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Abstract

Recently, kernel-based infinitesimal moment estimators have been proposed to

nonparametrically estimate the drift and diffusion coefficients of stochastic volatility

models by exploiting the availability of high frequency returns. The methodology

uses nonparametric spot variance estimators based high frequency data, which are

typically exposed to the effects of market microstructure noise, to construct low

frequency estimates of the latent variance series driving the returns. With the

low frequency spot variance estimates, the kernel-based estimates of the variance

dynamics are constructed. Given the exposure of the spot variance estimates to

market microstructure noise, this thesis studies its effects on the estimation of

the variance dynamics of stochastic volatility models. By means of a simulation

study which generates high frequency data from a GARCH and a Heston model,

the effects of noise, in the form of bid-ask bounce and infrequent trading, on the

kernel-based estimators are studied by using several bias-corrected and unadjusted

estimators of integrated variance. Evidence is provided that controlling for the noise

by bias-correction procedures on the estimators of spot variance is sufficient to obtain

consistent estimates of the drift and diffusion coefficients of the underlying variance

process.

iii



Contents

1 Introduction 1

2 Econometric framework 5
2.1 General stochastic volatility model . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Infinitesimal moment estimators . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Implementation 10
3.1 Stochastic volatility models . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Spot variance estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Estimating the model functions . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Simulation setup 19
4.1 Basic simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Adding Market Microstructure Noise . . . . . . . . . . . . . . . . . . . . . 21
4.3 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Practical information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Results 26
5.1 No microstructure noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Bid-ask bounce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Infrequent trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Bid-ask bounce and infrequent trading . . . . . . . . . . . . . . . . . . . . 39

6 Conclusions and further research 43

References 46

A Tables and graphs - no noise 48

B Tables and graphs - bid-ask bounce 60

C Tables and graphs - infrequent trading 68

D Tables and graphs - both noise types 76

iv



1 INTRODUCTION

1 Introduction

Modeling volatility has its roots in financial econometrics and mathematical finance.

The importance of the research in this field is due to the paramount need for a

better understanding of what drives the plethora of financial applications in the market.

Originally asset price models considered the volatility of the asset price to be constant over

time. Despite that homogeneous volatility was an over-simplification of reality, doing so

enabled the development of many effective methods e.g. the Black-Scholes option pricing

model (Hull (2008)), that now serve as the basis for much further research.

Nevertheless, characteristics of financial time series, such as volatility clustering and fat

tails in the return distribution, are inadequately explained by the available univariate

models. Further empirical evidence, such as that options with lower strike prices have

higher implied volatility than options with higher strike prices, supports the notion that

volatility is time-varying. These are mere examples of the complex behavior of financial

instruments that is sought to be explained, giving rise to the research done on time-varying

volatility when modeling its dynamics. The evolution and development of this research and

the rise of (stochastic) volatility modeling in general is well-documented by Shephard and

Andersen (2008), Andersen et al. (2002), and McAleer (2005) amongst others.

What is clear in the advancement of the research on volatility modeling is the division

in approaches. On the one hand there are the parametric methodologies that include the

popular autoregressive conditional heteroscedasticity (ARCH) models and the discrete-

and continuous-time stochastic volatility models. On the other hand are the nonparametric

methodologies that include such measures as the realized volatility, which is based on high-

frequency data (McAleer and Medeiros (2008)).

The parametric methods require a distinction to be made between the ARCH type models

and the stochastic volatility models. Specifically the discrete-time ARCH models fully

define the one-step ahead conditional volatility of the returns series on the previously

observed returns. As Shephard and Andersen (2008) state, this approach directly defines

the likelihood function as the product of one-step ahead predictive densities, allowing

for a convenient estimation procedure. Stochastic volatility models move away from this

and model the volatility dynamics as an unobservable state variable, thereby implicitly

modeling the predictive distribution, which as a result can usually only be evaluated by
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1 INTRODUCTION

means of numerical methods. This method inherently runs the risk of misspecification,

therefore requiring great care and diligent evaluation when defining the model’s dynamics.

The nonparametric methodologies have no need for restrictive assumptions on the

functional form, yet allow for consistent estimation of the volatility. However these methods

tend to lack the informative value with respect to the dynamics driving the volatility

series. Nevertheless, estimators like the realized volatility, which can accurately estimate

the volatility over infinitesimal time steps, have intuitive potential in the estimation of

continuous-time stochastic volatility models.

A promising step in this regard is provided by Renò (2006) by using nonparametric

spot volatility estimates for the estimation of stochastic volatility models. He provides

simulation-based evidence on the performance of nonparametric estimators of the drift

and diffusion functions for a general class of stochastic volatility (SV) models. The

estimation procedures for the drift term in the (univariate) asset price process has been

well-documented already, allowing Renò (2006) and onward to focus on the estimation

of the dynamics of the variance process of bivariate models. The proposed methodology

relies on using the realized variance estimator to create visibility of the underlying variance

process, by exploiting high frequency data to obtain consistent spot variance estimates. The

next step employs kernel-based estimators, akin to the Nadaraya-Watson kernel estimators

developed for the univariate setting (Renò (2008, 2006)), to identify the dynamics of the

variance process without imposing strict assumptions on its functional form.

As Martens and Van Dijk (2007) point out, in an ideal world, the realized variance provides

unbiased and efficient estimates of the spot variance, converging to the true integrated

variance as the time step between consecutive estimates decreases to zero. However, in

practice estimators using high frequency data are often hindered by market microstructure

noise, which becomes increasingly noticeable as the sample frequency increases, i.e. when

the time step is reduced. Market microstructure noise such as bid-ask bounce and

infrequent trading cripple the increases in efficiency associated with increasing the sample

frequencies as estimates become inconsistent and biased, as shown by Martens and Van

Dijk (2007) among others.
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1 INTRODUCTION

Given the impact of market microstructure noise on the estimates of the spot variance

of the associated asset price process, the question arises how these frictions influence the

methodology of Renò (2006). Specifically, does the estimation of the variance dynamics of

bivariate models hinge on the obtaining the most efficient estimates of the spot variance. If

so, is controlling for the effects of market microstructure noise by means of bias-corrected

spot variance estimates enough to eliminate the noise-induced biases?

Consequently, this thesis primarily extends the work in Renò (2006) by studying the effects

of market microstructure noise, in the form of bid-ask bounce and infrequent trading, on

the effectiveness of the methodology. To study this effect and possible solutions, different

estimators of integrated variance are introduced to complement the implementation by

Renò (2006) of realized variance as an estimator of spot variance. For this purpose,

the work of Martens and Van Dijk (2007) provide the reference material for a number

of estimators, as they compare the realized variance, realized range, and several (bias-

corrected) variations thereof based on high frequency data. Their simulation experiment

uses a constant volatility model to generate data and considers the relative performance

of the estimators of the spot variance at several sampling frequencies in the presence of

bid-ask bounce and infrequent trading. By evaluating the performance of (most of) these

estimators in the setting of stochastic volatility, it will be possible to identify if their results

translate to this setting. Furthermore, it allows the selection of which estimators perform

best in the context of this thesis and to investigate the impact of market microstructure

noise on the overall estimation procedure.

The contribution of the research presented here is twofold. First of all, the simulation

experiment of Martens and Van Dijk (2007) is extended to the setting of stochastic

volatility. Evidence is provided that when estimating the daily volatility when dealing

with time-varying volatility dynamics, that the results of Martens and Van Dijk (2007)

translate almost directly to this setting. Deviations are found in the performance of their

promising bias-correction procedure of the realized range, as here it has a sub-optimal

performance with respect to theirs in the presence of bid-ask bounce. Nevertheless, the

results indicate that this is due to the settings used in this thesis for the implementation

of their bias-correction procedure.
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Second, the methodology suggested by Renò (2006) is implemented using estimated series

of daily variance for each of the aforementioned estimators. The comparison of the

performance of these estimators starts in the basic setting without noise and is followed by

the separate introduction of bid-ask bounce and infrequent trading followed by a combined

scenario. The presence of noise has clear consequences for the efficacy of the estimation of

the underlying dynamics, as the weaknesses and strengths of the daily variance estimators

identified in the work of Martens and Van Dijk (2007) extend to this situation and are

clearly visible in the resulting estimates of the drift and diffusion. In this the two-time-

scales estimator of Zhang et al. (2005) is shown to have the most stable and reliable

estimate of the true dynamics in the absence and presence of noise. The scaled realized

range should not be dismissed, but needs more sophisticated (automated) methods for

selecting its settings (i.e. number of lags used in its scaling factor) for it to be an effective

estimator in this setting. The results indicate that if the noise is controlled for in the

estimates of the spot variance, then the true dynamics can be consistently estimated.

A closing comment for this introduction is in order. As the work on this thesis has

progressed, the author has become aware of the work by Bandi and Renò (2009), which

expands on Renò (2006) by considering a larger class of models that include jump processes

in both the log asset price and volatility dynamics. Their work controls for market

microstructure noise through selection of robust estimators. Also, they develop the basic

theory for the spot volatility estimation, however are not specifically focused on the effects

of noise itself. Furthermore, no specific (simulation) evidence appears to be given in their

work. Therefore this thesis could be seen as a supporting document between the two

papers, at least partially abridging the simulation-based evidence of Renò (2006) and the

work done by Bandi and Renò (2009).

The remainder of this thesis is organized as follows. The following section describes the

general setting and methodology developed by Renò (2006) and Bandi and Renò (2009).

Section 3 introduces the stochastic volatility models, along with various estimators for

the spot volatility, and the practical implementation of the proposed estimators for the

volatility dynamics. Subsequently, section 4 discusses the simulation experiment employed

to illustrate the efficacy of the methodology when exposed to market microstructure noise.

This section is naturally followed by the results of the various simulations and finally the

conclusions which include recommendations for further research.
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2 Econometric framework

This section presents the methodology employed in this thesis, developed in Renò (2006)

and Bandi and Renò (2009), and introduces some notation and underlying concepts.

What follows is a description of the general class of stochastic volatility models under

consideration and subsequently the nonparametric estimators central to this thesis with

the associated assumptions, concepts, and intuition.

2.1 General stochastic volatility model

Following Renò (2006) and borrowing some notation, the dynamics of the observable state

variable Xt and its latent variance Vt on an interval [0, T ] are modeled with a stochastic

volatility model of the following general form,

dXt = µ(Xt)dt+ σtdWS,t,

dσ2
t = m(σ2

t )dt+ Λ(σ2
t )dWσ,t,

(1)

where µ(·) and m(·) are real drift functions, and Λ2(·) is a diffusion function. All functions

have characteristics such that there exist strong solutions of the stochastic differential

equations (SDEs) of the observable variable Xt and unobserved variable σ2
t . Furthermore,

the standard Brownian motions dWS,t and dWσ,t have (instantaneous) correlation ρ. Note

that Xt is purposely left as a generic variable to retain the flexibility to model the asset

price or log asset price directly.

Although the technical details on the drift and diffusion functions were omitted in Renò

(2006), the necessary assumptions and requirements are partially developed in Renò (2008)

and fully in Bandi and Renò (2009). Where the latter paper allows for a larger class of

models by including the specification of jumps, allowing the general model considered in

Renò (2006) and by extension this thesis, as a subclass (i.e. the case without jumps) with

Xt modeled as the log asset price. The full technical details are left for the interested

reader, however for intuitive purposes a (mostly) qualitative discussion is included in what

follows.

5



2 ECONOMETRIC FRAMEWORK

2.2 Infinitesimal moment estimators

A feature of the (general) SV-model under consideration is that one has definitions for

the conditional moments that fully describe the temporal development of the process

over infinitely small time-steps (Bandi and Phillips (2002)). Therein lies the potential

for translation to discrete-time analogues that allow for estimation with observable data.

Renò (2006) sets out to exploit the existence of these infinitesimal conditional moment

definitions.

The following exposition is restricted to the setting of this paper and therefore focusses

on the drift and diffusion of the variance process, corresponding to the first and second

infinitesimal conditional moments. As Bandi and Phillips (2002) state, they respectively

describe the conditional expectation of the rate of change and the conditional rate of change

of the volatility of the process at an arbitrary level x on its domain:

m(x) = lim
∆→0

1

∆
E
[(
σ2
t+∆ − σ2

t

)
|σ2
t = x

]
(2)

Λ2(x) = lim
∆→0

1

∆
E
[(
σ2
t+∆ − σ2

t

)2 |σ2
t = x

]
. (3)

Borrowing from Bandi and Phillips (2002) to highlight the intuitive appeal of these

functions, consider what follows. The drift at x in (2) can be estimated by constructing

the (weighted) average of the first differences of the sample process, conditional on that σ2
t

is in the neighborhood of x. To obtain an asymptotically consistent estimate, one would

like as many observations as possible in order to converge in the limit to the conditional

moment of interest. To make this possible, over time the underlying process would have

to visit x an infinite number of times, which occurs when recurrence is satisfied. Bandi

and Renò (2009) state that under recurrence, the process revisits open sets in its range an

infinite number of times, or more formally, for any x ∈ RN and ε > 0,

Px
(
|σ2
t − x| < ε for a sequence of times increasing to ∞

)
= 1. (4)

It is in fact this feature that allows for the methodology of Renò (2006) without the

necessity for a time-invariant stationary distribution. As Bandi and Phillips (2002) point

out, methodologies generally mean to identify the continuous structure of the underlying

process(es) by assuming the existence of a time-invariant stationary distribution. Thus
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if the joint probability distribution of the underlying process does not change over time,

then the statistical properties (such as the mean and variance) are temporally constant.

Given the existence of such a time-invariant distribution allows for more straightforward

identification using the informational content of discrete observations on the continuous

sample path.

However, Renò (2008) points out that while assuming stationarity is convenient, empirical

results often indicate the presence of nonstationary behavior (such as persistence features

in variance, Bandi and Renò (2009)), thus likely causing inaccurate identification of the

continuous dynamics. This gives credence to the imposed relaxation of the assumptions

on its distributional properties by requiring recurrence instead.

According to Renò (2008), it is the presence of recurrence that allows for the nonparametric

estimation procedure to work as it makes consistent point-wise kernel estimation possible.

Reconsider how one would estimate the drift at an arbitrary variance level x. Logically one

would expect the ’observed’ variations where σ2
t is closest to x to contain more information

on the drift at x and should accordingly contribute to an estimate thereof the most. Thus

instead of an equally-weighted estimator, it is intuitive to consider weighting functions

that are centered at x and converge to 0 when the observations are far away, i.e. when

|σ2
t − x| → ε the assigned weight approaches zero (Bandi and Phillips (2002)).

Consulting Renò (2008) to give a formal introduction of these type of weighting functions

known as kernels. A kernel is considered to be a symmetric nonnegative continuously-

differentiable, bounded function K(·) with an absolutely integrable and bounded derivative

K′(·), and is such that
∫

K(s)ds = 1,
∫
s2K(s)ds <∞, and

∫
K2(s)ds <∞.

Thus, assuming the processes of the SV-model are recurrent and there is a K(·) with the

aforementioned properties, there remains a final hurdle: volatility is unobservable. To make

the step to a practical estimator, Renò (2006) states that if one would be able to make

observations on the variance process, then applying nonparametric estimation procedures

for the univariate series would lead to reliable estimates of its dynamics. Exploiting this

notion, the remaining step is to deal with the latency of the variance process. This can be

accomplished by making the variance ’visible’ using suitable estimates of the spot variance,

σ̃2
t , based on discrete high frequency observations on the associated (log) asset price process.

7



2 ECONOMETRIC FRAMEWORK

Combining the above concepts forms the following point-wise moment estimators for the

drift and diffusion of the variance process.

Borrowing from Renò (2006) and Bandi and Renò (2009), assume there are n+1 equidistant

observations on the state variable Xt in the interval [0, T ]. This yields n intervals of size

∆n,T = T
n

. Furthermore, exploiting the present day availability of high frequency data,

it is assumed that for i = 0, 1, ..., n, the interval [i∆n,T , (i + 1)∆n,T ] has a sub-interval of

length φn,T containing p intra-period observations, which need not be equidistant.

Renò (2006) proposes the following estimators for the real functions m(·),Λ2(·) for the drift

and diffusion of Vt respectively, and bases these solely on the (discrete) observations on Xt:

m̂(x) =
1

∆n,T

n−1∑
i=0

K

(
σ̃2
iT/n − x
hn,T

)(
σ̃2

(i+1)T/n − σ̃2
iT/n

)
n−1∑
i=0

K

(
σ̃2
iT/n − x
hn,T

) , (5)

Λ̂2(x) =
1

∆n,T

n−1∑
i=0

K

(
σ̃2
iT/n − x
hn,T

)(
σ̃2

(i+1)T/n − σ̃2
iT/n

)2

n−1∑
i=0

K

(
σ̃2
iT/n − x
hn,T

) , (6)

where K(·) is a kernel, hn,T is a bandwidth parameter, and the integrated variance σ̃2
iT/n

is defined as:

σ̃2
iT/n =

1

φn,T

iT/n+φn,T∫
iT/n

σ2
s(d)s, (7)

where ∆n,T → 0 as n, T →∞. Perhaps redundant, but as stated before

[iT/n, iT/n + φn,T ] ⊆ [iT/n, (i + 1)T/n] = [i∆n,T , (i + 1)∆n,T ] to make the order of the

intervals specific. Clearly, this setup is created to allow for trading days shorter than the

full 24 hours.
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However, as stated before, the integrated variance σ̃2
iT/n is unobservable, thus it must

be estimated by means of a suitable estimator σ̂2
iT/n. The methodology of Renò (2006,

2008) suggests using the p high frequency observations on the state variable Xt in the

interval [iT/n, iT/n+ φn,T ] to estimate the integrated variance over that interval, thereby

constructing variance estimates at a lower frequency. Replacing σ̃2
iT/n by σ̂2

iT/n in (5) and

(6) produces the feasible estimators. Thus for example, if there are observations on Xt at 5

minute intervals, then one could construct estimates of the daily integrated variance, with

which one would then construct m̂(·) and Λ̂2(·).

9
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3 Implementation

This section discusses the implementation of the described methodology to data series

that are to be generated with two models for time-varying volatility, being a generalized

ARCH (GARCH) model and the Heston model. This is followed by a specification of the

implemented estimators of the integrated variance. Subsequently, the implementation is

described of the estimators for the drift and diffusion of the variance process.

3.1 Stochastic volatility models

To facilitate the extension on the results of Renò (2006), price paths (with equidistant

prices) are simulated using the Heston model as well as a GARCH continuous time model.

The choice of the simulated models stems in part from their popularity, as both models are

widely used in financial applications ranging from portfolio management to option pricing.

On the one hand, the Heston model is a natural extension on the Black-Scholes model,

essentially extending it to allow for the otherwise constant volatility to be modeled as a

time-varying process, thus creating the bivariate set of SDEs described below in (9). The

Heston model is widely used for option pricing applications as closed-form evaluation is

readily available, which is not the case with most stochastic volatility models. The Heston

model falls in the category of continuous-time stochastic volatility models and implicitly

models the predictive distribution via the structure of the model (Shephard and Andersen

(2008)).

On the other hand, the GARCH model (also) readily takes into account well known

characteristics of financial time-series, being fat tails in the return distribution (i.e. excess

kurtosis) and volatility clustering. The (originally) discrete-time specification allows for the

GARCH model to be widely used in practice for applications such as describing the term

structure of interest rates and the modeling of persistence and fat tails in exchange rate

data. However wide and simple the application of the GARCH model is, the reliance on

parametric specification makes it vulnerable to unanticipated conditions in the market. The

continuous-time specification of the GARCH model that is used here, is employed in several

works such as Drost and Werker (1996) and Alexander and Lazar (2005). This specification

makes the implemented nonparametric approach interesting for GARCH models, as it

allows for observation-based inference of the model while imposing a minimal structure on

its continuous-time dynamics.

10
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Continuous-time specification

To place the volatility dynamics of the respective models in terms of the basic continuous-

time model presented in (1) of the previous section, both models exhibit linear drift,

m(σ2) = κ(θ − σ2),

and the diffusions for Heston and GARCH are respectively:

Λ(σ2) = ω
√
σ2

Λ(σ2) = ωσ2,
(8)

where κ is the speed of mean-reversion of the variance process, θ is the long-term mean

level of variance, ω signifies the volatility of variance (or volatility depending on α), and

are all nonnegative constants. Borrowing some notation used in Lord et al. (2009) for the

general class of constant elasticity of volatility SV models (CEV-SV), we have:

dXt = µXtdt+
√
σ2
tX

β
t dWX,t

dσ2
t = κ(θ − σ2

t )dt+ ω(σ2
t )
αdWσ,t,

(9)

where β controls the elasticity of the variance and the (log) asset price, α allows for

summarizing both implemented models in one general scheme. Clearly, α = 0.5 for the

Heston model and α = 1 for the GARCH model.

While on the subject of this general class of model, Lord et al. (2009) list some properties

of interest when used for simulation purposes. Limiting the discussion thereof to what

is relevant to the Heston and GARCH models, consider the mean-reverting CEV process

σ2
t . Then 0 is an attainable boundary for the Heston model when ω2 > 2κθ, such that

the process can touch zero, but will spend no time in it. For the GARCH model, 0 is

unattainable as α > 1/2. For both models,∞ is unattainable (due to the mean-reversion).

The list of properties extends itself to the asset price process Xt, commenting that it

can reach 0 with positive probability. Clearly, these properties are of importance for the

simulation of both models and must be taken into consideration when selecting parameter

configurations.

11
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Discretization

To allow for meaningful simulations, a sensible conversion of the continuous-time to a

discrete-time specification of the implemented models must be made to allow for an

honest assessment of the performance of the moment estimators. To accomplish this,

it is convenient for the models to be discretized with an Euler-Maruyama scheme (Euler

from here on).

However, as Lord et al. (2009) point out, despite the straightforward nature of Euler

discretizations, there are some downsides to the methodology. The first being that the

bias introduced by the selected time discretization is unknown, requiring numerous runs of

the simulation to identify the accomplished level of accuracy. Conversely, given a required

level of accuracy, one might need an excessively small time step to eliminate the bias

associated with the discretization. Nevertheless, this also means that it can be shown

that with increasingly small time steps the discretization bias will become negligible and

consequently that the discretized process converges to the true continuous-time process

(under certain conditions). In this thesis, high frequency data is simulated, thereby keeping

the size of the time step between consecutive prices quite small, thus likely keeping the

discretization bias to a minimum.

A more practical drawback is that, in the setting of the square root process of the Heston

model, the discretized variance process has a strictly positive probability of becoming

negative. As Lord et al. (2009) point out, this is directly related to the higher volatility

of the variance in the stochastic volatility setting than the volatility in the interest rate

setting. Furthermore, convergence of the discretized square root process is not guaranteed,

especially around zero. Thus, there is a possibility of the discretized variance process to

step out of the nonnegative domain of the square root process of the Heston model, causing

the discrete-time process to become undefined, while the true process remains positive and

close to zero.

Introducing some notation to denote the difference between the continuous-time series and

discrete-time series, let Vt represent the discrete version of σ2
t and ∆t the discretized time

step. As stated in Lord et al. (2009), the probability of the discretization causing a negative

12



3 IMPLEMENTATION

value at Vt+∆t at when Vt > 0 is:

P(Vt+∆t < 0) = Φ

(
−κ(θ − Vt)∆t− Vt

ωV α
t

√
∆t

)
(10)

where Φ(·) is the standard normal cumulative distribution function and ∆t reflects the

time-step between observed high frequency data. Clearly, the probability decreases with

the size of the time step and has a dependency on the degree of mean-reversion and

volatility of variance.

To remedy this (potential) behavior, there are a few quick fixes described in Lord et al.

(2009) that are often used. However, they unify these methods and introduce their own

full truncation scheme to guarantee the nonnegativity of the discretized variance process.

They show that in the setting of option pricing, the full truncation scheme yields the

best results (smallest bias) when compared to several alternative euler discretizations.

Furthermore, strong convergence is proven for the full truncation scheme, dealing with the

earlier objection to the method.

As stated, the full truncation scheme outlined in Lord et al. (2009) is used on the discretized

Heston and GARCH models to deal with possible negativity of the variance process.

Applying the full truncation scheme yields the following discretized and augmented process:

Vt+∆t = Vt + κ∆t(θ −max(Vt, 0)) + ω(max(Vt, 0))α∆WV,t

V̆t+∆t = max(Vt+∆t, 0)
(11)

With respect to using the full truncation scheme for the GARCH model, similar to the

Heston model, the variance process under GARCH has a risk of becoming negative. This

because the probability of Vt+∆t becoming negative, as described in Lord et al. (2009), is

independent of the choice for α and is an issue related to Euler discretizations rather than

to the stochastic specifications. Regardless, the variance process is not hindered by the full

truncation scheme if it never becomes negative as the scheme then collapses to the identity

function, and if it does become negative it requires a scheme to adequately deal with that.

To finish up the considerations on the implemented models, there remains the specification

of the asset price processes. Following the exposition in Lord et al. (2009) for the Heston

model, Xt represents the asset price. To ensure that the price process in (9) stays positive,
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3 IMPLEMENTATION

it is log-transformed, Itô’s lemma yields the following process:

lnXt+∆t = lnXt +

(
µ− 1

2
V̆tX

2(β−1)
t

)
∆t

+

√
V̆tX

β−1
t

(
ρ∆WV,t +

√
1− ρ2∆Zt

)
,

(12)

where the Brownian motions ∆WV,t and ∆Zt are independent and implemented as εV,t
√

∆t

and εS,t
√

∆t, where ε·,t are (semi-)random numbers from the standard normal distribution

generated with Matlab’s randn function. As noted in Lord et al. (2009), the relationship

∆WX,t = ρ∆WV,t +
√

1− ρ2∆Zt can be found by means of a Cholesky decomposition.

Furthermore, note that if the parameters are annualized, then ∆t = 1/(D · J), with D the

number of annual trading days and J the number of data points per trading day (Martens

and Van Dijk (2007)). If the parameters were daily parameters, then D would be equal

to one. On a practical note, in the programming code ln Xt is actually Xt, meaning that

X
2(β−1)
t in the formula above is implemented as exp(Xt)

2(β−1).

For the implementation of the GARCH model, as in Renò (2006), this paper considers the

continuous time model defined in the article by Drost and Werker (1996). With zero drift

(µ = 0), β = 0, and Xt modeled directly as the log asset price, the implemented GARCH

model is consistent with the continuous time model of Drost and Werker (1996). Thus the

log asset prices are modeled directly as:

lnXt+∆t = lnXt +

√
V̆t

(
ρ∆WV,t +

√
1− ρ2∆Zt

)
(13)

Drost and Werker (1996) assume zero correlation between the log asset price and variance

processes, i.e. ρ = 0. However, to stay consistent with the presented framework and

maintain (some) generality, no restriction on the correlation is made here.

Summarizing, there are two stochastic volatility models under consideration, the Heston

and GARCH model, which are employed to generate high frequency log asset prices.

Both are implemented by means of an Euler discretization and augmented with the full

truncation scheme detailed in Lord et al. (2009) to ensure that the discretized models are

defined throughout the simulations.
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3.2 Spot variance estimators

To estimate the (intra-period) integrated variance for estimation of the functions, several

spot variance estimators are implemented. These estimators are the realized range (RR),

realized variance (RV ), the two-time-scales realized variance (RVTTS or TTS) estimator

as well as the scaled realized range (RRS or RRS) and scaled realized variance (RVS or

RVS). Using (mostly) the notation in Martens and Van Dijk (2007), we have the following

definitions for the first three estimators for the variance on day t:

RV ∆
t =

I∑
i=1

r2
t−1+i∆,∆ (14)

RR∆
t =

1

4 ln 2

I∑
i=1

(sup(i−1)∆≤j≤i∆(ln St−1+j)− inf(i−1)∆≤j≤i∆(ln St−1+j))
2 (15)

RV ∆
TTS,t =

p

p− Ī

(
RV ∆

Subs,t −
Ī

p
RVMax,t

)
(16)

where rt−1+i∆,∆ = ln Xt−1+i∆− ln Xt−1+(i−1)∆. Following Martens and Van Dijk (2007) we

observe p+ 1 equidistant prices per trading day, where p is an integer multiple of I, which

denotes the number of intraday intervals of length ∆ corresponding to a certain sampling

frequency.

As described in Martens and Van Dijk (2007) a grid of intervals of length ∆ = 1/I can

be laid over the trading day in p/I different ways. Each of these configurations of the

grid of ∆-length intervals forms a subsample for the trading day. Note however that each

subsample need not contain the same number of return observations. This is captured

by the average number of intraday returns per subsample Ī = (I − 1) + I/p, assuming

each consecutive equidistant data point is used as a starting point for a subsample. In

equation (16) the average realized variance over the subsamples is denoted by RV ∆
Subs,t and

the realized variance over the highest frequency is denoted by RV ∆
Max,t. Following Martens

and Van Dijk (2007), the realized variances that miss part of the trading day are inflated

proportionally.

To be specific on the intermediate steps for RV ∆
TTS,t, the construction of RV ∆

Subs,t is as

follows:

RV ∆
Subs,t =

1

K

K−1∑
k=0

Ik∑
i=1

(ln Xt−1+kδ+i∆ − ln Xt−1+kδ+(i−1)∆)2
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3 IMPLEMENTATION

where K denotes the number of subsamples and δ denotes the shift between subsamples

such that Kδ = N/I, and Ik denotes the number of intervals in subsample k. Note that the

adjustment on the definition of the RV ∆
Subs,t allows for non-consecutive (but still equally-

spaced) data points to serve as a starting point of a subsample. A further adjustment is to

the formula for Ī. When consecutive data points are used K = p/I as δ = 1, but otherwise

Ī should be defined as Ī∗ = (I − 1) + (Iδ)/p or equivalently Ī∗ = (I − 1) + 1/K. Clearly,

when K = 1 and/or δ = 1 as is the case for RV ∆
t and RV ∆

Max,t, this yields the same as the

initial definition of RV ∆
t in (14).

With respect to the proportional inflation for the realized variances that miss part of the

trading day, this involves a ’per-subsample’ adjustment by means of a multiplier of I/Ik.

E.g. in case of a sample frequency of four times a day (90 minutes on a 6 hour trading

day), all but one subsample miss a quarter of the trading day thus implying the multiplier

for those shorter subsamples to be 4/3.

The intuition behind the TTS estimator is described by Martens and Van Dijk (2007) and

Zhang et al. (2005) as that the lower frequency is adjusted for noise-induced bias by means

of the highest available frequency. The highest sampling frequency is thought to estimate

the variance of the noise, thereby allowing an adjustment on the lower frequency aimed

to remove this noise variance in order to better estimate the actual volatility of the asset

in question. The variance of the estimates is further reduced by means of subsampling,

thereby better exploiting the availability of high frequency data. As far as this exploitation

goes, it could be seen as an intermediate between the realized range, which uses all data

in an interval, and the realized variance, which uses only the endpoints of an interval, for

the construction of the spot variance estimate.

As previously stated, the scaled versions of the realized range and realized variance

described in Martens and Van Dijk (2007) are also implemented. The scaling factor being

the ratio between the lowest-frequency (e.g. daily) range and the realized range over the

previous q trading days given a sampling frequency. So we have:

RR∆
S,t =

(∑q
l=1 RRt−l∑q
l=1 RR

∆
t−l

)
RR∆

t (17)

RV ∆
S,t =

(∑q
l=1 RVt−l∑q
l=1 RV

∆
t−l

)
RV ∆

t (18)
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where RR∆
t is as defined in (15), thus including the 1

4 ln 2
. The thought behind this is

that the daily variance contains little contamination by microstructure noise and thus

gives a good indication of the actual level of variance, and thus can be used to adjust the

high-frequency estimates back towards the true value (Martens and Van Dijk (2007)).

3.3 Estimating the model functions

Using the high frequency estimators of the previous section, the next step is to estimate

the drift and diffusion functions using equations (5) and (6) of section 2. For each of the

(intra-period) paths of the simulation, we have an estimate V̂iT/n of the spot variance with

which the model dynamics can be estimated. To do so, further details are needed on the

choice for the kernel function K(·) and for the bandwidth parameter hT/n.

To stay in line with the proposed methodology, the Gaussian kernel is chosen for K(·). As

common knowledge will tell, this entails:

K

(
V̂ 2
iT/n − x
hn,T

)
=

1√
2π

exp

(
−(V̂ 2

iT/n − x)2

2h2
T/n

)
, (19)

There a number of alternative choices for the kernel function, such as the Epanechnikov

and quartic kernels. Both of which assign higher values to observations that lie further

away from the grid point.

However, the choice of the kernel function is not as crucial as the selection of the bandwidth

parameter, as it indirectly controls the variance of the kernel. A larger bandwidth will allow

for a good feel for the global characteristics of the estimator, but more subtle properties

will be smoothed out. A smaller bandwidth might overaccentuate certain aspects due to

undersmoothing. Ergo, the selection of the optimal bandwidth can be quite challenging.

Following Renò (2006), the bandwidth parameter is set by the following:

hT/n = hs · s̃ · n−1/5 (20)

where hs is approximately equal to 1.06 (which is (4/3)1/5), and s̃ is the sample standard

deviation of the variance estimators. This choice for the bandwidth parameter stems

from the rule-of-thumb developed in Scott (1992) (for the univariate case) and is generally

adequate for most applications.
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So prior to estimating the model functions, it will be necessary to determine the sample

standard deviation of the intra-period variance estimators. Furthermore the set of values

for x at which the model functions are to be evaluated must be determined. The values for x

are a grid spanning the closed interval with a lower-bound and an upper-bound determined

as the mean intra-period variance minus and plus 3 times the standard deviation. This

choice allows for the (observed) domain of the estimated variances to determine what is

displayed in the (graphical) results. The probability of reaching values beyond that interval

will (effectively) be zero, causing the estimators in equations (5) and (6) to be undefined.

If there are higher variances estimated, then these will likely not be well-represented and

fail to give meaningful results at those grid points. Clearly, the lower-bound of the interval

on x will not surpass zero onto the negative real number line.

Having set the interval, it remains to set the number of grid-points in that interval at which

the moment estimators are evaluated. Clearly, a higher value for G will give a better read

of the model function and how it approximates the actual variance dynamics, but of course

the computational load must be taken into consideration.
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4 SIMULATION SETUP

4 Simulation setup

This section discusses the simulation setup employed to gain (asymptotic) insight in the

effects of market microstructure noise on the estimation of the dynamics of the variance

process. First the basic simulation setup is discussed, including the chosen parameter sets

for the models and relevant practical information relating to the implementation of the

simulations. Subsequently the implementation of the noise is discussed.

4.1 Basic simulation

To achieve some sense of the asymptotic behavior of the moment estimators in the presence

of noise, 500 independent price paths are simulated for both the GARCH and Heston model.

Although this is only half the number of paths employed in most studies, including Renò

(2006), the used number should provide enough insight for indicative purposes. Each price

path consists of a total of 6 000 trading days, which includes the q = 1 000 trading days

as a lead-in period for the scaled estimators. Each trading day sees 1 price per second for

a 24-hour period. This yields 86 400 prices per day and thus a grand total of 432 000 000

in-sample prices over the 5 000 trading days in one price path (518 400 000 prices over the

full 6 000 days).

Assuming 250 trading days per year, this translates to T = 20 years of ”in-sample” data.

A further consideration is that in the setting of continuous 24-hour trading, the opening

price of day t equals the closing price of the previous day. For each trading day, the daily

variance is estimated by means of the high-frequency estimators introduced in section 3.2

at the following sampling frequencies: 1, 2, 3, 4, 5, 10, 15, 20, 30, and 60 minutes. As a

point of reference and because of its use in the construction of the scaled estimators for

the estimation of the mean long-term daily variance (θ), the spot variance estimators are

also computed at a daily (1 440 minutes) sample frequency. The daily sample frequency is

not used for the evaluation of the moment estimators.

With respect to the implementation of RV ∆
TTS,t, for the construction of RV ∆

Subs,t a subsample

shift for the construction of δ = 10 (i.e. 10 seconds) is used, therein following Martens

and Van Dijk (2007). Thus every tenth observed price serves as a starting point for a

subsample. Furthermore, the every (observed) data point is used for the construction of

RV ∆
Max,t. Thus, in the case of fully observed price paths, its sample frequency is 1 second.
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Furthermore, to construct the scaled realized range and scaled realized variance estimators,

Martens and Van Dijk (2007) initially set q to 5 000, being the total number of simulated

trading days. The Monte Carlo simulation then has a lead-in period of 5 000 days to provide

enough ’lags’ for the scaling factor of the first day, thus simulating a total of 10 000 days.

As stated before, in this thesis the scaling factors for RR∆
S,t and RV ∆

S,t are constructed with

q = 1 000. In Martens and Van Dijk (2007), the accuracy of these estimators improved little

in their scenario with infrequent trading for q > 1 000 at the higher sampling frequencies

and the marginal contribution to the accuracy of higher q already declined after q = 500.

For low frequencies the added value of more lags is less and a possible cut-off value could

be found to be below the selected q. They comment that choosing the number of lags

should be tuned to whether or not the spread and trading intensity is constant over time,

indicating that a high q is beneficial in the affirmative case and a low q is better when

these noise factors are varying. In this thesis the trading intensity and spread within each

scenario will be kept constant over time. Therefore the selected q is deemed to supply

enough accuracy for these scaled estimators and allows for considerably less computations.

The parameters in the table below are for the GARCH and Heston model, respectively. The

set of parameters for the GARCH model matches those used by Renò (2006) and originate

from Andersen and Bollerslev (1998), representing parameters calibrated to the DM-USD

exchange rate over the period from October 1, 1987, through September 30, 1992. The

original parameters of Andersen and Bollerslev (1998) are used ’as-is’ and are originally in a

daily format based on 250 trading days per year. For the Heston model, the parameters are

borrowed from Lord et al. (2009), where they are used in the setting of pricing plain vanilla

European options, and are converted from annualized to daily parameters. When dealing

with daily variance, it is natural and standard practice to focus on the daily dynamics,

hence the choice for the daily parameters. Adopting the representation in Andersen and

Bollerslev (1998) and Bandi and Renò (2009), the parameters reflect daily percentage

returns. Thus, daily variance will carry a factor of 10 000 accordingly.

Table 4.1: Parameter configurations (daily)

Model V0 κ ω ρ θ α µ

GARCH 0.636 0.035 0.144 0 0.636 0.5 0
Heston 1.6 0.5 0.632 −0.9 1.6 1 0.05
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Some comments are in order regarding the chosen parameter sets. Starting with the

properties discussed in Lord et al. (2009) relating to the relative parameter values leading

to 0 and ∞ being (un)attainable boundaries for the variance process and how this relates

to the full truncation method. Given the CEV process employed and a set of parameters

for which ω2 > 2κθ and α = 0.5, then 0 is an attainable boundary. This is clearly the case

for the parameter set used for the Heston simulation. However, for the GARCH model it

isn’t (as) relevant as α > 1
2

and thus 0 is unattainable (Lord et al. (2009)). The parameter

selection for the Heston model clearly advocates the use of the full truncation method

to deal with the potential negativity of the variance process. For the GARCH model no

negative effects will be encountered due to the method’s neutrality towards positive values.

Furthermore, the high value for the volatility of volatility, ω, in the Heston model allows

capturing the heavy skew encountered in equity and foreign exchange markets. The set of

parameters for the GARCH model, with a relatively small ω, further reduces the probability

of obtaining a negative value of Vt. However the probability of obtaining a negative value

of the discretized variance process is still non-zero.

As a final note, the choice to use daily variance estimates to estimate daily dynamics has

implications for the moment estimators, in that the ratios n/T and φn,T are equal to 1. If

the choice had been to investigate annualized dynamics with daily variance estimates, n/T

would equal 250 (i.e. 5 000/20) with φn,T still equal to 1. Thus, the daily spot variance

estimates are annualized by φn,T and the time step between the spot variances is annualized

by n/T . Additionally, it must be noted that for the estimation of the drift and diffusion,

the bandwidth parameter hT/n is computed for each individual price path.

4.2 Adding Market Microstructure Noise

As the extension of interest on the previously described basic simulation, the effects of

infrequent trading and bid-ask bounce on the estimation of the variance dynamics are

explored. Seeing as the various estimators of the spot variance are all to different degrees

susceptible or robust to the effects of market microstructure, it will be interesting to see

in what way these types of noise affect, if at all, the performance of the model function

estimators. The implementation of the types of noise that are included is described below

and follows Martens and Van Dijk (2007).
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Infrequent trading

To emulate infrequent trading, the fully observed path of Xt of the basic simulation is

filtered to reflect the probability of observing a price once every 10 seconds to create the

filtered series Xinf,t. Thus with, say, 100 prices per second, the probability of observing

a price is π = 1/(100) = 0.01. When no price is observed at time t + 1, then the

last observation serves as the current price, i.e. Xinf,t+1 = Xinf,t. To randomize price

observations, a series of independent Bernoulli random variables is used with success

probability π. The random numbers are generated using MATLAB’s binornd function,

which generates binomial random numbers as a sum of n Bernoulli random variables, so

with n = 1 this generates a Bernoulli random variable. Thus with BIt+1 taking the value

1 if the price is observed and 0 when not:

Xinf,t+1 = Xt+1 ·BIt+1 +Xinf,t(1−BIt+1). (21)

Bid-ask bounce

The implementation of bid-ask bounce simply entails subtracting/adding half the spread

from/to the fully observed path Xt, where observing a bid or ask price is equally likely.

Similar to the addition of infrequent trading, to simulate this behavior, a series of

independent Bernoulli random variables are used. When the series equals one, the observed

price is an ask price, and otherwise it is a bid price (although this assignment is clearly

arbitrary). The spread s is set equal to 0.05% of the initial price. So where BBt+1 equals

1 if it is an ask price and −1 if it is a bid price:

Xbounce,t+1 = Xt+1 + 0.5s ·BBt+1 (22)

Combining infrequent trading and bid-ask bounce

The last step is to combine both types of noise to explore the combined effect on the model

function estimators. To achieve this, the path Xt is first adjusted to reflect bid and ask

prices and then filtered for infrequent trading, thus creating the series Xcombo,t. Thus:

Xcombo,t+1 = (Xt+1 + 0.5s ·BBt+1) ·BIt+1 +Xcombo,t · (1−BIt+1). (23)

Clearly, the order of applying bid-ask bounce and infrequent trading should not make a

difference, given that both are independent random processes.
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4.3 Performance measures

As in Martens and Van Dijk (2007), the performance of the estimators of integrated

variance is measured by the mean estimated daily variance and root mean squared error

(RMSE) over all price paths in the simulation, excluding the lead-in period. To be specific

on the calculation of the latter and using RR∆
t as an example, the RMSE is computed as

follows:

RMSE =

√∑N
t=1(RR∆

t − VDay,t)2

N
(24)

with N the total number of days (i.e. 500 x 5 000) and VDay,t = 1
m+1

∑m+1
j=1 Vt+j, the sum

over all intraday values on day t of the true discretized variance process Vt. Its sample

average V̄Day,t noted under each table of results, naturally does not include the lead-in

period of length q.

Apart from the performance measures for the spot variance estimators, performance

measures need to be defined for the drift and diffusion estimators. In addition to graphical

evaluation, to obtain a quantified feel for the performance of the estimators, Kanaya and

Kristensen (2009) is consulted. They evaluate by means of approximating the integrated

squared bias, variance, and mean squared error on a closed interval that represents 95%

of values reached by the true variance process. The three measures are related in that

the sum of the integrated squared bias and the mean integrated variance equal the mean

integrated squared error.

The performance measures used here are based on those in Kanaya and Kristensen (2009)

and are defined as follows. Using the same definition for the interval on which the

performance measures are approximated, let x ∈ [a, b] represent 95% of the generated

variances. Instead of the integrated squared bias, the integrated absolute bias (or root of

the square) is used here to avoid explosive results due to the use of daily percentages in

the returns. The integrated absolute bias for the drift estimates is defined as

Bias =

∫ b

a

|m(x)− m̄(x)|dx (25)

where m(x) is the theoretical value at x and m̄(x) = 1
S

∑S
s=1 m̂s(x) represents the mean

estimated drift at x over all S = 500 price paths. Accordingly, the root mean integrated
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squared error (RMSE)1 is defined as

RMSE =

√√√√ 1

S

S∑
s=1

∫ b

a

(m̂s(x)−m(x))2dx (26)

where the mean integrated variance is left unreported as it can easily be computed as the

difference between the squared Bias and square of RMSE. Also note that the MISE is not a

new notion when dealing with kernel estimation, as it has been studied and used by Tarter

(1986) and Marron and Wand (1992), among others. The integrals in both measures are

estimated by means of the sum over even-spaced grid points on the interval [a,b]. For the

GARCH model this interval is approximated by [0.15, 1.25], while for the Heston model

this comes down to [0.5, 7.68]. Clearly, the higher the number of grid points, the better

the approximation of the integral.

Furthermore, relevant results for each moment estimator are presented in graphs, that

include the mean estimate and 95% confidence intervals over the entire sample and are

constructed as (using the first moment as an example):

CI = m̄(x)± 1.96 ∗ sm̂(x), (27)

with sm̂(x) as the standard deviation of m̂(·) at grid point x. Construction of the confidence

intervals for Λ̂2(x) is analogous. The graphs will show the mean estimated moments and

the 95% confidence intervals set off against the true dynamics and the mean estimated

moments using the generated variance series at the highest frequency.

It will become obvious that graphical inspection of the performance of the estimators is

helpful in the identification of optimal sampling frequencies of the estimators when using

the selected performance measures. Integrating the bias removes the information on the

behavior of the estimates at different distances from θ, therefore using the performance

measures in combination with graphical representation allows for the best interpretation

of the results. Given the large number of potential graphs to be generated, only relevant

graphs are presented in-text and in the appendices. The graphs will at least contain the

true dynamics, denoted as ’theoretical’, and the dynamics as estimated with the generated

1Strictly speaking the acronym is RMISE, but this gives aesthetically unpleasant table headers and
thus is shortened to RMSE. The ’I’ will be implied by context.
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variance series Vt, denoted as ’generated’. Furthermore, the dynamics with using estimated

series of interest are included, which is denoted by ’estimated’ followed by the name of the

spot variance estimator and the used sampling frequency. The relevant confidence intervals

are denoted by ’95% Confidence Interval’.

4.4 Practical information

As a concluding note for this section, there are some practical comments in order. First

of all, the simulations were conducted in Matlab 7.5 (R2007b) on a laptop with a 2.4 GHz

Intel Core2 Duo-processor with 4 Gb of DDR2 SDRAM. Given this system, the selected

setup, and the programming, the computational time for a full set of 500 price paths lies

in the neighborhood of 11 days.

Furthermore, special care must be taken to avoid identical simulated paths due to restarting

the software package, i.e. Matlab. The nature of semi-random number generators employed

in mathematical software such as Matlab, is that usually the state of the number generator

is reset to the same default state at every restart of the program. Failing to change the

state would result in the generation of identical sequences of random numbers, effectively

reducing the actual number of repetitions one would simulate per session of the software.

Assurance of a different state of the number generator can be achieved by linking its initial

state to the system date and time, code for which has been included in the Appendix.
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5 Results

This section presents the results of the simulation study by considering each of the four

scenarios. The results for the basic scenario without market microstructure noise are

discussed first. Followed by the results for the cases with either bid-ask bounce or infrequent

trading present. The scenario in which both noise types are present is discussed last.

The analysis of each scenario starts with a discussion of how the estimators of integrated

variance perform in the setting of stochastic volatility, followed by their performance in

estimating the drift and diffusion of the variance process for the GARCH and Heston

models. Most tables and graphs are placed in the appendices.

5.1 No microstructure noise

Tables A.1 and A.4 in Appendix A show the results for the estimation of the long-term

mean daily variance using the introduced estimators of the integrated variance for resp.

the GARCH and Heston models. What immediately comes to attention is how the realized

range underestimates the mean daily variance, with better performance on the mean at the

lower frequencies. However, the closer estimate of the mean at the daily frequency comes

at the cost of efficiency, yet is still roughly 5 times as efficient as the RV-based estimators

at the same frequency. While the RMSE for realized range at the highest (presented)

frequencies is clearly the worst among the estimators, the RMSE is best across the board

at the lower frequencies of 30 and 60 minutes and already at the 15 and 20 minutes for

the Heston model. This observation is in line with the expectations, as Martens and Van

Dijk (2007) and others report similar relative efficiencies between the realized range and

realized variance in the setting of constant volatility in the price process.

Where the results on the realized range differ from those found by Martens and Van

Dijk (2007) is that, here, the estimated mean shows heavier underestimation and poorer

efficiency. The difference is a direct result of observing 1 price per second versus the 100

prices per second that Martens and Van Dijk (2007) employ. Thus, the lower frequency of

the data generating process effectively form an (unintended) intermediate version of the

fully observed case and infrequent trading scenario in Martens and Van Dijk (2007), where

respectively 100 prices per second and 1 price per 10 seconds are observed. The scenario

with infrequent trading should confirm this, as fewer observations should exacerbate the

results.
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The underestimation of the realized range is in itself expected, as by construction the

estimator relies on taking advantage of all the observed data within a sampling interval.

Whereas, by comparison, the realized variance will maintain the same estimate regardless

of how much data points are contained by the same interval, by only considering the begin

and end points of that interval. To achieve their results, Martens and Van Dijk (2007) point

out that the time step between observations should be a small as possible to minimize the

under-/overestimation of the maximum and minimum prices in the interval.

Nevertheless, in agreement with their results, the performance of the realized range is

considerably improved by implementing the scaling procedure of Martens and Van Dijk

(2007), achieving a better estimate of the mean and improving on the efficiency. The scaled

range performs at the highest efficiency at all reported frequencies lower than 30 minutes,

otherwise only beaten by the realized range, while only slightly underestimating the mean.

Furthermore, in this setting, the scaled range achieves about the same efficiency at the 10-

minute frequency as the scaled realized variance at the 1-minute frequency in the results for

the GARCH model. In the considerably noisier results of the Heston model, this efficiency

gap is quite smaller, but nonetheless quite clear at the 15 and 20 minute sample frequencies.

The scaled realized variance has the poorest performance among the RV-based estimators,

which are dominated by the efficient performance of the TTS estimator. The superior

performance of the TTS estimator is attributed by Martens and Van Dijk (2007) to the

use of subsamples to decrease the variance of the estimates, which is in line with the

intentions of its proposers, being Zhang et al. (2005). It is in the RMSE that the TTS

estimator wins over the realized variance, as the mean estimates are almost identical at

the highest frequencies. The dominant results of the TTS estimator are quite clear for the

estimates of the mean daily variance of both the GARCH and Heston model.

As a closing observation on the estimators for the daily variance, the parameter choices for

the respective models come through quite clearly, as the higher long-term mean variance

and volatility of variance of the Heston model drives up the RMSE of the estimates.

The RMSE of the estimates for the Heston model are almost 11 times larger than those

for the GARCH model at the same sampling frequencies. The effects of which are even

more pronounced in the results for the estimates of the drift and diffusion dynamics in

tables A.2 and A.3 for the GARCH model, and tables A.5 and A.6 for the Heston model,
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respectively. Clearly, the RMSE of the drift estimates of the Heston model are excessively

large (although this could also be accentuated by a possible scaling issue). Underlining

these troublesome results is the fact that at 1.6998, the long-term mean daily variance of

the generated variance series deviates from its true counterpart of 1.6, which naturally is

quite unexpected.

Accordingly, the composite graphs A.9 through A.12 for the Heston model, using scaled

realized range and TTS estimators as examples, show a considerably less distinct picture

than those for the GARCH model (at least the drift estimates). As becomes clear from

the graphs of the generated series for the Heston model, figure 5.1, the generated variance

series itself also provides a fairly loose fit to the true dynamics, which is especially the

case for the estimated drift. The high volatility of variance ω selected for the generation

of the data is one of the culprits of this. Its influence is clearly noticeable in the RMSE

of all estimates and quite visible in the large confidence bands in figure 5.1 as well as the

considerably larger range of daily variance values under consideration (compared to the

presented GARCH model). Furthermore, when the high volatility of variance is used in

combination with the strong mean-reversion, the changes in the variance contributable to

the drift from one observation to the next will likely be quite large, ultimately leading

to larger variations in the estimated dynamics. Another related factor is the number of

independent price paths used. Clearly, the number of price paths (500) is relatively low

with respect to comparable simulation studies (often 1 000), so combined with particularly

high volatility of variance, the estimated dynamics will have a poorer performance than

those estimated in the presence of a lower ω. Not surprising as there are the same number

of observations distributed over a larger interval.

Apart from the impact the aforementioned factors have on the drift and diffusion estimates

of the Heston model, there are additional considerations. Despite the high amount of

variation in the estimates, the smoothing parameter h seems to undersmooth the estimates

for the drift. A large standard deviation in the ’observed’ variances should produce

a larger smoothing parameter, which in turn would lead to oversmoothing rather than

undersmoothing. Nevertheless, the RMSE for the diffusion is not quite as unreasonable

as for the drift estimates, and the estimate seems to have a good amount of smoothing to

approximate its underlying functional form (as can be seen in e.g. the composite graph

for the diffusion). Unfortunately, even the smoother estimates of the diffusion appear
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Figure 5.1: Average estimates of the drift function m(·) (left panel) and diffusion function Λ2(·) (right
panel) using generated daily variance at 1-second sampling. Daily variance σ2 has been multiplied by
10 000. The variance series is generated with the Heston model. The ’theoretical’ graph is obtained
by evaluating the true drift and diffusion functions on the domain of the graph.

to struggle to capture the underlying functional form, implying a slight curvature more

resembling of the GARCH model. An interesting note is that the general functional shape

of the diffusion estimate for the presented Heston model coincides with the preliminary

graphical results for the Heston model of Renò (2006), despite using different parameter

sets.

Having noted the excessive RMSE of the results for the Heston model, from here on the

results for the GARCH model will be leading in the discussion on the relative performances,

as it yields less noisy information. Nevertheless, the relative performances of the different

daily variance estimators can generally still be made up from the results of the Heston

model and thus should not be dismissed.

Returning to the relative performance of the estimators of integrated variance, recall that

generally the smallest RMSE are found at the highest sampling frequency for the estimation

of the daily variance. It appears this is generally not the case when estimating the true

(theoretical) dynamics. What is seen in the tables for both the drift and diffusion estimates

is that relatively lower frequencies dominate the estimation of the true dynamics. To bar

thoughts of a possible inconsistency in the implementation, the results appear to agree

with the graphical results for the GARCH model of Renò (2006), which are replicated in

figure A.5 in Appendix A. For the replication the realized variance estimates of the daily
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variance at a sampling frequency of 3 minutes (i.e. 180 seconds) are used, which lie just

under the 200-second frequency employed in the cited paper.
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Figure 5.2: Average estimates of the diffusion function Λ2(·) using RRS estimates of daily variance
with 1-minute sampling (left panel) and 15-minute sampling (right panel). Daily variance σ2 has
been multiplied by 10 000. The ’generated’ graph refers to the diffusion estimate using the variance
series generated with the GARCH model. The ’theoretical’ graph is obtained by evaluating the true
diffusion function on the domain of the graph.

With the consistency of the implementation confirmed, the dominance of the lower

frequencies over the higher for estimating the true dynamics can be illustrated particularly

well with the estimates of the diffusion as shown by figure 5.2. Showing results for the

GARCH model, it gives a clear indication that the scaled realized range estimator at

the 1-minute frequency gives a close estimate of the diffusion implied by the generated

series, while at the 15-minute frequency a close approximation can be found for the true

underlying diffusion. Thus the approximations of the mean daily variance, that are best

estimated at the 1 minute frequency for most of the estimators, neatly translate to the

best estimates for the dynamics as implied by the generated variance series.

To further confirm the translation of the results for the estimates of the daily variance,

compare the results for the scaled realized range to the graphs in figure 5.3 for the TTS-

based estimates, with respective best frequencies at 1-minute and 4-minute sampling. The

graphs for the drift estimates for the scaled realized range and TTS estimators at the

selected frequencies are included in appendix A as figures A.6 and A.7 and show the same

results.
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Figure 5.3: Average estimates of the diffusion function Λ2(·) using RVTTS estimates of daily variance
with 1-minute sampling (left panel) and 4-minute sampling (right panel). Daily variance σ2 has
been multiplied by 10 000. The ’generated’ graph refers to the diffusion estimate using the variance
series generated with the GARCH model. The ’theoretical’ graph is obtained by evaluating the true
diffusion function on the domain of the graph.

Thus relative performance of the estimators of daily variance is also portrayed by these

graphs and tables for the estimation of the drift and diffusion. The higher efficiency of

the realized range estimators relative to the RV-based estimators can be recognized in

the estimates for the drift and especially the diffusion. The lowest bias and RMSE for

the range-based estimators are in the region of the 10 minutes frequency for the GARCH

model, especially the diffusion estimates indicate a higher efficiency at the 15-minute level

for both the realized range and its scaled variant. The higher overall efficiency is quite

nicely illustrated by the composite graphs for the GARCH model (figures A.1 through

A.4), where clearly the set of graphs of the scaled realized range are considerably more

compact than the TTS-based graphs.

What causes this result is the nature of the two estimation steps of the methodology. On the

one hand, the drift and diffusion estimates based on the generated variance series tend to

underestimate the true dynamics (figures A.8 and 5.1). For the drift estimates this entails

underestimating the level of mean-reversion, while for the diffusion estimates it means a

lower estimated variance (GARCH) or volatility (Heston) of the daily variance. On the

other hand, the noisy estimators of daily variance generally overestimate the dynamics of

the generated variance, as can be seen for the GARCH model in the composite graphs A.1

through A.4 for the scaled realized range and TTS estimators. The best estimates found

at the lower frequencies with respect to the true dynamics are such that the upward bias in
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estimating the generated daily variance dynamics offset the downward bias of the dynamics

of the generated daily variance. These findings are in agreement with those described by

Kanaya and Kristensen (2009).

In this regard it should be interesting to pay attention to the performance of the realized

range. It shows particularly interesting results, because when keeping in mind that the

estimates for the mean daily variance at the higher frequencies carry relatively high RMSE

values, the estimated variance series performs remarkably well for the estimation of the

dynamics. The drift and diffusion estimates for the GARCH model using the realized range

and scaled realized range are quite close with a slightly higher RMSE, while for the daily

variance estimates they were rather different.

This basic scenario has brought a number of interesting observations. The performance

of the estimates of integrated variance in the setting of stochastic volatility is in line with

those in the setting of constant volatility (in the absence of noise) presented in Martens and

Van Dijk (2007). Furthermore, the chosen parameter set (and possibly implementation) of

the Heston model has undermined the reliability of those results for making inferences with

respect to the (asymptotic) performance of the moment estimators. However, the results

for the Heston model still generally preserve the relative performances of the different

estimated series of the daily variance seen in the results of the GARCH model. From

which it is clear that the best performances are by the scaled realized range and the TTS

estimators for the estimation of the daily variance as well as for the estimation of the

drift and diffusion functions. For the evaluation of the moment estimators, the better

performance of lower frequencies to estimate the true dynamics underlying the data marks

the reliance on offsetting biases to do so. This will make the estimation in the presence

of market microstructure noise the more interesting as the biases in the estimation of the

daily variance series should be affected.

5.2 Bid-ask bounce

As the first extension on the basic simulation of the previous section bid-ask bounce is

added to the simulated price paths. By adding or subtracting half the spread (0.5 x 0.05%

of the initial price) as described in section 4.2, estimation of the variances should become

noisier. Now, apart from not observing the variance, the true price is no longer observed

either, making the estimation of the daily variance the more difficult.
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To see the effects, consider the results for the estimation of the long-term mean daily

variance presented in tables B.1 and B.4. Clearly, the realized range and realized

variance estimators are severely affected by the presence of bid-ask bounce. Both horribly

overestimate the mean, with worsening performances as the sampling frequency increases,

with the realized range affected even more than the realized variance. Having encountered

the same, Martens and Van Dijk (2007) explain these observations by stating that in the

limit the realized range will overestimate the true range by exactly the spread, as the

maximum observed price on an interval will be an ask price, while the minimum price

will be a bid price. The bias found in the realized variance estimates is produced by the

fact that the returns are computed using the squared difference between ask-ask, bid-bid,

bid-ask, or ask-bid prices. So in half the cases (the last two) the return is overestimated by

the full spread, causing the estimated variance to contain the squared spread, thus causing

the upward bias.

In terms of RMSE, the realized variance outperforms the realized range for all frequencies

except the daily frequency in the GARCH results and the 5-minute frequency for the Heston

model. For the results of the Heston model, the realized range dominates all estimators

at frequencies of 10 minutes and lower when it comes to efficiency. Meanwhile, the scaled

realized range has slightly poorer RMSE scores for the Heston estimates, but it clearly has a

better grasp on the mean (generated) daily variance than the realized range. For the results

of the GARCH model, the scaled realized range has the best RMSE at the lower frequencies

and again severely improves on the performance of the realized range. The scaled realized

variance also improves on its basic counterpart, scoring better RMSE than the realized

variance at all frequencies for the GARCH model. The TTS estimator dominates both

models at the higher frequencies for the Heston model and up to and including the 20-

minute frequency for the GARCH model, yielding the estimates with the highest efficiency.

The results for the estimators of daily variance don’t fully coincide with those found by

Martens and Van Dijk (2007) in that the scaled realized range performs relatively poorly

here, while it is the most efficient estimator in their simulation experiment. The likely

cause of the diminished performance is the selected number of lags q used to construct the

scaled estimators. The lower number of lags used here are selected based on their results for

the setting with infrequent trading in Martens and Van Dijk (2007). While the selection of

the lower number of lags is defendable for that setting, the marginal contribution of more
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lags to the accuracy of the estimators in the setting of bid-ask bounce could very well lead

to requiring more lags to obtain the same levels of accuracy.

Next, the estimated variance series contaminated with bid-ask bounce are used to estimate

the drift and diffusion of the GARCH and Heston models. The results are presented in

tables B.2 and B.3 for the GARCH model, and B.5 and B.6 for the Heston model in

Appendix B. What remains apparent in the results for the GARCH model is the relative

efficiency advantage of the range-based estimators at the lower sampling frequencies, where

the estimators are less affected by market microstructure noise. As implied by the estimates

of the mean daily variance, the scaled realized range outperforms the realized range in the

GARCH estimates. This is vice versa for the diffusion estimates of the Heston model and

in terms of RMSE for the drift estimates. For both models, the TTS-estimators has the

least amount of bias at the higher frequencies, where for the GARCH model, it also has

the lowest RMSE.

However, the presence of bid-ask bounce has an unexpected effect on the estimation of the

diffusion using the range-based estimators. Consider the graphs in figure B.1 to illustrate

what the tabular results imply. On the interval under consideration, the best sampling

frequencies for the drift estimates are at 1 and 15 minutes for the scaled realized range, the

same as in the scenario without noise. The diffusion estimates show a different story, as

the 1-minute based estimates strongly underestimate the generated dynamics, which are

now best estimated by using a 15-minute sampling frequency. The 15-minute frequency

previously provided the closest estimate of the true dynamics, but is now best described by

the 30-minute estimate. The results for the Heston model are similar albeit at a lower level

of clarity, with best estimates not as easily selected for the true dynamics. The figure B.3

shows the results at 1, 10, and 20-minute sampling. The 20 minute frequency is selected as

a midpoint between the optimal 15-minute frequency implied by the tabular drift-estimates

(lowest bias) and the 30-minute sampling frequency for the diffusion estimates (lowest bias).

The results for the TTS-estimator are more encouraging as the best frequencies for

estimating the generated and true dynamics remain at 1 and 4 minute sampling. The

tabular results and the graphs in figure B.2 show almost identical results for the GARCH

model. Moreover, the TTS estimator has the same or lower bias and RMSE in this setting

with bid-ask bounce than in the case without noise, despite slightly poorer performance of
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the daily variance estimates. The results for the Heston model also show stable estimates

in the presence of bid-ask bounce, as the best frequencies are only slightly influenced. Here

there is a slight discrepancy between the best drift estimate and the best diffusion estimate

of the true dynamics, being at 3 and 5 minutes respectively. In figure B.4, the 4-minute

frequency is shown as an indication at what can only be a slight improvement offered by

the best frequencies for the Heston model.
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Figure 5.4: Average estimates of the drift function m(·) using the realized range estimates of daily
variance at 1-minute sampling without noise (left panel) and with bid-ask bounce (right panel). Daily
variance σ2 has been multiplied by 10 000. The data series is generated with the GARCH model. The
’theoretical’ graph is obtained by evaluating the true drift and diffusion functions on the domain of
the graph.

After the remarkably good estimates for dynamics with the realized range despite the strong

underestimation of the mean daily variance without any noise present, the results are to

a degree different in the presence of bid-ask bounce. The strong upward bias in the daily

variance estimates are quite noticeable in the drift estimates in figure 5.4 for the GARCH

model. On the one hand, the drift is overestimated in the scenario with bid-ask bounce (in

the right panel) and on the other hand its oversmoothed due to excessive variance in the

daily variance estimates. The oversmoothing is apparent from the horizontal nature of the

graph indicating that local characteristics are completely smoothed away. Nevertheless, as

is apparent in the tables, the performance in the estimation of the diffusion is very similar

to that of the scaled realized range.

As a final observation, recall that the realized variance has a lower upward bias than the

realized range at the higher frequencies for the estimation of the mean daily variance.

The opposite is true for the estimation of the true dynamics at those frequencies as the
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realized variance has a considerably poorer performance for the estimation of both the drift

and diffusion. This discrepancy illustrates the main differences between the two types of

estimators, as the realized range will generally have a lower variability of the daily variance

estimates, but on average it tends to miss the mark. The realized variance has the opposite

characteristics, yielding a good estimate of the mean but at the cost of higher variance of

the estimates.

The presence of bid-ask bounce clearly cripples the realized range and realized variance

estimators. Bias-correcting using scaling partially achieves the desired effect, however the

TTS estimator appears to deal with the presence of bid-ask bounce the best in the setting of

estimating the mean daily variance as well as the underlying dynamics. Best performances

are again by the scaled realized range and the TTS estimator. Where the scaled realized

range performs best at lower frequencies and the TTS estimator has the advantage in the

higher frequencies. An important observation here is the impact the bid-ask bounce has

on the variance of the daily variance estimates, particularly noticeable in the results of the

realized range and realized variance, and by extension on the smoothing parameter.

5.3 Infrequent trading

Having seen the devastating effects of bid-ask bounce on the realized range and realized

variance estimators, the impact of infrequent trading is discussed in this section. As

previously stated, the presence of infrequent trading is implemented by filtering the fully

observed price path by only observing one price every ten seconds. So effectively there is

less information on the real price movement on the daily interval.

Tables C.1 and C.4 in Appendix C show the results for estimating the daily variance. The

tables show results that, as suggested in section 5.1, are more pronounced than the case

without noise. With even less information on the price movement, the performance of the

realized range takes a hit. This is quite visible in the results as its downward bias is even

bigger than in section 5.1. Similar to what is seen in the results of Martens and Van Dijk

(2007), the RMSE first decreases as the sampling frequency increases and then RMSE starts

increasing again. As Martens and Van Dijk (2007) state, this is due to the fact that at first

the lower variance of the estimates has a stronger effect than the underestimation caused

by the infrequent trading. The point at which the underestimation starts dominating is

clearly dependent on the trading intensity. This is illustrated by considering that in the
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case without noise, the most efficient frequency is at 10-minutes while in this scenario with

infrequent trading this is at 30-minutes.

Scaling the realized range removes most of the downward bias and strongly improves on

the RMSE; however some bias still remains due to the fact that the daily range is also

somewhat affected by infrequent trading (Martens and Van Dijk (2007)). The RMSE for

the scaled range is only slightly higher than that of the realized variance and TTS estimator

at the 1 minute frequency (and also at 2 and 3 minutes for the Heston model). It has the

best RMSE for the rest of the sampling frequencies and displays the efficiency advantage

over the realized variance estimators.

The realized variance outperforms the scaled realized variance, but both are largely

unaffected by the effects of infrequent trading and only show slightly higher RMSE than

in the scenario without noise. As expected, these results are in concurrence with those of

Martens and Van Dijk (2007).

Estimating the variance dynamics using the estimated daily variance series provides the

results in tables C.2 and C.3 for the GARCH model, and tables C.5 and C.6 for the Heston

model, respectively. Similar to the previous two sections, the relative efficiency of the

range-based estimators at the lower frequencies is apparent in both the estimates of daily

variance and the estimates of the dynamics. With the better performance of the range-

based estimators coming at the 10 minute mark for the GARCH model and generally lower

frequencies for the Heston model, the realized variance-based estimators are most effective

at the high frequencies.

As is clear from the tables and illustrated by figure C.1, the best frequency for estimating

the true drift and diffusion of the GARCH model with the range-based estimators is at

10-minute sampling. For estimating the generated dynamics then the 1-minute frequency

remains the best choice. While the true dynamics was best estimated by using 15-minute

sampling in the case without noise, the difference between that frequency and the 10-

minute frequency in the presence of infrequent trading is fairly small. The two frequencies

are the best in terms of bias for the scaled realized range. For the results of the Heston

model, the scaled range finds its best fit using the 1-minute frequency for the true drift

and 15-minute frequency for the true diffusion (displayed in fig C.3). Note however that
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the scaled realized range provides the lower biases, but competes directly with the realized

range for the lower RMSE.

What is interesting to see in the results for the higher frequencies of the GARCH model,

is that the best performance is not solely provided by the TTS estimator. The realized

variance and its scaled version have relatively lower or similar biases and RMSE at first

three frequencies. Nevertheless, the TTS-estimator once again finds the best performance

at the 4-minute frequency (in terms of bias) yielding an almost identical behavior to the

case without noise and lower bias than the best frequencies of the realized variance and

scaled realized variance. Its estimates are graphed in figure C.2 and C.4 for the GARCH

and Heston models respectively and again hardly differ from the previous two sections for

the GARCH model. For the results of the Heston model, the graphs show the 4-minute

frequency for a situation similar to the previous section with bid-ask bounce. From the

tabular results, the 3 and 5 minute frequencies offer smaller biases for the drift and diffusion

respectively, but as is clear from the tight fit of the graphs, the improvement is relatively

small.
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Figure 5.5: Average estimates of the drift function m(·) using the realized range estimates of daily
variance at 1-minute sampling without noise (left panel) and with infrequent trading (right panel).
Daily variance σ2 has been multiplied by 10 000. The data series is generated with the GARCH
model. The ’theoretical’ graph is obtained by evaluating the true drift and diffusion functions on the
domain of the graph.

To continue the surveillance of the realized range’s performance and to illustrate the effects

of infrequent trading on the unadjusted estimator, from the tables it is clear that the

realized range finds its best performance at the same frequency as the scaled variant.
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However, its bias is quite larger and the estimate is noisier. Nevertheless, the realized

range offers a slightly higher bias at the 1-minute frequency than the scaled realized range

with respect to the generated diffusion and a similar result for the drift. With respect to

the results of the scenario without noise, the realized range offers an only slightly downward

biased albeit much noisier estimate of the drift as illustrated by the figure 5.5, despite the

considerable downward bias of the daily variance estimates.

To recap the observations, the presence of infrequent trading has brought the accentuated

effects predicted in section 5.1. The decreased amount of information caused by a lower

trading intensity affects the realized range-based estimators the most, exacerbating the

downward bias of the estimator in such a way that it is even noticeable in the estimate of

the drift. As expected, that influence on the realized variance-based estimators is minimal,

as less information in an interval is not as important as the begin and endpoint thereof for

creating these estimates. The only effect noticeable there is slightly noisier estimates for

the realized variance and scaled realized variance. The TTS estimator no longer dominates

the performances at the highest frequencies, but still offers the most stable estimates at

higher sampling intensity.

5.4 Bid-ask bounce and infrequent trading

After studying the impact of bid-ask bounce and infrequent trading independently, the

simulated paths are now subjected to the combined effects of the two noise-types. After

adjusting the fully observed price paths to reflect bid and ask prices, the adjusted path is

filtered such that only one price every 10 seconds is observed.

The combined impact of the noise types can be seen in the results in tables D.1 and D.4

in appendix D for the GARCH and Heston models respectively. As in Martens and Van

Dijk (2007) it is apparent for the realized range based estimators that the downward bias

of the infrequent trading and upward bias of the bid-ask bounce partially offset each other.

This is especially the case for the 1-minute frequency, such that the realized variance is

outperformed by the realized range. Clearly, for the rest of the frequencies, the upward bias

caused by the bid-ask bounce is far more pronounced than the effects of infrequent trading.

As is to be expected after the results in the previous sections, the scaled realized range

performs better than the unadjusted version. Nevertheless, as previously stated the
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presence of bid-ask bounce combined with the number of lags used for scaling wrecks

havoc on the performance of this estimator, despite its improvement over the realized

range. Due to the smaller number of observations, the estimates of the scaled realized

range are even noisier than those in case with only bid-ask bounce. The scaled realized

range becomes efficient off all estimators when using 30 minute sampling (GARCH) and

10-minute sampling (Heston) and lower just as when considering bid-ask bounce alone.

Furthermore, for the GARCH model the scaled realized range has an upward bias as the

offsetting biases are dominated by the upward bias of the bid-ask bounce. For the Heston

model, notice that the scaled range underestimated the mean in the presence of both bid-

ask bounce infrequent trading, causing the results here to reflect a downward bias in the

estimate.

Scaling the realized variance also proves successful as it outperforms its unadjusted

counterpart at all frequencies for the GARCH model and while for the Heston model

the scaled realized variance fails to remove the biases (with the exception of the 1-minute

frequency). The reason for this remains unclear, but it is consistent with the performance

of the scaled realized variance over all the results for the Heston model, as its efficacy is

lacking there as well.

Given the performance of the TTS estimator in the last the rest of the results, it performs

well again in this setting of combined noise as expected. It gives the best performance of

all the estimators at the higher frequencies, yielding good approximations of the mean at

the best efficiencies. The TTS estimator is the most efficient at all the frequencies up to

and including 20-minute sampling in the GARCH model. For the Heston model, it slightly

overestimates the mean and yields the best efficiencies up to and including the 5-minute

frequency. As seen in previous results, at the 10-minute frequency the scaled realized range

is more efficient, but the TTS-estimator yields the better approximation of the mean.

The performance measurements for the moment estimators are given in tables D.1 and

D.4 in Appendix D. Judging from the tables, the same general assessment can be made as

before that the realized range-based estimators have the best performances at the lower

frequencies and the realized variance-based estimators own the higher frequencies for the

estimation of both the drift and diffusion.
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As usual the scaled realized range yields the lower biases as compared to its unadjusted

counterpart. An exception to this is found at the 30 and 60 minutes frequencies in the

drift and diffusion estimates of both models, where the realize range yields the lower

RMSE and sometimes also the lower bias. With respect to the realized variance estimates,

the range-based estimates yield the higher biases in estimating the true dynamics. The

downward bias in the daily variance estimates of the scaled range directly translates in

a strongly underestimated diffusion estimate. Within the interval of evaluation, the drift

estimate seems to perform well enough, but trails off toward the higher daily variance

values, as is apparent in the figure D.1. Furthermore, the same situation as for the bid-ask

bounce presents itself here, where different frequencies yields best estimates for the drift

and diffusion. As illustrated by the graphs and made explicit in the tables, the true drift is

best estimated using the 10-minute frequency, which also yields the best estimate for the

generated variance series. The true diffusion is best estimated by the 30-minute frequency,

but yields a poor drift estimate.
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Figure 5.6: Average estimates of the drift function m(·) (left panel) and the diffusion function Λ2(·)
(right panel) using the realized range estimate of daily variance at 1-minute sampling in the presence
of infrequent trading and bid-ask bounce. Daily variance σ2 has been multiplied by 10 000. The data
series is generated with the GARCH model. The ’theoretical’ graph is obtained by evaluating the true
drift and diffusion functions on the domain of the graph.

With the focus on the realized range estimators, consider the results of the previous

sections. In the case of infrequent trading, the realized range underestimated the drift and

yielded a fair diffusion estimate. In the case of bid-ask bounce, the realized range strongly

overestimated the drift and was oversmoothed, yet it yielded a good diffusion estimate.

In the case where both types of noise are present as figure 5.6 shows, the realized range

41



5 RESULTS

produces poor estimates for both the drift and diffusion. Plagued by underestimation

of the diffusion and strong upward bias in the drift combined with oversmoothing, the

realized range provides a clear picture of the impact of market microstructure noise on the

estimation of the dynamics.

The performance of the TTS estimator has proven to be stable in the previous sections and

continues to generally outperform the other realized variance estimators. Its performance

with respect to the true dynamics is better than that of the realized range-based estimators

at the higher frequencies. As shown by the graphical results in figure D.2 for the GARCH

model, while the TTS estimator still does quite well in describing the true dynamics, now

best at the 3-minute frequency with the 4-minute frequency a close second. What is quite

apparent is the poor performance of the TTS estimator at the 1-minute frequency when

trying to approximate the generated dynamics. The 1-minute frequency has become a

contender for the estimation of the true drift and diffusion. The results for the Heston

model are more encouraging in that sense, as those are reminiscent of the results of the

previous sections, as is illustrated by figure D.4.

Wrapping up the discussion, the combined noise types has brought some interesting

observations. The realized range is, as expected, absolutely useless when left unadjusted in

the presence of market microstructure noise, which is of course not surprising. Its sensitivity

to these effects is well-known, but has served the purpose to illustrate the effects of the

noise types on the estimation of the variance dynamics. The scaled realized range requires

careful selection of the number of lags used to construct it, as the bid-ask bounce appears

to require more lags to eliminate its effects. While improving on the realized range, it too

succumbs to a certain extent to the effects of infrequent trading and bid-ask bounce. The

TTS estimator provides a stable estimate of the true dynamics, despite the presence of both

noise types, yet loses touch with the generated dynamics it strictly speaking estimates.
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6 Conclusions and further research

In this thesis the effects of market microstructure noise on the nonparametric estimation of

the stochastic volatility models have been studied. The procedure is a two-step method to

estimate the underlying variance dynamics of price paths simulated with a GARCH model

and the Heston model. First, estimates of the latent daily variance were constructed by

means of nonparametric estimators based on high frequency intra-daily prices, therein

extending the work of Martens and Van Dijk (2007) into the realm of stochastic volatility.

Using the series of daily variance estimates, kernel-based infinitesimal moment estimators

are utilized to estimate the drift and diffusion of the variance process underlying the

generated prices. Various unadjusted and bias-corrected estimators of the daily variance

were implemented to discuss the impact of infrequent trading and bid-ask bounce on the

estimation of the daily variance in the setting of stochastic volatility and ultimately the

estimation of the variance dynamics.

To start off, some comments need to be made on the setup of the simulation experiment.

The number of prices per second could ideally have been set higher to get a better feel of

continuous trading, such as implemented in Martens and Van Dijk (2007), however had to

be decreased to limit the computational load. A further decrease in the number of price

paths simulated per model to reduce the computational load caused some results to remain

unclear. Especially when combined with the parameter choices for the Heston model this

proved to be somewhat unfortunate for that set of results, undermining the usefulness

thereof. Due to the high variance in the results of the Heston model, convergence of

the estimates remained somewhat elusive, limiting the possibility of strong conclusions

and therefore forcing a downgrade of the set to a supportive role to the GARCH results.

However, the results in the Heston model seem to globally agree with the GARCH models

results. Additionally it should be included that, as Martens and Van Dijk (2007) indicate,

there is plenty of evidence against assuming that the market microstructure noise is

temporally independent and independent of the price process. Nevertheless, the simple

implementation of the noise types serve its purpose for this thesis.

In general, the results of Martens and Van Dijk (2007) in the setting of constant volatility

extend pretty well to the setting of stochastic volatility. Bias-correcting the realized range

and realized variance estimators in the presence of infrequent trading and bid-ask bounce

proves to be essential for these estimators to be useful. To that effect, the estimates of
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the daily variance are quite clear as to what proves to be an effective method. Scaling the

realized range is quite effective, but requires more sophisticated selection of the number of

lags to be included in the scaling factor. The selected number of lags proved effective for

removing most of the downward bias caused by infrequent trading, but not for removing

enough of the upward bias caused by the bid-ask bounce. Ultimately, it is the two-time-

scales estimator of Zhang et al. (2005) that proves most stable across the scenarios in

estimation of the daily variance, noticing only slight increases in the RMSE in the presence

of infrequent trading and/or bid-ask bounce. Generally, the RV-based estimators are best

at the higher frequencies, but the realized range-based estimators have better performances

at the lower frequencies.

The results for the estimation of the drift and diffusion of the variance process show that

generally the performance of the estimators for approximating the daily variance is not

a strong indicator of how the performance will be when estimating the dynamics (as

illustrated by the performance of the realized range in the case without noise). However

there are some signs, as the overall efficiency of the range-based estimators is generally

higher than that of the realized variance, which shows in all results in such a way that the

best estimates of the true dynamics are also found to be at the lower sampling frequencies

for the (scaled) realized range and at the higher frequencies for the TTS estimator.

The results for the realized range shows the strong influence the noise types can have when

estimating daily variance, and by extension its underlying dynamics. In regard of the

drift and diffusion estimates, these results highlight the sensitivity of the overall results

to the bandwidth selection. Prime examples are the drift and diffusion estimates when

the variance of the estimates is high, resulting in a large bandwidth parameter under the

current bandwidth selection procedure and thus to oversmoothing of the estimate. More

sophisticated procedures in selecting the bandwidth could perhaps lead to results more

robust to excessive variance in the estimates.

As a further remark towards the bandwidth selection, the results of the Heston model

imply that perhaps selecting separate bandwidths for the drift and diffusion could lead to

better estimates of the dynamics. With a larger smoothing parameter, the drift estimates

might have been better, as now they seem to imply that the procedure fails to capture the

true form of the dynamics. Further research is warranted to study the effects hereof. There
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are some studies into alternatives to the bandwidth selection procedure such as the cross-

validation procedure implemented by Kanaya and Kristensen (2009) or the automated

bandwidth procedure suggested by Bandi et al. (2009). While the implication that the

methodology appears to have trouble capturing the drift dynamics of the Heston model

could simply mean that the bandwidth selection was dissatisfactory, the diffusion estimates

might not be as easily improved. Therefore, an implementation on more complicated

models than the Heston and GARCH models could shed more light on the performance

depth of the infinitesimal moment estimators.

On that note, an additional observation came up when bypassing the first step of the

estimation procedure by using the actual generated variance series, which would otherwise

be estimated by the spot variance estimators. Implementing the moment estimators

using the otherwise unobservable variance series, lead to underestimated dynamics in both

models. It is not directly clear what causes this downward bias in the estimates, which

preliminary evidence suggests is around 0.63 for the diffusion of both models. Regardless,

consider that the daily variance estimators can at best estimate the daily variance dynamics

implied by the generated data. Then it should be noted that the method appears to hinge

on the fact that all best estimates of the true dynamics are found by the mere virtue that

they are noisy estimates of the generated variance, thus relying on offsetting biases to make

inferences on the true dynamics.

Nevertheless, what stands clear among the results is that strong performance of the TTS

estimator in estimating the true dynamics of primarily of both models. Although the

TTS-estimator seems to suffer from the same problems when attempting to capture the

functional form of the dynamics of the Heston model, it still does so without much influence

by the presence of the implemented noise types. Throughout the sections presented here,

the best sampling frequency for estimating the true drift and diffusion has been with

(approximately) 4-minute sampling. Therefore, this implies that controlling for market

microstructure noise by means of robust bias-corrected estimators of the spot variance

is sufficient to successfully implement the infinitesimal moment estimators. A logical

next step in subsequent research is developing a way to determine the optimal sampling

frequency for the use in the methodology presented here.
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Appendix A Tables and graphs - no noise

This appendix contains results for the GARCH and Heston model in two separate parts

that each hold three tables with the results for the estimation of the daily variance, the

estimated drift, and the estimated diffusion for the simulation scenario without market

microstructure noise. Following the three tables in each part are the graphs referenced to

in the main body of this thesis.

Results for the GARCH model

Table A.1:
Estimators of daily variance using fully observed price paths without noise - GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 0.5356 0.1199 0.6328 0.0232 0.6356 0.0283 0.6354 0.0489 0.6356 0.0236
2 0.5629 0.0885 0.6328 0.0266 0.6356 0.0400 0.6354 0.0563 0.6356 0.0330
3 0.5754 0.0748 0.6328 0.0297 0.6356 0.0490 0.6354 0.0631 0.6356 0.0403
4 0.5831 0.0673 0.6328 0.0324 0.6355 0.0565 0.6354 0.0691 0.6355 0.0464
5 0.5884 0.0627 0.6328 0.0348 0.6355 0.0632 0.6354 0.0746 0.6355 0.0518

10 0.6018 0.0563 0.6328 0.0452 0.6356 0.0894 0.6354 0.0978 0.6355 0.0732
15 0.6078 0.0586 0.6328 0.0535 0.6355 0.1094 0.6354 0.1165 0.6355 0.0897
20 0.6115 0.0630 0.6328 0.0607 0.6356 0.1264 0.6355 0.1326 0.6355 0.1037
30 0.6158 0.0728 0.6328 0.0730 0.6356 0.1549 0.6355 0.1601 0.6356 0.1274
60 0.6216 0.0992 0.6328 0.1011 0.6357 0.2191 0.6356 0.2228 0.6356 0.1820

1440 0.6330 0.4844 0.6330 0.4844 0.6355 1.0730 0.6355 1.0730 0.6355 1.0730

Note The table shows the results of a Monte Carlo simulation estimating daily variance using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the GARCH model. Sample average of the
daily variance V̄Day,t ≈ 0.6356 and θ = 0.636. Daily variance has been multiplied by 10 000.
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Table A.2:
Results for estimates of the drift for the case without noise - GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 0.0159 0.0289 0.0162 0.0234 0.0117 0.0224 0.0123 0.0225 0.0134 0.0224
2 0.0144 0.0266 0.0149 0.0230 0.0063 0.0226 0.0068 0.0224 0.0096 0.0220
3 0.0133 0.0256 0.0136 0.0226 0.0037 0.0247 0.0037 0.0244 0.0062 0.0225
4 0.0121 0.0249 0.0124 0.0225 0.0075 0.0277 0.0067 0.0275 0.0039 0.0237
5 0.0110 0.0246 0.0112 0.0222 0.0126 0.0315 0.0118 0.0310 0.0048 0.0254

10 0.0068 0.0253 0.0058 0.0229 0.0396 0.0563 0.0391 0.0563 0.0221 0.0396
15 0.0070 0.0278 0.0044 0.0256 0.0655 0.0803 0.0652 0.0804 0.0403 0.0562
20 0.0108 0.0312 0.0085 0.0290 0.0911 0.1055 0.0903 0.1051 0.0582 0.0733
30 0.0218 0.0398 0.0200 0.0378 0.1383 0.1528 0.1374 0.1523 0.0924 0.1069
60 0.0539 0.0701 0.0525 0.0683 0.2638 0.2779 0.2614 0.2763 0.1863 0.2006

Note The table shows the results of a Monte Carlo simulation estimating daily drift using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The results use 500 independent samples of 5 000 estimates of daily variance generated using
prices from a GARCH model. The bias when estimating the daily drift using the generated variance
VDay,t using all data is approx. 0.0176 with RMSE 0.0239. The bias and RMSE are computed with
respect to the theoretical drift on the interval [0.15, 1.25]. Daily variance has been multiplied by 10 000.

Table A.3:
Estimators of the daily diffusion for the case without noise - GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 0.0212 0.0219 0.0214 0.0218 0.0154 0.0160 0.0153 0.0160 0.0178 0.0183
2 0.0195 0.0202 0.0197 0.0201 0.0075 0.0091 0.0075 0.0091 0.0124 0.0133
3 0.0177 0.0185 0.0179 0.0184 0.0020 0.0063 0.0020 0.0064 0.0071 0.0088
4 0.0161 0.0169 0.0163 0.0169 0.0089 0.0112 0.0089 0.0112 0.0024 0.0061
5 0.0144 0.0153 0.0145 0.0152 0.0168 0.0184 0.0167 0.0183 0.0043 0.0075

10 0.0060 0.0084 0.0062 0.0082 0.0555 0.0567 0.0556 0.0568 0.0306 0.0319
15 0.0030 0.0072 0.0030 0.0068 0.0940 0.0953 0.0939 0.0953 0.0570 0.0582
20 0.0109 0.0132 0.0108 0.0129 0.1305 0.1320 0.1305 0.1320 0.0831 0.0844
30 0.0274 0.0288 0.0272 0.0285 0.2014 0.2033 0.2017 0.2036 0.1345 0.1360
60 0.0757 0.0771 0.0756 0.0768 0.3926 0.3957 0.3935 0.3966 0.2799 0.2822

Note The table shows the results of a Monte Carlo simulation estimating daily diffusion using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the GARCH model. The bias when
estimating the daily diffusion using the generated variance VDay,t using all data is approx. 0.0235 with
RMSE 0.0238. The bias and RMSE are computed with respect to the theoretical drift on the interval
[0.15, 1.25]. Daily variance has been multiplied by 10 000.
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Figure A.1: Average estimates of the drift function m(·) using RRS estimates of daily variance, where
the 60 minute frequency gives the largest bias and the 1 minute frequency the lowest versus the
generated dynamics. Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers
to the drift estimate using the variance series generated with the GARCH model. The ’theoretical’
graph is obtained by evaluating the true drift function on the domain of the graph.
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Figure A.2: Average estimates of the drift function m(·) using RVTTS estimates of daily variance,
where the 60 minute frequency gives the largest bias and the 1 minute frequency the lowest versus the
generated dynamics. Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers
to the drift estimate using the variance series generated with the GARCH model. The ’theoretical’
graph is obtained by evaluating the true drift function on the domain of the graph.
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Figure A.3: Average estimates of the drift function Λ2(·) using RRS estimates of daily variance,
where the 60 minute frequency gives the largest bias and the 1 minute frequency the lowest versus the
generated dynamics. Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to
the diffusion estimate using the variance series generated with the GARCH model. The ’theoretical’
graph is obtained by evaluating the true diffusion function on the domain of the graph.
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Figure A.4: Average estimates of the diffusion function Λ2(·) using RVTTS estimates of daily
variance, where the 60 minute frequency gives the largest bias and the 1 minute frequency the lowest
versus the generated dynamics. Daily variance σ2 has been multiplied by 10 000. The ’generated’
graph refers to the diffusion estimate using the variance series generated with the GARCH model.
The ’theoretical’ graph is obtained by evaluating the true diffusion function on the domain of the
graph.
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Figure A.5: Average estimates of the drift function m(·) (left panel) and diffusion function Λ2(·)
(right panel) using RVTTS estimates of daily variance with 3-minute sampling, which is just under
the 200 second-frequency of Renò (2006). Daily variance σ2 has been multiplied by 10 000. The
’generated’ graph refers to the drift estimate using the variance series generated with the GARCH
model. The ’theoretical’ graph is obtained by evaluating the true drift function on the domain of the
graph.
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Figure A.6: Average estimates of the drift function m(·) using RRS estimates of daily variance with
1-minute sampling (left panel) and 15-minute sampling (right panel). Daily variance σ2 has been
multiplied by 10 000. The ’generated’ graph refers to the drift estimate using the variance series
generated with the GARCH model. The ’theoretical’ graph is obtained by evaluating the true drift
function on the domain of the graph.
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Figure A.7: Average estimates of the drift function m(·) using RVTTS estimates of daily variance
with 1-minute sampling (left panel) and 4-minute sampling (right panel). Daily variance σ2 has been
multiplied by 10 000. The ’generated’ graph refers to the drift estimate using the variance series
generated with the GARCH model. The ’theoretical’ graph is obtained by evaluating the true drift
function on the domain of the graph.
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Figure A.8: Average estimates of the drift function m(·) (left panel) and diffusion function Λ2(·)
(right panel) using generated daily variance at 1-second sampling. Daily variance σ2 has been
multiplied by 10 000. The variance series is generated with the GARCH model. The ’theoretical’
graph is obtained by evaluating the true drift and diffusion functions on the domain of the graph.
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Results for the Heston model

Table A.4:
Estimators of daily variance using fully observed price paths without noise - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 1.4323 1.3120 1.6930 0.3698 1.6995 0.3075 1.7084 0.8018 1.6996 0.2574
2 1.5051 0.9690 1.6930 0.3965 1.6995 0.4345 1.7083 0.8580 1.6997 0.3585
3 1.5389 0.8190 1.6930 0.4215 1.6995 0.5295 1.7082 0.9139 1.6996 0.4369
4 1.5593 0.7377 1.6931 0.4429 1.6995 0.6128 1.7084 0.9628 1.6996 0.5038
5 1.5736 0.6865 1.6931 0.4661 1.7002 0.6870 1.7085 1.0172 1.6998 0.5634

10 1.6094 0.6152 1.6930 0.5606 1.7005 0.9786 1.7084 1.2337 1.7002 0.8005
15 1.6260 0.6384 1.6931 0.6435 1.7012 1.1942 1.7087 1.4129 1.7002 0.9830
20 1.6355 0.6875 1.6929 0.7142 1.6993 1.3841 1.7074 1.5763 1.7000 1.1352
30 1.6474 0.7944 1.6929 0.8406 1.7001 1.6953 1.7078 1.8607 1.6994 1.3916
60 1.6620 1.0831 1.6932 1.1344 1.6978 2.3842 1.7089 2.5212 1.6985 1.9853

1440 1.6886 5.2937 1.6886 5.2937 1.6984 11.7942 1.6984 11.7942 1.6984 11.7942

Note The table shows the results of a Monte Carlo simulation estimating daily variance using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the Heston model. Sample average of the
daily variance V̄Day,t ≈ 1.6998 and θ = 1.6. Daily variance has been multiplied by 10 000.

Table A.5:
Results for estimates of the drift for the case without noise - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 1.0852 18.9038 1.3794 19.7258 1.3252 19.8646 1.2988 23.8826 1.4423 19.4277
2 1.1893 18.9939 1.4051 20.0680 1.2980 21.9283 1.4633 24.9031 1.2817 20.6959
3 1.1431 19.5697 1.4754 20.3510 1.6275 22.5436 1.8372 25.7087 1.2339 21.8012
4 1.2903 20.0154 1.4638 19.7577 1.4928 23.3663 1.6803 26.0639 1.4481 22.6272
5 1.1135 20.7101 1.4507 21.1903 1.9225 24.9192 1.8761 29.6282 1.6219 23.1564

10 1.3842 21.9367 1.8298 22.4000 2.1449 30.2867 2.3667 31.6661 1.8491 26.0680
15 1.1594 23.4311 1.4097 23.5530 2.8359 34.4870 3.1650 36.5673 2.1127 29.2705
20 1.7972 23.6337 1.8907 24.1523 3.8548 37.0197 3.8627 39.6504 2.7245 32.7952
30 1.6874 26.3081 1.7189 25.9370 5.0427 43.3658 5.8144 45.9311 3.9473 37.1242
60 2.7131 32.1143 2.7504 32.3564 11.0986 60.2013 11.3047 62.6153 7.2667 48.9427

Note The table shows the results of a Monte Carlo simulation estimating daily drift using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The results use 500 independent samples of 5 000 estimates of daily variance generated using
prices from a Heston model. The bias when estimating the daily drift using the generated variance
VDay,t using all data is approx. 1.3812 with RMSE 17.8848. The bias and RMSE are computed with
respect to the theoretical drift on the interval [0.5, 7.68]. Daily variance has been multiplied by 10 000.
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Table A.6:
Estimators of the daily diffusion for the case without noise - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 2.5258 3.2229 1.9634 3.3954 1.7841 3.0809 1.2896 5.0397 1.9091 3.1131
2 2.2924 3.2295 1.8661 3.3087 1.3687 3.3606 1.0204 5.1559 1.6341 3.1303
3 2.1567 3.1643 1.7847 3.2809 1.0881 3.3030 0.8695 4.4537 1.3783 3.2022
4 2.0292 3.1190 1.7387 3.1064 0.8732 3.2705 0.8784 4.5358 1.1588 3.3155
5 1.8802 3.1951 1.5935 3.4283 0.9483 3.8424 1.5063 11.2781 0.9899 3.3669

10 1.4385 3.3354 1.2525 3.2901 2.8245 6.2319 3.1908 6.9998 1.3168 4.0646
15 1.0904 3.2395 0.9979 3.4236 5.1285 8.3880 5.5029 10.7080 2.7439 5.3653
20 0.9129 3.6294 0.8620 3.7606 7.3744 10.2530 8.0095 12.1931 4.3908 7.0969
30 1.2025 3.9164 1.1961 4.1424 12.4629 15.7614 13.1563 17.8156 7.5524 10.4245
60 3.8025 6.9448 3.9191 6.5967 29.5380 36.1016 30.1007 36.7486 17.9954 21.8755

Note The table shows the results of a Monte Carlo simulation estimating daily diffusion using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as well

as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with q = 1 000.
The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices per day (1
price per second for a 24-hour trading day) using the Heston model. The bias when estimating the
daily diffusion using the generated variance VDay,t using all data is approx. 2.2087 with RMSE 3.2190.
The bias and RMSE are computed with respect to the theoretical drift on the interval [0.5, 7.68]. Daily
variance has been multiplied by 10 000.
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Figure A.9: Average estimates of the drift function m(·) using RRS estimates of daily variance,
where the 60 minute frequency generally gives the largest bias and the 1 minute frequency the lowest
versus the generated dynamics. Daily variance σ2 has been multiplied by 10 000. The ’generated’
graph refers to the drift estimate using the variance series generated with the Heston model. The
’theoretical’ graph is obtained by evaluating the true drift function on the domain of the graph.
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Figure A.10: Average estimates of the drift function m(·) using RVTTS estimates of daily variance,
where the 60 minute frequency generally gives the largest bias and the 1 minute frequency the lowest
versus the generated dynamics. Daily variance σ2 has been multiplied by 10 000. The ’generated’
graph refers to the drift estimate using the variance series generated with the Heston model. The
’theoretical’ graph is obtained by evaluating the true drift function on the domain of the graph.
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Figure A.11: Average estimates of the drift function Λ2(·) using RRS estimates of daily variance,
where the 60 minute frequency gives the largest bias and the 1 minute frequency the lowest versus the
generated dynamics. Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers
to the diffusion estimate using the variance series generated with the Heston model. The ’theoretical’
graph is obtained by evaluating the true diffusion function on the domain of the graph.
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Figure A.12: Average estimates of the diffusion function Λ2(·) using RVTTS estimates of daily
variance, where the 60 minute frequency gives the largest bias and the 1 minute frequency the lowest
versus the generated dynamics. Daily variance σ2 has been multiplied by 10 000. The ’generated’
graph refers to the diffusion estimate using the variance series generated with the Heston model. The
’theoretical’ graph is obtained by evaluating the true diffusion function on the domain of the graph.
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Figure A.13: Average estimates of the drift function m(·) using RRS estimates of daily variance with
1-minute sampling (left panel) and 20-minute sampling (right panel). Daily variance σ2 has been
multiplied by 10 000. The ’generated’ graph refers to the drift estimate using the variance series
generated with the Heston model. The ’theoretical’ graph is obtained by evaluating the true drift
function on the domain of the graph.
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Figure A.14: Average estimates of the drift function m(·) using RVTTS estimates of daily variance
with 1-minute sampling (left panel) and 5-minute sampling (right panel). Daily variance σ2 has been
multiplied by 10 000. The ’generated’ graph refers to the drift estimate using the variance series
generated with the Heston model. The ’theoretical’ graph is obtained by evaluating the true drift
function on the domain of the graph.
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Figure A.15: Average estimates of the diffusion function Λ2(·) using RRS estimates of daily variance
with 1-minute sampling (left panel) and 20-minute sampling (right panel). Daily variance σ2 has been
multiplied by 10 000. The ’generated’ graph refers to the diffusion estimate using the variance series
generated with the Heston model. The ’theoretical’ graph is obtained by evaluating the true diffusion
function on the domain of the graph.
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Figure A.16: Average estimates of the diffusion function Λ2(·) using RVTTS estimates of daily
variance with 1-minute sampling (left panel) and 5-minute sampling (right panel). Daily variance
σ2 has been multiplied by 10 000. The ’generated’ graph refers to the diffusion estimate using the
variance series generated with the Heston model. The ’theoretical’ graph is obtained by evaluating
the true diffusion function on the domain of the graph.
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Appendix B Tables and graphs - bid-ask bounce

This appendix contains results for the GARCH and Heston model in two separate parts

that each hold three tables with the results for the estimation of the daily variance, the

estimated drift, and the estimated diffusion for the simulation scenario with bid-ask bounce

present. Following the three tables in each part are the graphs referenced to in the main

body of this thesis.

Results for the GARCH model

Table B.1:
Estimators of daily variance using fully observed price paths with bid-ask bounce - GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 2.1787 1.5459 0.6639 0.3073 2.4336 1.7998 0.6358 0.3018 0.6335 0.0567
2 1.6578 1.0241 0.6635 0.2560 1.5359 0.9036 0.6354 0.2399 0.6368 0.0459
3 1.4354 0.8016 0.6634 0.2250 1.2358 0.6055 0.6353 0.2015 0.6368 0.0478
4 1.3093 0.6758 0.6634 0.2040 1.0857 0.4578 0.6353 0.1761 0.6368 0.0516
5 1.2264 0.5932 0.6634 0.1885 0.9957 0.3706 0.6354 0.1586 0.6368 0.0558

10 1.0323 0.4007 0.6635 0.1462 0.8156 0.2093 0.6357 0.1266 0.6368 0.0751
15 0.9518 0.3223 0.6636 0.1271 0.7556 0.1724 0.6359 0.1279 0.6368 0.0910
20 0.9054 0.2783 0.6637 0.1166 0.7256 0.1654 0.6361 0.1371 0.6368 0.1047
30 0.8519 0.2306 0.6638 0.1076 0.6956 0.1756 0.6363 0.1600 0.6368 0.1282
60 0.7850 0.1838 0.6641 0.1114 0.6657 0.2282 0.6366 0.2210 0.6369 0.1825

1440 0.6649 0.4935 0.6649 0.4935 0.6367 1.0745 0.6367 1.0745 0.6367 1.0745

Note The table shows the results of a Monte Carlo simulation estimating daily variance using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the GARCH model. Sample average of the
daily variance V̄Day,t ≈ 0.6356 and θ = 0.636. Daily variance has been multiplied by 10 000.
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Table B.2:
Results for estimates of the drift for the case with bid-ask bounce - GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 0.2182 0.2403 0.0165 0.0427 0.5974 0.6392 0.0324 0.0956 0.0060 0.0216
2 0.1538 0.1647 0.0164 0.0337 0.3389 0.3579 0.0354 0.0743 0.0043 0.0213
3 0.1216 0.1281 0.0148 0.0286 0.2213 0.2339 0.0415 0.0670 0.0030 0.0224
4 0.1038 0.1085 0.0134 0.0269 0.1676 0.1755 0.0464 0.0661 0.0027 0.0240
5 0.0923 0.0960 0.0119 0.0248 0.1373 0.1428 0.0508 0.0691 0.0051 0.0258

10 0.0680 0.0700 0.0063 0.0231 0.0970 0.1028 0.0746 0.0887 0.0226 0.0399
15 0.0588 0.0606 0.0039 0.0241 0.1051 0.1127 0.0984 0.1123 0.0405 0.0564
20 0.0542 0.0562 0.0075 0.0269 0.1222 0.1314 0.1210 0.1347 0.0582 0.0733
30 0.0509 0.0539 0.0180 0.0345 0.1632 0.1740 0.1652 0.1797 0.0924 0.1069
60 0.0613 0.0671 0.0492 0.0631 0.2790 0.2915 0.2829 0.2970 0.1861 0.2003

Note The table shows the results of a Monte Carlo simulation estimating daily drift using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The results use 500 independent samples of 5 000 estimates of daily variance generated using
prices from a GARCH model. The bias when estimating the daily drift using the generated variance
VDay,t using all data is approx. 0.0176 with RMSE 0.0239. The bias and RMSE are computed with
respect to the theoretical drift on the interval [0.15, 1.25]. Daily variance has been multiplied by 10 000.

Table B.3:
Estimators of the daily diffusion for the case with bid-ask bounce - GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 0.0510 0.0538 0.0532 0.0534 0.0734 0.1062 0.0441 0.0462 0.0116 0.0125
2 0.0537 0.0544 0.0488 0.0490 0.0534 0.0615 0.0316 0.0335 0.0099 0.0110
3 0.0525 0.0527 0.0458 0.0460 0.0398 0.0437 0.0205 0.0234 0.0057 0.0077
4 0.0503 0.0504 0.0432 0.0434 0.0272 0.0294 0.0108 0.0142 0.0021 0.0061
5 0.0480 0.0481 0.0409 0.0410 0.0179 0.0195 0.0052 0.0115 0.0052 0.0081

10 0.0376 0.0377 0.0314 0.0316 0.0439 0.0447 0.0454 0.0472 0.0309 0.0321
15 0.0287 0.0288 0.0232 0.0236 0.0851 0.0860 0.0853 0.0870 0.0571 0.0582
20 0.0206 0.0208 0.0156 0.0164 0.1242 0.1252 0.1236 0.1252 0.0830 0.0843
30 0.0067 0.0076 0.0030 0.0073 0.1964 0.1979 0.1962 0.1982 0.1342 0.1357
60 0.0409 0.0415 0.0437 0.0449 0.3906 0.3934 0.3883 0.3914 0.2792 0.2814

Note The table shows the results of a Monte Carlo simulation estimating daily diffusion using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the GARCH model. The bias when
estimating the daily diffusion using the generated variance VDay,t using all data is approx. 0.0235 with
RMSE 0.0238. The bias and RMSE are computed with respect to the theoretical drift on the interval
[0.15, 1.25]. Daily variance has been multiplied by 10 000.

61



B TABLES AND GRAPHS - BID-ASK BOUNCE

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

σ2

m
(σ

2 )

 

 

Theoretical
Generated
Average estimate, RRS−based at 1 min
95% Confidence Interval

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

σ2
Λ

2 (σ
2 )

 

 

Theoretical
Generated
Average estimate, RRS−based at 1 min
95% Confidence Interval

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

σ2

m
(σ

2 )

 

 

Theoretical
Generated
Average estimate, RRS−based at 15 min
95% Confidence Interval

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

σ2

Λ
2 (σ

2 )

 

 

Theoretical
Generated
Average estimate, RRS−based at 15 min
95% Confidence Interval

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

σ2

m
(σ

2 )

 

 

Theoretical
Generated
Average estimate, RRS−based at 30 min
95% Confidence Interval

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

σ2

Λ
2 (σ

2 )

 

 

Theoretical
Generated
Average estimate, RRS−based at 30 min
95% Confidence Interval

Figure B.1: Average estimates of the drift function m(·) (left panels) and diffusion function m(·)
(right panels) using RRS estimates of daily variance with 1, 15, and 30-minute sampling. Daily
variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the drift estimate using
the variance series generated with the GARCH model. The ’theoretical’ graph is obtained by
evaluating the true drift function on the domain of the graph.
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Figure B.2: Average estimates of the drift function m(·) (left panels) and diffusion function Λ2(·)
(right panels) using RVTTS estimates of daily variance with 1-minute sampling and 4-minute
sampling. Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the drift
estimate using the variance series generated with the GARCH model. The ’theoretical’ graph is
obtained by evaluating the true drift function on the domain of the graph.
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Results for the Heston model

Table B.4:
Estimators of daily variance using fully observed price paths with bid-ask bounce - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 3.3910 1.9410 1.5710 1.6722 3.4995 1.8287 1.5767 1.7132 1.7006 0.2610
2 2.6517 1.2037 1.5974 1.2405 2.5995 1.0038 1.6017 1.3421 1.7008 0.3595
3 2.3889 0.9423 1.6132 1.0446 2.2995 0.8057 1.6173 1.2152 1.7008 0.4374
4 2.2509 0.8107 1.6240 0.9314 2.1495 0.7659 1.6283 1.1665 1.7008 0.5041
5 2.1651 0.7346 1.6320 0.8597 2.0602 0.7820 1.6364 1.1593 1.7010 0.5636

10 1.9802 0.6260 1.6545 0.7291 1.8806 0.9993 1.6588 1.2662 1.7014 0.8006
15 1.9116 0.6465 1.6658 0.7268 1.8212 1.2041 1.6700 1.4185 1.7015 0.9831
20 1.8740 0.6943 1.6727 0.7580 1.7894 1.3893 1.6755 1.5720 1.7012 1.1352
30 1.8336 0.8034 1.6815 0.8492 1.7601 1.6985 1.6839 1.8504 1.7006 1.3916
60 1.7860 1.0934 1.6936 1.1195 1.7278 2.3859 1.6955 2.5105 1.6998 1.9853

1440 1.7115 5.3076 1.7115 5.3076 1.6997 11.7961 1.6997 11.7961 1.6997 11.7961

Note The table shows the results of a Monte Carlo simulation estimating daily variance using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the Heston model. Sample average of the
daily variance V̄Day,t ≈ 1.6998 and θ = 1.6. Daily variance has been multiplied by 10 000.

Table B.5:
Results for estimates of the drift for the case with bid-ask bounce - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 2.5641 6.2015 2.1488 9.0391 3.1211 12.3442 1.6705 11.1555 1.2717 19.3339
2 2.5484 9.1220 1.9413 10.9860 2.0565 17.4039 1.4192 15.4666 1.3500 20.8182
3 2.5073 10.9403 1.7993 12.3183 2.2341 20.3599 1.4761 17.9523 1.2695 21.7778
4 2.3408 12.4102 1.3700 13.8108 2.0394 21.5846 1.0793 20.6006 1.3713 22.7094
5 2.1922 13.7204 1.2981 15.0336 1.5080 23.4124 1.2609 22.0760 1.5999 23.2582

10 2.0884 16.0184 1.2983 18.2875 2.3179 28.2732 2.1582 29.4233 1.8428 26.1054
15 2.0089 18.2670 0.9431 19.5883 3.0350 32.7351 1.9020 34.9077 2.1137 29.1118
20 2.3755 18.7123 1.0303 21.0562 3.8758 35.8845 2.7640 39.1354 2.7428 32.8916
30 2.2114 22.3275 1.1463 23.6496 5.3797 43.5324 4.0280 46.8411 3.9003 37.2139
60 2.9554 27.3161 1.9877 29.8758 10.0091 59.3703 9.8631 64.5608 7.2508 48.9962

Note The table shows the results of a Monte Carlo simulation estimating daily drift using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The results use 500 independent samples of 5 000 estimates of daily variance generated using
prices from a Heston model. The bias when estimating the daily drift using the generated variance
VDay,t using all data is approx. 1.3812 with RMSE 17.8848. The bias and RMSE are computed with
respect to the theoretical drift on the interval [0.5, 7.68]. Daily variance has been multiplied by 10 000.

64



B TABLES AND GRAPHS - BID-ASK BOUNCE

Table B.6:
Estimators of the daily diffusion for the case with bid-ask bounce - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 3.3603 3.4659 4.4061 3.9362 3.4669 3.7243 3.9436 3.4855 1.8612 3.0711
2 2.9333 3.1263 4.0482 3.7761 2.3029 3.0809 3.0474 3.1352 1.5970 3.1761
3 2.7177 2.9812 3.7996 3.6477 1.7056 3.3771 2.4995 3.0252 1.3666 3.2209
4 2.5388 2.9073 3.5612 3.5014 1.2804 3.0505 1.9039 2.8182 1.1514 3.3217
5 2.3947 2.8798 3.3594 3.3940 1.0702 3.6946 1.4837 3.0725 0.9852 3.4086

10 1.9279 2.6924 2.6661 3.1546 2.5082 5.1408 2.1476 5.1678 1.3293 4.0656
15 1.5156 2.6969 2.1735 2.9482 4.9041 7.4477 4.6695 7.5270 2.7387 5.3191
20 1.2406 2.7970 1.7649 2.9324 7.1751 10.1038 7.2124 10.8536 4.3915 7.1630
30 1.0051 3.3823 1.1443 3.1704 12.3673 15.8775 12.2068 15.9562 7.5696 10.4603
60 3.0677 5.4060 2.7554 5.1691 29.3413 35.4452 29.8124 37.2242 17.9990 21.8760

Note The table shows the results of a Monte Carlo simulation estimating daily diffusion using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as well

as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with q = 1 000.
The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices per day (1
price per second for a 24-hour trading day) using the Heston model. The bias when estimating the
daily diffusion using the generated variance VDay,t using all data is approx. 2.2087 with RMSE 3.2190.
The bias and RMSE are computed with respect to the theoretical drift on the interval [0.5, 7.68]. Daily
variance has been multiplied by 10 000.
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Figure B.3: Average estimates of the drift function m(·) (left panels) and diffusion function m(·)
(right panels) using RRS estimates of daily variance with 1, 10, and 20-minute sampling. Daily
variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the drift estimate
using the variance series generated with the Heston model. The ’theoretical’ graph is obtained by
evaluating the true drift function on the domain of the graph.
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Figure B.4: Average estimates of the drift function m(·) (left panels) and diffusion function Λ2(·)
(right panels) using RVTTS estimates of daily variance with 1-minute sampling and 4-minute
sampling. Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the
drift estimate using the variance series generated with the Heston model. The ’theoretical’ graph is
obtained by evaluating the true drift function on the domain of the graph.
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Appendix C Tables and graphs - infrequent trading

This appendix contains results for the GARCH and Heston model in two separate parts

that each hold three tables with the results for the estimation of the daily variance, the

estimated drift, and the estimated diffusion for the simulation scenario with infrequent

trading. Following the three tables in each part are the graphs referenced to in the main

body of this thesis.

Results for the GARCH model

Table C.1:
Estimators of daily variance in the presence of infrequent trading - GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 0.3540 0.3363 0.6249 0.0294 0.6356 0.0290 0.6354 0.0493 0.6356 0.0276
2 0.4116 0.2678 0.6249 0.0323 0.6356 0.0402 0.6354 0.0566 0.6356 0.0356
3 0.4432 0.2304 0.6249 0.0351 0.6356 0.0493 0.6354 0.0634 0.6356 0.0424
4 0.4640 0.2061 0.6249 0.0376 0.6356 0.0566 0.6354 0.0692 0.6355 0.0482
5 0.4790 0.1887 0.6249 0.0399 0.6355 0.0633 0.6354 0.0747 0.6355 0.0534

10 0.5193 0.1436 0.6249 0.0496 0.6356 0.0894 0.6354 0.0979 0.6355 0.0743
15 0.5385 0.1247 0.6249 0.0577 0.6355 0.1094 0.6354 0.1165 0.6355 0.0906
20 0.5505 0.1149 0.6249 0.0646 0.6356 0.1264 0.6355 0.1326 0.6355 0.1045
30 0.5650 0.1072 0.6249 0.0765 0.6356 0.1548 0.6355 0.1600 0.6356 0.1281
60 0.5847 0.1129 0.6249 0.1040 0.6357 0.2190 0.6356 0.2227 0.6356 0.1824

1440 0.6251 0.4817 0.6251 0.4817 0.6355 1.0729 0.6355 1.0729 0.6355 1.0729

Note The table shows the results of a Monte Carlo simulation estimating daily variance using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the GARCH model. Sample average of the
daily variance V̄Day,t ≈ 0.6356 and θ = 0.636. Daily variance has been multiplied by 10 000.
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Table C.2:
Results for estimates of the drift for the case with infrequent trading - GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 0.0308 0.0847 0.0147 0.0232 0.0115 0.0224 0.0120 0.0223 0.0120 0.0222
2 0.0237 0.0579 0.0133 0.0229 0.0062 0.0226 0.0066 0.0225 0.0084 0.0221
3 0.0210 0.0467 0.0119 0.0227 0.0038 0.0250 0.0037 0.0248 0.0052 0.0229
4 0.0193 0.0429 0.0105 0.0226 0.0076 0.0278 0.0068 0.0273 0.0038 0.0242
5 0.0184 0.0410 0.0093 0.0225 0.0128 0.0316 0.0118 0.0311 0.0056 0.0261

10 0.0172 0.0393 0.0045 0.0243 0.0397 0.0563 0.0391 0.0564 0.0233 0.0406
15 0.0188 0.0401 0.0068 0.0281 0.0654 0.0803 0.0649 0.0803 0.0414 0.0572
20 0.0225 0.0441 0.0121 0.0320 0.0915 0.1059 0.0905 0.1053 0.0592 0.0743
30 0.0322 0.0525 0.0242 0.0417 0.1385 0.1530 0.1376 0.1525 0.0934 0.1079
60 0.0649 0.0829 0.0580 0.0741 0.2639 0.2780 0.2616 0.2763 0.1871 0.2014

Note The table shows the results of a Monte Carlo simulation estimating daily drift using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The results use 500 independent samples of 5 000 estimates of daily variance generated using
prices from a GARCH model. The bias when estimating the daily drift using the generated variance
VDay,t using all data is approx. 0.0176 with RMSE 0.0239. The bias and RMSE are computed with
respect to the theoretical drift on the interval [0.15, 1.25]. Daily variance has been multiplied by 10 000.

Table C.3:
Estimators of the daily diffusion for the case with infrequent trading - GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 0.0177 0.0247 0.0195 0.0200 0.0149 0.0156 0.0149 0.0156 0.0157 0.0163
2 0.0166 0.0209 0.0176 0.0182 0.0073 0.0089 0.0072 0.0089 0.0106 0.0117
3 0.0149 0.0176 0.0157 0.0163 0.0021 0.0064 0.0021 0.0065 0.0055 0.0077
4 0.0129 0.0157 0.0138 0.0146 0.0090 0.0113 0.0090 0.0114 0.0018 0.0061
5 0.0110 0.0141 0.0119 0.0129 0.0169 0.0186 0.0169 0.0185 0.0059 0.0086

10 0.0023 0.0087 0.0031 0.0066 0.0556 0.0568 0.0557 0.0568 0.0322 0.0335
15 0.0070 0.0112 0.0066 0.0093 0.0941 0.0954 0.0940 0.0954 0.0586 0.0598
20 0.0157 0.0184 0.0151 0.0169 0.1304 0.1318 0.1304 0.1318 0.0847 0.0859
30 0.0328 0.0348 0.0322 0.0336 0.2012 0.2031 0.2015 0.2035 0.1360 0.1375
60 0.0828 0.0844 0.0824 0.0837 0.3922 0.3953 0.3931 0.3963 0.2812 0.2835

Note The table shows the results of a Monte Carlo simulation estimating daily diffusion using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the GARCH model. The bias when
estimating the daily diffusion using the generated variance VDay,t using all data is approx. 0.0235 with
RMSE 0.0238. The bias and RMSE are computed with respect to the theoretical drift on the interval
[0.15, 1.25]. Daily variance has been multiplied by 10 000.
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Figure C.1: Average estimates of the drift function m(·) (left panels) and diffusion function Λ2(·)
(right panels) using RRS estimates of daily variance with 1-minute sampling and 10-minute sampling.
Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the drift estimate
using the variance series generated with the GARCH model. The ’theoretical’ graph is obtained by
evaluating the true drift function on the domain of the graph.
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Figure C.2: Average estimates of the drift function m(·) (left panels) and diffusion function Λ2(·)
(right panels) using RVTTS estimates of daily variance with 1-minute sampling and 4-minute
sampling. Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the drift
estimate using the variance series generated with the GARCH model. The ’theoretical’ graph is
obtained by evaluating the true drift function on the domain of the graph.
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Results for the Heston model

Table C.4:
Estimators of daily variance in the presence of infrequent trading - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 0.9466 3.6753 1.6720 0.4151 1.6995 0.3158 1.7080 0.8036 1.6996 0.3008
2 1.1006 2.9273 1.6720 0.4404 1.6997 0.4365 1.7080 0.8588 1.6997 0.3864
3 1.1853 2.5185 1.6720 0.4646 1.6997 0.5323 1.7079 0.9145 1.6996 0.4587
4 1.2407 2.2537 1.6720 0.4860 1.6997 0.6131 1.7082 0.9626 1.6997 0.5227
5 1.2810 2.0620 1.6720 0.5082 1.7003 0.6867 1.7081 1.0138 1.6998 0.5804

10 1.3888 1.5699 1.6720 0.6010 1.7005 0.9769 1.7080 1.2309 1.7002 0.8125
15 1.4407 1.3594 1.6721 0.6826 1.7013 1.1953 1.7085 1.4134 1.7002 0.9928
20 1.4723 1.2551 1.6719 0.7518 1.6994 1.3834 1.7072 1.5751 1.7000 1.1437
30 1.5114 1.1708 1.6719 0.8753 1.7000 1.6958 1.7074 1.8606 1.6994 1.3985
60 1.5635 1.2357 1.6721 1.1629 1.6977 2.3829 1.7085 2.5189 1.6985 1.9901

Note The table shows the results of a Monte Carlo simulation estimating daily variance using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the Heston model. Sample average of the
daily variance V̄Day,t ≈ 1.6998 and θ = 1.6. Daily variance has been multiplied by 10 000.

Table C.5:
Results for estimates of the drift for the case with infrequent trading - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 1.6446 17.7963 1.1141 19.3391 1.5618 19.2034 1.4607 23.1583 1.2985 19.7263
2 1.6007 19.0445 1.2168 19.4163 1.7096 21.5222 1.6776 27.1095 1.3252 20.8001
3 1.7656 19.9815 1.4583 20.4696 1.7193 22.3421 1.6697 25.1447 1.2775 22.0384
4 1.8919 20.9620 1.4095 20.1469 1.5037 23.3150 1.7824 26.1011 1.5369 22.9093
5 1.7412 20.7370 1.5566 21.0704 1.5544 24.9416 1.8416 29.5372 1.6818 23.3381

10 1.9476 23.4511 1.7287 23.0440 2.3657 29.6913 2.2246 33.4938 1.8327 26.0522
15 1.5176 24.5471 1.3879 24.9667 2.7072 34.3909 3.0764 35.1520 2.1661 29.4114
20 2.1237 25.0270 1.8099 24.9920 3.9021 37.6427 3.5071 40.2352 2.8125 32.9201
30 1.8720 28.2506 1.7645 27.2511 5.1546 43.5449 5.7353 45.9867 4.0428 37.1546
60 3.1445 33.0241 3.0181 33.3752 10.5654 59.8255 11.3248 62.7090 7.2796 49.0128

Note The table shows the results of a Monte Carlo simulation estimating daily drift using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The results use 500 independent samples of 5 000 estimates of daily variance generated using
prices from a Heston model. The bias when estimating the daily drift using the generated variance
VDay,t using all data is approx. 1.3812 with RMSE 17.8848. The bias and RMSE are computed with
respect to the theoretical drift on the interval [0.5, 7.68]. Daily variance has been multiplied by 10 000.
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Table C.6:
Estimators of the daily diffusion for the case with infrequent trading - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 3.3434 3.4984 1.9149 3.2776 1.8016 3.1017 1.3140 4.4190 1.7978 3.0907
2 2.9212 3.3228 1.8284 3.1207 1.3715 3.5932 1.0290 10.8392 1.5432 3.1750
3 2.6699 3.2543 1.7141 3.2689 1.0936 3.3021 0.8327 4.2158 1.2956 3.2321
4 2.4094 3.2259 1.6406 3.1366 0.8813 3.3624 0.8838 4.6912 1.0967 3.3565
5 2.2889 3.1543 1.5295 3.2529 0.9661 4.3920 1.4584 11.9295 0.9491 3.4074

10 1.5801 3.2144 1.1464 3.6161 2.7501 5.7096 3.3580 8.0746 1.3808 4.0968
15 1.1563 3.3267 0.9033 3.8039 5.0808 7.9514 5.4743 8.9432 2.8409 5.4752
20 0.9353 3.3930 0.9087 3.9858 7.3940 10.4605 8.0147 12.2917 4.4859 7.2104
30 1.3390 4.4552 1.4769 4.8749 12.4270 15.7310 13.1047 18.2632 7.6348 10.4965
60 4.0823 6.7374 4.3043 6.9759 29.5513 35.6970 30.1845 37.2454 18.0969 21.9927

Note The table shows the results of a Monte Carlo simulation estimating daily diffusion using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as well

as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with q = 1 000.
The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices per day (1
price per second for a 24-hour trading day) using the Heston model. The bias when estimating the
daily diffusion using the generated variance VDay,t using all data is approx. 2.2087 with RMSE 3.2190.
The bias and RMSE are computed with respect to the theoretical drift on the interval [0.5, 7.68]. Daily
variance has been multiplied by 10 000.
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Figure C.3: Average estimates of the drift function m(·) (left panels) and diffusion function Λ2(·)
(right panels) using RRS estimates of daily variance with 1-minute sampling and 15-minute sampling.
Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the drift estimate
using the variance series generated with the Heston model. The ’theoretical’ graph is obtained by
evaluating the true drift function on the domain of the graph.
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Figure C.4: Average estimates of the drift function m(·) (left panels) and diffusion function Λ2(·)
(right panels) using RVTTS estimates of daily variance with 1-minute sampling and 4-minute
sampling. Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the
drift estimate using the variance series generated with the Heston model. The ’theoretical’ graph is
obtained by evaluating the true drift function on the domain of the graph.
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Appendix D Tables and graphs - both noise types

This appendix contains results for the GARCH and Heston model in two separate parts

that each hold three tables with the results for the estimation of the daily variance, the

estimated drift, and the estimated diffusion for the simulation scenario with bid-ask bounce

and infrequent trading present. Following the three tables in each part are the graphs

referenced to in the main body of this thesis.

Results for the GARCH model

Table D.1:
Estimators of daily variance with bid-ask bounce and infrequent trading- GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 2.1787 1.5459 0.6639 0.3073 2.4336 1.7998 0.6358 0.3018 0.6335 0.0567
2 1.6578 1.0241 0.6635 0.2560 1.5359 0.9036 0.6354 0.2399 0.6368 0.0459
3 1.4354 0.8016 0.6634 0.2250 1.2358 0.6055 0.6353 0.2015 0.6368 0.0478
4 1.3093 0.6758 0.6634 0.2040 1.0857 0.4578 0.6353 0.1761 0.6368 0.0516
5 1.2264 0.5932 0.6634 0.1885 0.9957 0.3706 0.6354 0.1586 0.6368 0.0558

10 1.0323 0.4007 0.6635 0.1462 0.8156 0.2093 0.6357 0.1266 0.6368 0.0751
15 0.9518 0.3223 0.6636 0.1271 0.7556 0.1724 0.6359 0.1279 0.6368 0.0910
20 0.9054 0.2783 0.6637 0.1166 0.7256 0.1654 0.6361 0.1371 0.6368 0.1047
30 0.8519 0.2306 0.6638 0.1076 0.6956 0.1756 0.6363 0.1600 0.6368 0.1282
60 0.7850 0.1838 0.6641 0.1114 0.6657 0.2282 0.6366 0.2210 0.6369 0.1825

1440 0.6649 0.4935 0.6649 0.4935 0.6367 1.0745 0.6367 1.0745 0.6367 1.0745

Note The table shows the results of a Monte Carlo simulation estimating daily variance using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the GARCH model. Sample average of the
daily variance V̄Day,t ≈ 0.6356 and θ = 0.636. Daily variance has been multiplied by 10 000.
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Table D.2:
Results for estimates of the drift for the case with bid-ask bounce and infrequent trading - GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 0.1567 0.1721 0.0135 0.0638 0.6155 0.6596 0.0335 0.0938 0.0276 0.0372
2 0.1084 0.1177 0.0120 0.0482 0.3407 0.3604 0.0363 0.0726 0.0047 0.0229
3 0.0878 0.0940 0.0118 0.0389 0.2218 0.2332 0.0412 0.0665 0.0025 0.0234
4 0.0752 0.0795 0.0106 0.0341 0.1672 0.1747 0.0461 0.0668 0.0046 0.0250
5 0.0671 0.0704 0.0091 0.0283 0.1359 0.1420 0.0511 0.0694 0.0075 0.0270

10 0.0494 0.0518 0.0031 0.0258 0.0961 0.1018 0.0742 0.0892 0.0244 0.0413
15 0.0426 0.0453 0.0059 0.0273 0.1037 0.1115 0.0972 0.1112 0.0420 0.0576
20 0.0397 0.0430 0.0116 0.0311 0.1215 0.1304 0.1211 0.1353 0.0596 0.0746
30 0.0395 0.0445 0.0232 0.0401 0.1626 0.1735 0.1659 0.1803 0.0936 0.1080
60 0.0585 0.0665 0.0563 0.0707 0.2781 0.2908 0.2818 0.2962 0.1870 0.2012

Note The table shows the results of a Monte Carlo simulation estimating daily drift using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The results use 500 independent samples of 5 000 estimates of daily variance generated using
prices from a GARCH model. The bias when estimating the daily drift using the generated variance
VDay,t using all data is approx. 0.0176 with RMSE 0.0239. The bias and RMSE are computed with
respect to the theoretical drift on the interval [0.15, 1.25]. Daily variance has been multiplied by 10 000.

Table D.3:
Estimators of the daily diffusion for the case with bid-ask bounce and infrequent trading - GARCH

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 0.0582 0.0587 0.0544 0.0548 0.0794 0.1168 0.0442 0.0459 0.0104 0.0118
2 0.0581 0.0583 0.0499 0.0503 0.0543 0.0632 0.0317 0.0332 0.0057 0.0078
3 0.0548 0.0549 0.0463 0.0468 0.0397 0.0432 0.0204 0.0226 0.0032 0.0065
4 0.0514 0.0515 0.0435 0.0439 0.0270 0.0290 0.0106 0.0141 0.0038 0.0071
5 0.0483 0.0484 0.0410 0.0412 0.0177 0.0195 0.0052 0.0117 0.0080 0.0103

10 0.0359 0.0360 0.0300 0.0304 0.0440 0.0448 0.0455 0.0473 0.0330 0.0342
15 0.0259 0.0261 0.0209 0.0216 0.0851 0.0860 0.0859 0.0875 0.0590 0.0601
20 0.0171 0.0174 0.0126 0.0139 0.1238 0.1249 0.1236 0.1252 0.0848 0.0860
30 0.0044 0.0061 0.0052 0.0092 0.1966 0.1981 0.1956 0.1975 0.1358 0.1373
60 0.0478 0.0485 0.0503 0.0516 0.3895 0.3923 0.3884 0.3916 0.2805 0.2828

Note The table shows the results of a Monte Carlo simulation estimating daily diffusion using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the GARCH model. The bias when
estimating the daily diffusion using the generated variance VDay,t using all data is approx. 0.0235 with
RMSE 0.0238. The bias and RMSE are computed with respect to the theoretical drift on the interval
[0.15, 1.25]. Daily variance has been multiplied by 10 000.
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Figure D.1: Average estimates of the drift function m(·) (left panels) and diffusion function Λ2(·)
(right panels) using RRS estimates of daily variance with 1, 10, and 30-minute sampling. Daily
variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the drift estimate using
the variance series generated with the GARCH model. The ’theoretical’ graph is obtained by
evaluating the true drift function on the domain of the graph.
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Figure D.2: Average estimates of the drift function m(·) (left panels) and diffusion function Λ2(·)
(right panels) using RVTTS estimates of daily variance with 1, 3, and 4-minute sampling. Daily
variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the drift estimate using
the variance series generated with the GARCH model. The ’theoretical’ graph is obtained by
evaluating the true drift function on the domain of the graph.
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Results for the Heston model

Table D.4:
Estimators of daily variance with bid-ask bounce and infrequent trading - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 2.3888 3.4074 1.5426 1.9383 3.4967 1.8274 1.5763 1.7141 1.6976 0.3082
2 1.9628 2.6004 1.5660 1.4242 2.5996 1.0049 1.6013 1.3434 1.7009 0.3887
3 1.8220 2.2023 1.5823 1.1873 2.2996 0.8074 1.6169 1.2164 1.7009 0.4600
4 1.7573 1.9561 1.5939 1.0525 2.1496 0.7663 1.6280 1.1665 1.7010 0.5236
5 1.7219 1.7820 1.6025 0.9672 2.0603 0.7815 1.6360 1.1570 1.7011 0.5811

10 1.6639 1.3538 1.6266 0.8097 1.8805 0.9973 1.6584 1.2636 1.7015 0.8128
15 1.6522 1.1835 1.6386 0.7969 1.8212 1.2050 1.6697 1.4192 1.7015 0.9930
20 1.6488 1.1086 1.6458 0.8210 1.7893 1.3885 1.6753 1.5709 1.7012 1.1438
30 1.6492 1.0650 1.6549 0.9031 1.7599 1.6991 1.6836 1.8510 1.7006 1.3986
60 1.6551 1.1876 1.6672 1.1592 1.7275 2.3846 1.6950 2.5086 1.6998 1.9901

1440 1.6846 5.2733 1.6846 5.2733 1.6996 11.7935 1.6996 11.7935 1.6996 11.7935

Note The table shows the results of a Monte Carlo simulation estimating daily variance using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices
per day (1 price per second for a 24-hour trading day) using the Heston model. Sample average of the
daily variance V̄Day,t ≈ 1.6998 and θ = 1.6. Daily variance has been multiplied by 10 000.

Table D.5:
Results for estimates of the drift for the case with bid-ask bounce and infrequent trading - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 1.9356 10.0620 1.9169 8.9213 3.1869 11.8788 1.8475 11.3990 1.1491 20.2654
2 1.6660 12.2776 2.0510 10.7078 2.1804 16.3120 1.8203 15.3332 1.1712 21.6553
3 1.6231 13.9871 1.7083 12.1815 1.8470 19.0856 1.2389 18.7377 1.1243 22.4597
4 1.5522 14.9623 1.3329 13.8066 1.8890 20.4551 1.1561 21.6316 1.4168 23.0155
5 1.5410 15.6610 1.1820 14.8570 1.9461 22.9794 1.3240 22.9218 1.5820 23.3158

10 1.5279 18.8681 1.2342 18.5379 2.2708 28.8541 1.8857 30.1692 1.7772 26.0837
15 1.3444 20.5494 1.0714 20.5284 2.7659 33.4955 1.9087 33.9165 2.1887 29.4392
20 1.7685 20.9391 1.0113 21.5866 3.8549 36.7994 2.8416 39.5168 2.9009 33.0415
30 1.8483 23.5986 1.2181 24.5299 5.0749 42.7305 4.0780 45.7911 4.1573 36.8162
60 2.8821 29.1266 2.3360 31.5677 10.6422 59.9666 9.6060 64.1018 7.2576 49.0062

Note The table shows the results of a Monte Carlo simulation estimating daily drift using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as

well as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with
q = 1 000. The results use 500 independent samples of 5 000 estimates of daily variance generated using
prices from a Heston model. The bias when estimating the daily drift using the generated variance
VDay,t using all data is approx. 1.3812 with RMSE 17.8848. The bias and RMSE are computed with
respect to the theoretical drift on the interval [0.5, 7.68]. Daily variance has been multiplied by 10 000.
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Table D.6:
Estimators of the daily diffusion for the case with bid-ask bounce and infrequent trading - Heston

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t

(minutes) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 4.2512 4.3128 4.5356 3.9109 3.4810 3.6686 3.9176 3.4834 1.6317 3.0500
2 3.6818 3.8434 4.1039 3.7386 2.3444 2.9663 3.0597 3.1613 1.4576 3.4215
3 3.3306 3.6029 3.8321 3.6111 1.7123 2.8817 2.4232 3.0863 1.2538 3.4395
4 3.0784 3.4373 3.5859 3.4843 1.3042 2.8152 1.8481 2.8769 1.0751 3.3879
5 2.8731 3.3599 3.3687 3.3616 1.1139 4.0965 1.4406 3.0842 0.9434 3.3706

10 2.1293 3.1438 2.5708 3.0820 2.6428 5.6604 2.2449 5.7485 1.3985 4.0509
15 1.6312 2.9881 2.0377 2.8614 4.9439 7.8270 4.4957 7.1358 2.8411 5.4667
20 1.2814 3.0445 1.6348 2.9293 7.2638 10.2735 7.2241 10.6504 4.4959 7.3005
30 1.0476 3.4511 1.0990 3.2979 12.2979 15.6333 12.1026 15.4728 7.5963 10.5018
60 3.3674 5.6623 3.2554 5.6837 29.5437 35.8730 29.9242 37.1227 18.0776 21.9620

Note The table shows the results of a Monte Carlo simulation estimating daily diffusion using the realized
range (RR∆

t ), realized variance (RV ∆
t ), the two time scales realized variance (RV ∆

TTS,t) estimator, as well

as the scaled versions of the realized range and realized variance (RR∆
S,t and RV ∆

S,t resp.) with q = 1 000.
The experiment simulates 500 independent price paths of 6 000 days with 86 400 log prices per day (1
price per second for a 24-hour trading day) using the Heston model. The bias when estimating the
daily diffusion using the generated variance VDay,t using all data is approx. 2.2087 with RMSE 3.2190.
The bias and RMSE are computed with respect to the theoretical drift on the interval [0.5, 7.68]. Daily
variance has been multiplied by 10 000.
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Figure D.3: Average estimates of the drift function m(·) (left panels) and diffusion function Λ2(·)
(right panels) using RRS estimates of daily variance with 1-minute sampling and 20-minute sampling.
Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the drift estimate
using the variance series generated with the Heston model. The ’theoretical’ graph is obtained by
evaluating the true drift function on the domain of the graph.
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Figure D.4: Average estimates of the drift function m(·) (left panels) and diffusion function Λ2(·)
(right panels) using RVTTS estimates of daily variance with 1-minute sampling and 4-minute
sampling. Daily variance σ2 has been multiplied by 10 000. The ’generated’ graph refers to the
drift estimate using the variance series generated with the Heston model. The ’theoretical’ graph is
obtained by evaluating the true drift function on the domain of the graph.
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