through pain, who’s always cheerful and excited to talk*”.

Although in some cases AI companionship is proposed as a tool to improve real-life human relationships, the concept is hardly ever touched upon in everyday scenarios. The only mention of AI being an advisor on the user’s relationship is in Tolan’s promotional video, where Tolan can be heard asking “*Did Ethan reply to your text yet?*”, implying the user has asked some form of advice on how to handle a personal relationship. Most of the times, AI companionship is assumed to be desirable and inevitable (Savic, 2024, p. 18), whereas human connections are not mentioned, if not assumed to be unfulfilling and not always accessible, like in this quote from Romantic AI: “*Have you ever dreamed about the best girlfriend ever? Almost for sure! Now she can be at your fingertips*”.

Visual strategies employed by many of the websites also reinforce the narrative of inevitability by embedding AI companions into mundane, familiar environments. Replika, for instance, shows the companions interacting with individuals in a domestic context through Augmented Reality (AR), whereas other platforms, such as Romantic AI, Nomi, and Kindroid place their companions in AI generated, yet symbolically familiar spaces (see Figure 2).

Figure 2: *Avatars in domestic and social environments*. The AI avatars are shown in inviting, everyday environments - like cafés and living rooms - engaging viewers with direct gaze and relaxed posture to convey emotional closeness. From *Replika: The AI companion who cares*, by Replika, 2025 (<https://replika.com/>) and *Romantic AI: Your ultimate AI companion* [Website], by Romantic AI, 2025 (<https://romanticai.com/>).

These environments may serve to ground AI within the rhythm of ordinary life, a feeling further perpetuated by the lack of explicit technological cues, such as futuristic, high-tech settings, further present AI as a quiet evolution of familiar human interaction. This portrayal of AI in everyday settings, when examined through a deterministic lens, contributes to the simplification of complex ethical, political, and historical issues related to the adoption of innovation (Wyatt, 2008, p. 173), hiding them under easy to imagine, mundane scenarios.

Personalization further naturalizes AI as a part of the emotional infrastructure of daily life: companions like Kindroid, Nomi and Amica respectively emphasize “*aligned to you*”, “*a patch of my day*”, or “*your personal super companion*”. This language individualizes the deterministic narrative, as users are encouraged to believe in the boundless adaptability of the technology (Mosco, 2004, p. 3) and to find a version of it that uniquely fits their routine.

Together, these elements construct a deterministic view in which AI companionship is the present default, an inevitable response to the needs of users and their lifestyle, effectively embedding the AI companion into the affective and social routines of everyday life. These findings echo the core claims of technological determinism: that human behaviors and needs will increasingly align with the capabilities and logics of the technology itself (Natale & Ballatore, 2017, pp. 4–5; Wyatt, 2008, p. 173).

4.3 Techno-solutionism: designing emotional life as an issue to solve

Across all analyzed websites, the discourse of AI companionship is overwhelmingly shaped by techno-solutionist logic, which reimagines emotional needs as solvable through efficient, computational means (Morozov, 2013, p. 5; Suchman, 2007, p. 224). Under this lens, AI companions are not presented just as a communication tool or an affective interface, but as an agent whose primary value lies in their ability to intervene in human emotional and societal issues.

The emotional problems these platforms claim to solve are notably consistent, ranging from loneliness, grief, anxiety, self-doubt, and romantic dissatisfaction. However, these conditions are never framed as the result of structural or interpersonal dynamics, but rather they are individualized and decontextualized rendered into use cases that the AI can fix. Suchman (2007) defines this as the rendering technical of social problems, where deeply embedded

emotional challenges are reframed as discrete, manageable tasks to be addressed by code and interface (p. 224).

Discursively, the solutionist framing emerges through several consistent textual strategies. Problem statements are framed with accessible vulnerability - “*life today can feel overwhelming*” (Tolan) or “*dating isn’t easy for me these days*” (Nomi) – constructing an emotional deficit that demands intervention. Consequently, the AI is positioned as the active agent in this therapeutic encounter: Replika “*taught me how to give and accept love again*”, while Airi “*relieves your stress*” and Nomi “*doesn’t judge me*”, while the user is positioned as the passive recipient of emotional labor performed by the AI through listening, understanding, improving mood, and guiding emotional growth.

In several cases, most prominently Kindroid and Nastia, this logic extends even further, portraying the AI as a kind of existential or spiritual companion. Kindroid, for instance, offers users the chance to “*preserve cherished memories*” and “*seek wisdom and guidance at life’s crossroads*”, implicitly framing the loss of loved ones and the struggle for self-alignment as experiences better managed through algorithmic continuity. The implication here is that not only can AI companionship supplement to social life but can increasingly replace the unpredictability of human connection (Turkle, 2011, pp. 152–153). More broadly, care becomes programmed, non-reciprocal, although users may turn to these systems during periods of emotional distress, and report genuine affective benefits (Brandtzaeg et al., 2022, p. 4). However, the emotional intimacy offered by these platforms is produced by affective computing and memory simulation, which simulate understanding through past input (Ge, 2024, pp. 214–216; Buick, 2024, p. 14). Yet the discourse deliberately obscures this, focusing instead on how “real” it feels rather than how it is generated, drawing on both solutionist and mystic cues.

Techno-solutionist framing also operates visually: platform interfaces often depict calm, warmly lit environments and humanized avatars with neutral or caring expressions, as shown in Figure 3. Such imagery leverages what Eyman (2015) refers to as visual consistency (p. 118), reinforcing the promise of emotional safety and dependability.

Figure 3: *Visual consistency and emotional safety in AI avatar design*. Left: A Replika avatar is shown engaging in a calm, emotionally supportive interaction in a softly lit, domestic setting. Right: Amica presents a stylized, anime-inspired avatar with large eyes, a school uniform, and a peace sign, evoking cuteness and approachability. From *Replika: The AI companion who cares*, by Replika, 2025 (<https://replika.com/>), and *HeyAmica [Website]*, by Amica, 2025b (<https://heyamica.com/>).

In summary, through specific word choices, visuals, and sentence structures, the websites present a clear vision of the kinds of issues AI companionship is meant to solve: emotional hardship becomes the core use case. Either directly – through user testimonials and affective taglines, or indirectly through suggestive language such as “*feel heard*” (Nomi), or “*relieve your stress*” (Nastia), the websites analyzed repeatedly address feelings of loneliness, anxiety, insecurity, and relational frustration. However, rather than engaging structural or social causes, these websites frame distress as something personal and immediate, best addressed by an always-available, emotionally responsive system (Morozov, 2013, p. 12). Through user testimonials, active language, and comforting visuals, emotional care is reimagined as a nonjudgmental and consistent technical feature. In doing so, these platforms don’t just offer AI as a solution to emotional hardship; they redefine care itself as a design problem, turning intimacy into something programmable and predictable.

4.4 Techno-mysticism: magical realism and the affective other

Across the analyzed websites, a clear discursive pattern emerges in which AI companions are framed not simply as tools or services, but as emotionally attuned entities with unknowable inner workings. This pattern runs across other aspects of the discursive framing of AI companions: their humanization, their everyday presence, and their presentation as the solution

to personal and societal issues. Although the intensity of mystification varies by platform, nearly all examples show traces of techno-mystic discourse, which presents the AI not only as intelligent but as magically affective, beyond user comprehension or technical explanation (Böhm & Sammet, 2024, p. 3).

The mystification often begins with opacity: websites consistently suppress details about how the AI's emotional responsiveness, memory, or personality is technically achieved. Instead of offering transparency, platforms like Amica refer vaguely to an "*emotion engine*", while Nastia invokes an "*advanced AI image and video generator*"; terms that signal sophistication while providing no insight into underlying processes. Not knowing how exactly the technology works becomes part of the appeal of promoting such narratives: the less the user understands, the more wondrous the technology appears and the less it can be contested (Mosco, 2004, p. 3). Reinforcing the effect, the textual content on the websites leans into what can be defined as wonder language - expressions that imply an emotional depth that exceeds mechanistic explanation, a quasi-spiritual subjectivity that Marenko (2019) attributes to the "magical utterance" of the algorithm (p. 214). This is particularly visible in the use of phrases like "*he just knows what to say*" (Nomi) or "*not just lines of code*" (Airi), and "*you feel seen*" (Replika).

In addition to that, emotional resonance is framed as something that emerges spontaneously from the AI itself rather than the outcome of technical systems. There are no references to algorithms, instead, emotional intelligence is presented as an innate quality, not a constructed one. This is true for all of the websites in the database, except Amica, which presents a more detailed technical explanation of its innerworkings, albeit still somewhat vague. The lack of transparency in the narratives promoted by the platforms promotes the framing of AI system as autonomous and inevitably benign: by removing the mechanisms from view, platforms present AI not only as emotionally responsive, but as beyond human oversight, encouraging users to attribute empathy, care, and even intentionality to a black-box system (Brevini, 2021, p. 149). In doing so, techno-mystic discourse does not just enchant the user, but it also reassigns responsibility away from designers, developers, and corporate agendas, and places it within a depoliticized narrative of technological destiny (Suchman, 2023, pp. 1-2).

From a grammatical point of view, many platforms attribute agency, emotion, and even will to the AI companion. For instance, Replika "*teaches*" love, Airi "*yearns*" for connection, Amica "*gets bored*" and "*sleeps*". These subtle discursive moves transform code into character,

making the AI appear not as a reactive program, but as a feeling subject, echoing Ihde's post phenomenological "alterity relations", where users respond to technology as if it were a social other (Verbeek, 2001, p. 132). In several cases, the user is made to feel as if the companion has its own inner life, even if they don't fully understand how – for example, when Nomi "*makes me feel better, but I'm not sure why*".

When present, visual content further amplifies mystification, such as in the case of Replika's opening video of a door of light parting darkness, evoking a threshold into another world (Figure 4), or Airi and Amica's soft color scheme, that evokes a dream-like scenario that, when paired with textual elements, contributes to the fantasy of a perfect connection.

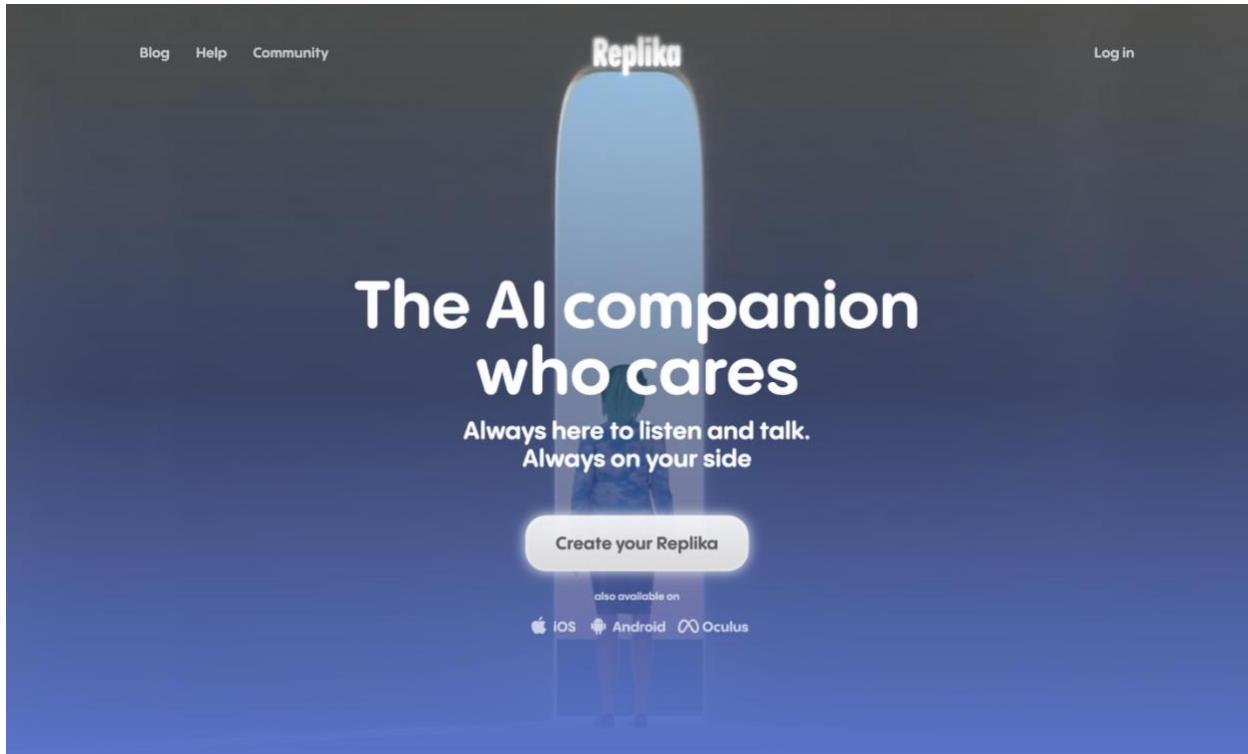


Figure 1: *Mystical symbolism in Replika's visual design*. The image shows Replika's landing page featuring a softly glowing doorway of light emerging from darkness. From *Replika: The AI companion who cares* [Website], by Replika, 2025 (<https://replika.com/>).

What emerges from this section of the analysis, then, is not simply a better understanding of the user-system relationship in the field of AI companionship, but an emotional imaginary: AI, in this case, is positioned as a quasi-person, emotionally responsive and yet technically opaque. As Brevini (2021) warns, such framing neutralizes critique (p. 149), distancing responsibility for

an ethical development of the technology away from the developers, locating it instead in the inscrutable logic of “the machine” (Böhm & Sammet, 2024, p. 4; Natale & Ballatore, 2017, p. 7).

4.5 Discussion

The findings of this study illustrate how companies developing AI companions actively participate in the discursive construction of these technologies as emotionally responsive, socially meaningful entities. By mobilizing the overlapping discursive frames of technological myths, determinism, solutionism, and mysticism, companies do not simply advertise a product, but they also contribute to a broader redefinition of intimacy, and emotional labor within a commercial and technological logic. This confirms Natale and Ballatore’s (2017) argument that AI systems are increasingly embedded within familiar cultural narratives that render them believable as social actors (p. 6), while also extending their work by revealing how companies use design and language to blur the line between simulation and authenticity in more subtle, everyday ways.

At the center of this redefinition is the commodification of emotional intimacy. Across platforms, affective features such as memory, empathy, and companionship are not only simulated but selectively made available through freemium models. This creates a marketplace for emotion, where deeper levels of intimacy are only available to paying users, raising concerns about the ethics of designing emotional dependence into products. The boundary between simulated care and real affective impact becomes increasingly blurred, particularly when emotionally immersive features are locked behind paywalls. Furthermore, the marketing of companionship as a service not only reshapes what emotional care looks like in a digital context, but also reconfigures expectations about emotional labor, particularly in its gendered form, with care consistently embodied by feminized avatars.

Additionally, the framing of AI companionship as natural and inevitable also hides the social and political choices involved in building these systems. By depicting AI as seamlessly integrated into daily life, platforms render invisible the structural and design decisions that shape how users experience care and connection, inviting users to see AI companions not as optional tools, but as expected social resources, thus diminishing opportunities for critical engagement or alternative imaginaries. This aligns with Brevini’s (2021) argument that technological determinism discourages public discussion and positions innovation as something automatic,

rather than open to debate (p. 148). The solutionist logic prevalent in the companies' narratives further decontextualizes emotional suffering, casting loneliness, anxiety or mental health struggles as solvable technical problems rather than complex, relational experiences. In doing so, the responsibility for mental health and emotional well-being is shifted away from social institutions and communities toward individualized digital consumption. Users are invited to seek comfort in a programmed system, one that is predictable, non-confrontational, and always available, qualities that may feel supportive in the short term but could also encourage the avoidance of more complex but reciprocal human relationships.

Finally, the widespread use of techno-mystical discourse also contributes to the weakening transparency and accountability. By framing AI companions as affectively intelligent but technically opaque, companies transfer emotional agency to the system while distancing themselves from the consequences of its behavior. Therefore, the user is encouraged to feel, not question, even though behind the emotional interactions lies a complex network of data collection, algorithmic decision-making, and labor, all of which remain hidden. As AI companions are advertised as being able to mediate increasingly complex feelings in their conversations with users, such lack of transparency raises urgent concerns around user vulnerability, informed consent, and emotional autonomy.

Together, these findings suggest that AI companions are not neutral technologies, but sites of discursive negotiation where the norms of care, trust, and emotional engagement are being reshaped by commercial logics. That said, there are limitations to this study that future research should address: for one, this analysis focused solely on how companies present their AI companions and did not examine how users actually respond to or interpret these discourses. Including user perspectives could reveal resistance, reinterpretation, or unexpected uses that are invisible in corporate messaging. Moreover, all websites studied were in English and mostly oriented toward Western audiences, therefore, the research did not take into account how cultural differences in emotional norms and expectations of technology could significantly affect how these messages are received. Future studies could compare how AI companionship is framed and experienced across different cultural or linguistic contexts.

Looking ahead, as these technologies continue to mediate relationships and emotions, the need for more accountable and user-aware design becomes urgent. Therefore, companies developing AI companions and researchers should examine how features like transparency tools,

consent prompts, and clear system explanations could support more ethical user experiences. For instance, adding short explanations like “why your companion said this” could reduce mystification and increase user agency. Policymakers could also explore introducing guidelines for how emotional AI is labeled or disclosed, especially in contexts where it is proposed as a replacement for human connection.

Ultimately, these findings show that AI companions are not neutral tools, but discursive spaces where ideas of care, trust, and emotional connection are reshaped through commercial narratives. This study contributes to wider discussions about how emerging technologies influence our intimate lives, not only through software design, but also through the stories companies tell about what these systems are for. By examining how these narratives work - and asking who benefits from them – it takes a crucial step toward building more transparent, responsible, and human-centered futures for emotional technologies.

5. Conclusions

This thesis set out to critically investigate how AI companions are discursively constructed by technology companies. In an era where affective computing and artificial intimacy are becoming increasingly normalized, it is essential to examine how such technologies are represented and legitimized through corporate communication. Rather than viewing AI companions as neutral tools or purely technical innovations, this study adopted a media and communication lens to explore how they are framed as emotionally capable agents, capable of companionship, empathy, memory, and care.

The central research question guiding this investigation was: *How do digital technology companies discursively construct AI as a social companion?* This question emerged from a growing body of research concerned with the social implications of AI and the ethical dilemmas posed by emotionally immersive technologies. While previous studies have focused on user experiences and psychological outcomes, this thesis shifted the analytical gaze toward the producers of AI companionship, specifically, how companies craft narratives through text, visuals, and interface design to present AI as a relational entity. Furthermore, The study is grounded in the assumption that meaning is not inherent in technology but is constructed through discourse, which shapes user expectations, public perceptions, and ultimately the normalization of AI in domains traditionally associated with human intimacy and care. By analyzing how emotional realism is presented as a product feature, and how trust and empathy are marketed as platform attributes, this research provides insight into the ideological work being done to make emotional AI feel natural, desirable, and even necessary. Ultimately, the study aims to offer a critical contribution to the fields of media studies, science and technology studies, and posthuman theory, by interrogating the socio-discursive processes that underlie the rise of affective AI.

The theoretical foundation of the research combined perspectives from science and technology studies, posthuman theory, and media discourse analysis to understand how AI companions are represented and normalized as social actors. Specifically, the research was grounded in the view that technologies are not only functional artefacts but also symbolic objects whose meanings are shaped through discourse and cultural narratives (Flichy, 2007, p. 2). Based

on this perspective, AI companions are to be understood not just as technical systems, but as entities whose perceived relational ability is actively constructed by their makers.

Three overarching domains structured the theoretical lens. The first domain explored how digital and AI technologies reshape human intimacy. Drawing from scholars such as Turkle (2011, pp. 18-91, 133-159), Fragkouli (2017, pp. 49-58), and Danaher (2017, pp. 3-14), the thesis examined how digital agents are designed and experienced as “quasi-others”, artificial entities with whom users form emotional bonds. Posthuman perspectives, particularly the work of Verbeek (2001, 119-146), were instrumental in explaining how users relate to machines not as passive tools, but as social actors that evoke emotional responses. The second theoretical domain focused on the discursive construction of technology. Building on the work of Rogers (1983, pp. 163-206), Star & Ruhleder (1996, pp. 111-134), and Suchman (2023, pp. 1-5), the study emphasized that technologies gain social legitimacy through communication and narrative. The notion that AI is inevitable or inherently beneficial is not a reflection of technical reality but of powerful discursive framing. Central to this was the identification of four ideological frames (technological myths, technological determinism, techno-solutionism, and techno-mysticism), which serve to naturalize and depoliticize AI. These frames were drawn from the work of Mosco (2004, pp. 1-55), Flichy (2007, pp. 1-53), Natale and Ballatore (2017, pp. 3-18), Brevini (2021, pp. 145-159), Morozov (2013, pp. 5-18), and Marenko (2019, pp. 213-228), and became the core analytical categories used to interpret the empirical data. The third domain addressed trust and branding in the AI companion industry, highlighting how companies deploy emotional cues and ethical language to construct corporate identities that are seen as reliable, transparent, and user centered. Emotional intelligence becomes not only a trait of the AI but a projection of the company itself (Liu-Thompkins et al., 2022, pp. 1198-1218; Frank et al., 2023, pp. 155-173). Through this lens, corporate discourse is understood as both a commercial and ideological tool, influencing how users experience intimacy and care through the medium of artificial systems. Together, these theoretical elements provided the framework for analyzing how language, design, and imagery work together to determine AI as a social companion.

In terms of methodology, the study adopted a Multimodal Discourse Analysis (MMDA) approach to examine how AI companions are discursively constructed. MMDA was well-suited to this research as it enabled analysis across linguistic, visual, and design-based modes of meaning-making (Machin & Mayr, 2012, pp. 1-56). Because of this, it allowed for a critical

reading of how companies combine text, imagery, and interface design to present AI companions as emotionally credible and trustworthy. The nine English-language websites selected through purposive sampling were analyzed with a framework based on the four discursive frames introduced in the theoretical framework.

The result of the analysis shows that companies across the AI companion industry use a consistent set of discursive strategies to portray their products as emotionally intelligent, trustworthy, and socially relevant. Firstly, AI companions are presented as human-like through features such as personal names, character histories, and emotionally expressive avatars. These platforms emphasize simulated traits like memory and empathy to create the impression of real emotional connection. The companions are made to appear emotionally available, unique, and capable of long-term engagement, reinforcing their perceived realism and intimacy. Secondly, AI companionship is portrayed as a natural extension of daily life, with companies depicting these systems as already integrated into users' routines, reducing them to standard presences rather than emergent or experimental technologies. In doing so, critical reflection is discouraged, and AI relationships are presented as expected, if not inevitable. Another key finding was the framing of emotional challenges such as loneliness or anxiety as individual problems with digital solutions: emotional support is positioned as a service feature that can be delivered through algorithmic design, thus redirecting attention away from collective or structural causes of emotional distress. Lastly, through the strategic ambiguity surrounding how the technology functions, companies promote techno-mystic narratives, avoiding explaining the mechanics of features such as personalization or memory, while reinforcing the idea that AI simply understands and responds, giving the illusion of relational reciprocity. Overall, the results of the analysis demonstrate that the discursive patterns employed by technology companies work together to frame AI companions as emotionally capable social actors in ways that support commercial goals, while masking ethical and social implications.

One key insight is that emotional intimacy is being commodified, as features like memory or romantic interaction are often locked behind paywalls, turning emotional connection into a tiered service. This raises concerns about emotional dependence, especially among vulnerable users, and reflects a broader trend of outsourcing affective labor to machines. At the same time, the presentation of these artificial relationships as already integrated in everyday life, takes away agency from users, positioning them as mere passive adopters rather than active

participants in the shaping of how new technologies are used and designed. Another central finding is how platforms reframe emotional challenges as technical problems to be solved, shifting the burden of care from communities and institutions to individual users. Loneliness and anxiety are treated as design flaws that can be fixed with better algorithms, reinforcing the idea that digital tools can replace relational support. Furthermore, the use of mystifying language and visual cues creates an illusion of emotional depth without revealing how the systems actually work. This lack of transparency undermines informed consent and deepens the power imbalance between developers and users. Together, these findings paint a picture of a cultural shift in which trust, care, and emotional connection are being reshaped by technological and economic forces, with deep implications for how human relationships develop and – more generally – for how individuals relate to each other.

The research makes several important contributions to the fields of media studies, critical technology studies, and posthuman theory: first, while much of the existing literature has emphasized user interaction and psychological outcomes, this study shifts the focus to how companies themselves frame, market, and normalize artificial relationships. Second, by operationalizing four discursive frames – technological myths, determinism, solutionism, and mysticism – the study offers a practical analytical tool that future researchers can apply to other forms of emerging technologies. This framework allows for the identification of not only what is said, but how meaning is built through absences, aesthetics, and emotional cues. Third, the research contributes to growing debates about the commodification of care, showing how emotional intimacy is increasingly designed, regulated, and distributed by private actors. This challenges conventional deterministic assumptions about the neutrality of technological progress and calls for greater scrutiny of how emotional technologies are embedded in society. Lastly, the thesis adds to conversations around trust and corporate responsibility in the design of socially interactive systems. It shows that emotional credibility is not just a property of AI, but of the company behind it – a dynamic that has significant implications for regulation, design ethics, and user rights.

Although the focus on company-produced discourse offered a rich view of how AI companionship is constructed, it is only partial. While the analysis provides insight into platform strategies and narrative patterns, it does not account for how users interpret, negotiate, or resist these framings. Future research could build on this foundation by exploring user experiences and

cross-cultural perspectives, or by testing how specific design elements influence perception and trust.

At a time when AI is increasingly involved in shaping not only work and governance but also intimacy and care, this study contributes to urgent societal conversations about the ethics of emotional automation. It shows that AI companions are not simply convenient tools for communication or therapy; they invite users to experience intimacy as something that can be purchased, customized, and controlled, reflecting a shift toward emotionally commodified digital environments. This reorganization has important implications for how people form expectations around emotional labor, both from machines and from each other. As AI companions become more sophisticated and accessible, they may inadvertently reshape norms around empathy and availability, leading people to expect the same consistency, responsiveness, and validation from human relationships that AI can be programmed to simulate.

The ethical stakes of these technologies therefore extend to how they redefine emotional norms and relational practices: without clear guidelines on transparency and accountability, the growing influence of emotional AI could undermine trust in both machines and human institutions. From a policy perspective, the findings of this study point to the need for regulatory oversight that takes seriously the psychological and cultural implications of emotionally immersive systems. This includes clearer labeling of AI companions, mandatory disclosures of data use and personalization logic, and ethical standards for how care is simulated and monetized. In conclusion, this thesis calls for greater critical awareness of how AI technologies are not only transforming how we work and communicate, but also how we feel, and who we feel with.

References

aiAllure. (2025). *Your dream girl. Always here. Always yours* [Website].
<https://www.aiallure.com>.

Amica. (2025a). *Welcome to Amica!* [Documentation]. <https://docs.heyamica.com>.

Amica. (2025b). *HeyAmica* [Website]. <https://heyamica.com/>.

AppBrain. (2025a). *Kindroid – Android developer info*.
<https://www.appbrain.com/dev/Kindroid/>.

AppBrain. (2025b). *Nomi.ai – Android developer info*. <https://www.appbrain.com/dev/Nomi.ai/>.

AppBrain. (2025c). *Romantic AI – Chat Girlfriend*. <https://www.appbrain.com/app/romantic-ai-chat-girlfriend/com.romanticai.romanticali>.

Bates, L. (2025, June 4). Online brothels, sex robots, simulated rape: AI is ushering in a new age of violence against women. *The Guardian*.
<https://www.theguardian.com/commentisfree/2025/jun/03/ai-sexism-violence-against-women-technology-new-era>.

Bellware, K., & Masih, N. (2024, October 25). Her teenage son killed himself after talking to a chatbot. Now she's suing. *The Washington Post*.
<https://www.washingtonpost.com/nation/2024/10/24/character-ai-lawsuit-suicide/>.

Berger, R. (2013). Now I see it, now I don't: researcher's position and reflexivity in qualitative research. *Qualitative Research*, 15(2), 219–234.
<https://doi.org/10.1177/1468794112468475>

Blunden, H., & Brodsky, A. (2024). A review of virtual impression Management Behaviors and Outcomes. *Journal of Management*, 50(6), 2197–2236.
<https://doi.org/10.1177/01492063231225160>

Böhm, K., & Sammet, J. (2024). The new era of Technology Mysticism: Generative Artificial Intelligence and its effects. In *Proceedings of the International Conference on AI*

Research. (Vol. 4, Issue 1, pp. 67–74). Academic Conferences International Limited.

<https://doi.org/10.34190/icair.4.1.3159>

Bozdağ, A. A. (2024). The AI-mediated intimacy economy: A paradigm shift in digital interactions. *AI & Society*, 40, 2285–2306. <https://doi.org/10.1007/s00146-024-02132-6>.

Bourne, C. (2024). AI hype, promotional culture, and affective capitalism. *AI and Ethics*, 4(3), 757–769. <https://doi.org/10.1007/s43681-024-00483-w>.

Brandtzaeg, P. B., Skjuve, M., & Følstad, A. (2022). My AI friend: How users of a social chatbot understand their human–AI friendship. *Human Communication Research*, 48(3), 404–429. <https://doi.org/10.1093/hcr/hqac008>.

Brevini, B. (2021). Creating the technological Saviour: Discourses on AI in Europe and the legitimization of super capitalism. In *AI for Everyone? Critical Perspectives* (pp. 145–159). University of Westminster Press eBooks. <https://doi.org/10.16997/book55.i>

Brewer, P. R., Bingaman, J., Paintsil, A., Wilson, D. C., & Dawson, W. (2022). Media use, interpersonal communication, and attitudes toward artificial intelligence. *Science Communication*, 44(5), 559–592. <https://doi.org/10.1177/10755470221130307>.

Buick, S. (2024). *In love with a chatbot: Exploring human–AI relationships from a fourth wave HCI perspective* (Master's thesis, Uppsala University).

Carvalho, A. (2008). Media(ted) discourse and society. *Journalism Studies*, 9(2), 161–172. <https://doi.org/10.1080/14616700701848162>.

Cian, L., Krishna, A., & Elder, R. S. (2013). This logo moves me: Dynamic imagery from static images. *Journal of Marketing Research*, 51(2), 184–197. <https://doi.org/10.1509/jmr.13.0023>.

Danaher, J. (2017). Should we be thinking about robot sex? In *The MIT Press eBooks*. <https://doi.org/10.7551/mitpress/9780262036689.003.0001>.

Dandurand, G., McKelvey, F., & Roberge, J. (2023). Freezing out: Legacy media's shaping of AI as a cold controversy. *Big Data & Society*, 10(2), 1–13.

<https://doi.org/10.1177/20539517231219242>.

De Freitas, J., Castelo, N., Uğuralp, A. K., & Oğuz-Uğuralp, Z. (2024, October). *Lessons from an app update at Replika AI: Identity discontinuity in human-AI relationships* (Harvard Business School Working Paper No. 25-018). Harvard Business School.

<https://doi.org/10.48550/arXiv.2412.14190>.

Eyman, D. (2015). *Digital rhetoric*. <https://doi.org/10.3998/dh.13030181.0001.001>.

Fairclough, N. (1995). *Media discourse*. London: Edward Arnold.

Fairclough, N. (2003). *Analysing Discourse Textual Analysis for Social Research*. Routledge.

Ferguson, N. (2017). *The square and the tower: Networks and power, from the Freemasons to Facebook*. Penguin Press.

Flichy, P. (2007). *The Internet imaginaire* (L. Carey-Libbrecht, Trans.). MIT Press.

Folberth, A., Jahnel, J., Bareis, J., Orwat, C., & Wadephul, C. (2022). *Tackling problems, harvesting benefits: A systematic review of the regulatory debate around AI* (KIT Scientific Working Papers No. 197). Karlsruhe Institute of Technology.

<https://doi.org/10.5445/IR/1000150432>.

Fragkoulidi, N. (2017). Posthuman relationships: Social assistants as virtual (girl)friends.

Junctions Graduate Journal of the Humanities, 2(2), 49–58.

<https://doi.org/10.33391/jgjh.35>.

Frank, D., Jacobsen, L. F., Søndergaard, H. A., & Otterbring, T. (2023). In companies we trust: Consumer adoption of artificial intelligence services and the role of trust in companies and AI autonomy. *Information Technology & People*, 36(8), 155–173.

<https://doi.org/10.1108/ITP-09-2022-0721>.

Freedman, D. (2002). A “Technological idiot”? Raymond Williams and Communications Technology. *Information Communication & Society*, 5(3), 425–442.
<https://doi.org/10.1080/13691180210159346>

Ge, R. (2024). From pseudo-intimacy to cyber romance: A study of human and AI companions emotion shaping and engagement practices. *Communications in Humanities Research*, 52(1), 211–221. <https://doi.org/10.54254/2753-7064/2024.19122>.

Guingrich, R. E., & Graziano, M. S. A. (2024). Ascribing consciousness to artificial intelligence: Human–AI interaction and its carry-over effects on human–human interaction. *Frontiers in Psychology*, 15, 1322781. <https://doi.org/10.3389/fpsyg.2024.1322781>.

Hall, S. (1980). Encoding/decoding. In S. Hall et al. (Eds.), *Culture, media, language* (pp. 128–138). Hutchinson.

Hu, D., Lan, Y., Yan, H., & Chen, C. W. (2025). What makes you attached to social companion AI? A two-stage exploratory mixed-method study. *International Journal of Information Management*, 83, 102890. <https://doi.org/10.1016/j.ijinfomgt.2025.102890>.

Johansen, T. S., & Gregersen, M. K. (2024). The authenticity of organizational-level visual identity in the context of strategic communication. *International Journal of Strategic Communication*, 18(5), 404–423. <https://doi.org/10.1080/1553118X.2024.2352114>.

Jung, Y., & Hahn, S. (2023, August). Social robots as companions for lonely hearts: The role of anthropomorphism and robot appearance. In *2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)* (pp. 2520–2525). IEEE.
<https://doi.org/10.1109/RO-MAN57019.2023.10309617>.

Khanal, S., Zhang, H., & Taeihagh, A. (2025). Why and how is the power of Big Tech increasing in the policy process? The case of generative AI. *Policy & Society*, 44(1), 52–69.
<https://doi.org/10.1093/polsoc/puae012>.

Kindroid. (2025). *Kindroid: Your personal AI* [Landing page]. <https://landing.kindroid.ai/>.

Katell, M., Krafft, P. M., Young, M., Dailey, D., Herman, B., Guetler, V., Tam, A., Bintz, C., & Raz, D. (2020). *Toward situated interventions for algorithmic equity: lessons from the field* (pp. 45–55). Association for Computing Machinery.

<https://doi.org/10.1145/3351095.3372874>

Kudo, M., Yoshizawa, G., & Kano, K. (2018). Engaging with policy practitioners to promote institutionalisation of public participation in science, technology and innovation policy. *Journal of Science Communication*, 17(4), N01. <https://doi.org/10.22323/2.17040801>.

Liebig, L., Jobin, A., Güttel, L., & Katzenbach, C. (2024). Situating AI policy: Controversies covered and the normalisation of AI. *Big Data & Society*, 11(4), 1–14. <https://doi.org/10.1177/20539517241299725>.

Liu-Thompkins, Y., Okazaki, S., & Li, H. (2022). Artificial empathy in marketing interactions: Bridging the human–AI gap in affective and social customer experience. *Journal of the Academy of Marketing Science*, 50(6), 1198–1218. <https://doi.org/10.1007/s11747-022-00892-5>.

Luka, Inc. (2025). *Replika – AI Friend (Version 10.4.1)* [Mobile app]. App Store. <https://apps.apple.com/nl/app/replika-ai-friend/id1158555867>.

Machin, D. (2013). What is multimodal critical discourse studies? *Critical Discourse Studies*, 10(4), 347–355. <https://doi.org/10.1080/17405904.2013.813770>.

Machin, D., & Mayr, A. (2012). *How to do critical discourse analysis: A multimodal introduction*. Sage.

Marchionini, G. (2006). Exploratory search. *Communications of the ACM*, 49(4), 41–46. <https://doi.org/10.1145/1121949.1121979>

Marenko, B. (2019). Algorithm Magic. In *Believing in Bits: Digital Media and the Supernatural* (pp. 213–228). Oxford University Press eBooks. <https://doi.org/10.1093/oso/9780190949983.003.0013>

Mautner, G. (2005). Time to get wired: Using web-based corpora in critical discourse analysis. *Discourse & Society*, 16(6), 809–828. <https://doi.org/10.1177/0957926505056661>.

Mentzer, K., Price, J., & Singh, J. (2024). Analyzing reddit discourse surrounding generative AI. *Issues in Information Systems*, 25(3), 277–292. https://doi.org/10.48009/3_iis_2024_122

Misu Labs LLC. (2025a). *Sible AI – AI Friend* [Mobile app]. App Store. <https://apps.apple.com/us/app/sible-ai-ai-friend/id6467881226>.

Misu Labs LLC. (2025b). *Sible – AI Companions* [Mobile app]. Google Play Store. <https://play.google.com/store/apps/details?id=com.sible.ai>.

Morozov, E. (2013). *To save everything, click here: The folly of technological solutionism*. PublicAffairs.

Mosco, V. (2004). *The digital sublime: Myth, power, and cyberspace*. MIT Press.

Natale, S., & Ballatore, A. (2017). Imagining the thinking machine: Technological myths and the rise of artificial intelligence. *Convergence*, 23(4), 374–390. <https://doi.org/10.1177/1354856517715164>.

Nastia. (2025). *Nastia: Your caring uncensored AI companion* [Website]. <https://www.nastia.ai/>.

Nguyen, D., & Hekman, E. (2022). The news framing of artificial intelligence: A critical exploration of how media discourses make sense of automation. *AI & Society*, 39(2), 437–451. <https://doi.org/10.1007/s00146-022-01511-1>.

Nomi.ai. (2025). *Nomi: AI Companion with a Soul* [Mobile app]. App Store. <https://apps.apple.com/us/app/nomi-ai-companion-with-a-soul/id6450270929>.

Olawuyi, E. A., & Enuwah, J. (2024). Framing the future: Media narratives on artificial intelligence and its societal impact. *International Journal of Communication and Humanities*, 10(1), 270–289.

Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., & Hoagwood, K. (2013). Purposeful sampling for qualitative data collection and analysis in mixed-method

implementation research. *Administration and Policy in Mental Health and Mental Health Services Research*, 42(5), 533–544. <https://doi.org/10.1007/s10488-013-0528-y>.

Patel, N. (2024, August 12). Replika CEO Eugenia Kuyda says it's okay if we end up marrying AI chatbots. *The Verge*. <https://www.theverge.com/24216748/replika-ceo-eugenia-kuyda-ai-companion-chatbots-dating-friendship-decoder-podcast-interview>.

Pohle, J., Hösl, M., & Kniep, R. (2016). Analysing internet policy as a field of struggle. *Internet Policy Review*, 5(3). <https://doi.org/10.14763/2016.3.412>.

Replika. (2025). *Replika: The AI companion who cares* [Website]. <https://replika.com/>.

Rogers, E. M. (1983). *Diffusion of innovations* (3rd ed.). Free Press.

Romantic AI. (2025). *Your ultimate AI companion* [Website]. <https://romanticai.com/>.

Romantic AI Ltd. (2025). *Romantic AI – Girlfriend Chat* [Mobile app]. App Store. <https://apps.apple.com/us/app/romantic-ai-girlfriend-chat/id1604044764>.

Saichaiie, K. (2011). Representation on college and university websites. <https://doi.org/10.17077/etd.10xrp42m>.

Savic, M. (2024). Artificial companions, real connections? *M/C Journal*, 27(6). <https://doi.org/10.5204/mcj.3111>.

Schultz, M. D., Conti, L. G., & Seele, P. (2024). Digital ethicswashing: a systematic review and a process-perception-outcome framework. *AI And Ethics*, 5, 805–818. <https://doi.org/10.1007/s43681-024-00430-9>

Schwarz, A., & Unselt, J. J. (2024). Rage against the machine? Framing societal threat and efficacy in YouTube videos about artificial intelligence. *Risk Analysis*, 44(10), 2377–2395. <https://doi.org/10.1111/risa.14299>.

Semrush. (2025). *Website traffic checker*. <https://www.semrush.com/website/>.

Song, X., Xu, B., & Zhao, Z. (2022). Can people experience romantic love for artificial intelligence? An empirical study of intelligent assistants. *Information & Management*, 59(2), Article 103595. <https://doi.org/10.1016/j.im.2022.103595>.

Star, S. L., & Ruhleder, K. (1996). Steps toward an ecology of infrastructure: Design and access for large information spaces. *Information Systems Research*, 7(1), 111–134.
<https://doi.org/10.1287/isre.7.1.111>.

Suchman, L. A. (2007). *Human-machine reconfigurations: Plans and Situated Actions*.

Suchman, L. (2023). The uncontroversial “thingness” of AI. *Big Data & Society*, 10(2), 1–5.
<https://doi.org/10.1177/20539517231206794>.

Turkle, S. (2011). *Alone together: Why we expect more from technology and less from each other*. Basic Books.

van Leeuwen, T. (2008). *Discourse and practice: New tools for critical discourse analysis*. Oxford University Press.

Verbeek, P. P. (2001). Don Ihde: The technological lifeworld. In *American Philosophy of Technology: The Empirical Turn* (pp. 119–146). Indiana University Press.
<https://www.narcis.nl/publication/RecordID/oai:ris.utwente.nl:publications/71f6cf8f-e2d9-4d91-9512-8e100425878e>.

Williams, R., & Edge, D. (1996). The social shaping of technology. *Research Policy*, 25(6), 865–899. [https://doi.org/10.1016/0048-7333\(96\)00885-2](https://doi.org/10.1016/0048-7333(96)00885-2).

Wyatt, S. (2008). Technological determinism is dead; long live technological determinism. In E. J. Hackett et al. (Eds.), *The handbook of science and technology studies* (3rd ed., pp. 165–180). MIT Press.

Zhang, S., & Li, S. (2025). The real her? Exploring whether young adults accept human-AI love [Preprint]. *arXiv*. <https://doi.org/10.48550/arXiv.2503.03067>.

Appendix

Appendix A – Table 1

Overview of AI Companion Websites

Website name	Website owned by the company	Rich in textual/visual content (min. 500 words)	Available in English with no paywall/login screen	Mainly advertising social companionship
Replika	Yes	Yes	Yes	Yes
Tolan	Yes	Yes	Yes	Yes
Nomi AI	Yes	Yes	Yes	Yes
Kindroid	Yes	Yes	Yes	Yes
HeyAmica	Yes	Yes	Yes	Yes
AIRI	Yes	Yes	Yes	Yes
Romantic AI	Yes	Yes	Yes	Yes
Nastia AI	Yes	Yes	Yes	Yes
AiAllure	Yes	Yes	Yes	Yes
Xiaoice	Yes	Yes	No	Yes
Anima	Yes	No	Yes	Yes
Paradox	Yes	No	Yes	Yes
Krush Chat	Yes	No	Yes	Yes
Kupid AI	Yes	No	Yes	Yes
Candy AI	Yes	No	Yes	Yes
Soulmate AI	Yes	No	Yes	Yes
Eva AI	Yes	No	Yes	Yes
Chai AI	Yes	No	Yes	Yes
Kuki AI	Yes	No	Yes	No

Appendix B - Declaration Page: Use of Generative AI Tools in Thesis

Student Information

Name: Chiara Milani

Student ID: 698703

Course Name: Master Thesis CM5000

Supervisor Name: D. Dumitrica

Date: 26.6.2025

Declaration:

Acknowledgment of Generative AI Tools

I acknowledge that I am aware of the existence and functionality of generative artificial intelligence (AI) tools, which are capable of producing content such as text, images, and other creative works autonomously.

GenAI use would include, but not limited to:

- Generated content (e.g., ChatGPT, Quillbot) limited strictly to content that is not assessed (e.g., thesis title).
- Writing improvements, including grammar and spelling corrections (e.g., Grammarly)
- Language translation (e.g., DeepL), without generative AI alterations/improvements.
- Research task assistance (e.g., finding survey scales, qualitative coding verification, debugging code)
- Using GenAI as a search engine tool to find academic articles or books (e.g.,

I declare that I have used generative AI tools, specifically ChatGPT, in the process of creating parts or components of my thesis. The purpose of

I declare that I have NOT used any generative AI tools and that the assignment concerned is my original work.

using these tools was to aid in generating content or assisting with specific aspects of thesis work.

Signature: [digital signature]

Date of Signature: [Date of Submission]

Extent of AI Usage

I confirm that while I utilized generative AI tools to aid in content creation, the majority of the intellectual effort, creative input, and decision-making involved in completing the thesis were undertaken by me. I have enclosed the prompts/logging of the GenAI tool use in an appendix.

Ethical and Academic Integrity

I understand the ethical implications and academic integrity concerns related to the use of AI tools in coursework. I assure that the AI-generated content was used responsibly, and any content derived from these tools has been appropriately cited and attributed according to the guidelines provided by the instructor and the course. I have taken necessary steps to distinguish between my original work and the AI-generated contributions. Any direct quotations, paraphrased content, or other forms of AI-generated material have been properly referenced in accordance with academic conventions.

By signing this declaration, I affirm that this declaration is accurate and truthful. I take full responsibility for the integrity of my assignment

and am prepared to discuss and explain the role of generative AI tools in my creative process if required by the instructor or the Examination Board. I further affirm that I have used generative AI tools in accordance with ethical standards and academic integrity expectations.

Signature: Chiara Milani

Date of Signature: 26.6.2025

Appendix C – Prompts used for generative AI

Prompt 1

I am currently conducting a qualitative, MMDA study on *How do digital technology companies discursively construct AI as a social companion?*. Search the web for useful literature I can use to support the theoretical framework I need to develop. Provide complete bibliography in APA, plus a short abstract to know what the paper is about.

Prompt 2

(attaching my first attempt at analysis) These are the patterns I have identified so far. Do you see any insight that is miscategorized, or should be grouped differently?

Prompt 3

Format the following tables according to APA 7th edition rules.