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Abstract

This thesis provides an answer to the following research question: Does the use of a regression model that
includes macroeconomic factors, a time-varying level and stochastic volatility lead to more accurate density
forecasts for inflation compared to benchmark models? In order to answer this research question, an empirical
analysis has been performed. The benchmark models that are used are the Random Walk model and the
Autoregressive model. The macroeconomic factors are estimated with principal components and used in
a principal component regression. The models are estimated using a rolling window with a Metropolis-
within-Gibbs MCMC algorithm. The density forecasts are assessed by the probability integral transform,
the Berkowitz LR test, serial autocorrelation plots and the Kullback-Leibler information criterion (KLIC).
The three main findings can be summarized as follows. First, none of the Principal Component Regression,
time-varying constant and stochastic volatility models outperforms both benchmark models. Second, models
that capture the volatility dynamics appear to provide accurate density forecasts. And third, the density
forecasts show that the real density appears to have positive skewness in both the 12- and 24-month forecast
horizon in the period 1994-2008 which indicates that the inflation series suffers from upside risk.

Keywords: Inflation, Principal component regression, Time-varying constant, Stochastic volatility, Density

forecasts



Contents

1 Introduction

2 Data
2.1 Original dataset . . . . . . . . . L e
2.2 Timeline . . . . . . . Lo
2.3 Variables . . . . ... e
2.4 Incomplete series . . . . . . . . L e
2.5 Stationarity . . . . . . .. e
2.6 Final dataset . . . . . . . . . . L
3 Models
3.1 Benchmark models . . . . . . . . . L
3.1.1 Random Walk model . . . . . . . . . ... .
3.1.2  Autoregressive model . . . ...
3.2 Proposed models . . . . . ... e
3.2.1 Principal component regression . . . . . ... ..o e e e
3.2.2 Time varying level . . . . . . . L e
3.2.3 Stochastic volatility . . . . . . ..
3.3 Density forecasts . . . . . ..

4 Applying the models
4.1 Estimating the models . . . . . . . . . . e
4.1.1 Rolling window . . . . . . . . .. L

10
10
10
12
12

13
13
14
14
15
15
18
19
19



4.1.2 Metropolis-within-Gibbs MCMC sampler . . . . . . ... ... .. ... ........ 22

4.2 Specifying the models . . . . . . . oL 23
4.2.1 Priors . . . ... 23
4.22 Initial values . . . . . .. L 24
4.2.3 Number of lags and number of components . . . . . . ... ... .. ... ... 24
4.2.4  Forecast horizon and growth rates . . . . . . . ... ... .o . 25
4.2.5 Rolling window . . . . . . . .. 25
4.2.6 Time-varying level . . . . . . . .. L 25
4.2.7 Variance of the Random Walk sampler . . . . . .. . ... ... .. ... ........ 26
4.2.8 Number of draws . . . . . . . . .. L 26

4.3 Applying the models . . . . . . . . oL 26

Defining the tests 27

5.1 Comparing a density forecast with the true density . . . . . . ... ... ... ... ... 27
5.1.1 Probability Integral Transform . . . . . . . . . ... .. L o 28
5.1.2 Berkowitz LR . . . . . . . e 28
5.1.3  Assessment of the serial autocorrelation plots . . . . . . .. ... ... L. 30

5.2 Comparing two competing density forecasts . . . . . . . . . . ... ... ... ... 31
5.2.1 The Kullback-Leibler information criterion . . . . . ... . ... ... .. .. ..... 31

Analyzing the results 33

6.1 Analyzing the principal components . . . . . . . .. ... 34

6.2 Analyzing the estimated mean and variance . . . . . . ... ... o oL 34

6.3 Analyzing the 12-month forecast horizon . . . . . . . .. .. ... ... oL, 35
6.3.1 PIT and Berkowitz LR. . . . . . . . . . . . 35
6.3.2 Assessing the serial autocorrelation plots. . . . . . . . .. ... 36
6.3.3 KLIC . . . . . e 37

6.4 Analyzing the 24-month forecast horizon . . . . . . . . . . .. ... ... ... . ... 38
6.4.1 PIT and Berkowitz LR. . . . . . . . . . .. 38
6.4.2 Assessing the serial autocorrelation plots. . . . . . . . ... oL o 0oL 38
6.4.3 KLIC . . . . . 39



6.5 Analyzing the 12-month forecast horizon over the period
1994:MO1-2008:MO8 . . . . . . o e e
6.5.1 PIT and Berkowitz LR. . . . . . . .. . . .
6.5.2  Assessing the serial autocorrelation plots. . . . . . . . ... .o
6.5.3 KLIC . . . . e
6.6 Analyzing the 24-month forecast horizon over the period
1995:MO1-2007:MO8 . . . . . . e
6.6.1 PIT and Berkowitz LR . . . . . . . . . ...
6.6.2 Assessing of the serial autocorrelation plots . . . . . . . ... ... ...
6.6.3 KLIC . . . . . e
6.7 Relating findings to the literature . . . . . . . . . .. .. Lo

7 Conclusion & Discussion
References

A Original dataset

B Timeline

C Estimating the models
C.1 Rewriting the model for further usage . . . . . . . . ... . ... . ... .
C.2 The algorithm . . . . . . . . . e e

D Applying the models

E Analyzing the results

47

50

53

59

66
66
67

70

73



Chapter 1

Introduction

Inflation - the general increase in the prices of goods and services - is an important measure of economic
development. The effects of inflation on the economy can be positive and negative at the same time. Negative
effects of inflation include a decrease in the real value of money over time, while uncertainty about future
inflation may discourage investments and savings. Positive effects of inflation include a mitigation of economic
recessions (Hummel (2007)) and debt relief by a reduction of the real level of debt. In addition to the positive
and negative effects of inflation, inflation targeting should be mentioned. Inflation targeting is applied by
central banks. They set a target inflation rate, which also is made public, and subsequently attempt to steer
the actual inflation rate towards the target inflation rate through the use of interest rate changes and other

monetary policy tools. All together, forecasting inflation is an important part of economic analysis.

During the past decades, the focus on forecasting inflation has intensified, generating a multitude of studies
on applying new models and different forecasting types. Amongst others, models used in forecasting inflation
are: the Random Walk (RW) model (Fisher et al. (2002), Atkeson and Ohanian (2001)), the Autoregressive
(AR) model (Stock and Watson (2008), Gillitzer and Kearns (2007)), the Philips curve model (Stock and
Watson (2008), Fisher et al. (2002), Atkeson and Ohanian (2001)), the Vector Autoregressive (VAR) model
(Clark (2009), Orphanides and Wei (2010), Cogley et al. (2003)) and the Principal Component Regression
(PCR) model (Gavin and Kliesen (2008), Stock and Watson (2002), Gillitzer and Kearns (2007)). In general



roughly three possible forecast types are distinguished: point-forecasts, interval forecasts and density fore-
casts. Not all possible combinations of models and types of forecasting have been evaluated yet. As the level
of forecast accuracy varies, there is always room for improvement. This thesis provides the assessment of a

new combination of one of these models with a forecasting type, namely PCR with density forecasts.

The PCR model uses a large number of predictor variables in order to make forecasts of inflation. Gavin
and Kliesen (2008) show that using the PCR model in forecasting inflation! is useful at both the 12- and
24-month forecast horizon. Both Stock and Watson (2002) and Gillitzer and Kearns (2007) show that adding
lagged inflation in the PCR model dramatically improves the forecasts. The studies of Gavin and Kliesen
(2008), Stock and Watson (2002) and Gillitzer and Kearns (2007) on principal component regression focus

on point forecasts.

a0 100 150 200 240 300 340 400

Figure 1.1: Two years sample variance of inflation.

Ldefined here with the widely used measure of inflation: Consumer Price Index (CPI), see Gavin and Kliesen (2008)



The density type of forecasting provides information on the future value as well as information on the future
volatility. Density forecasts of inflation is used or analyzed by The Bank of England, the National Institute of
Economic and Social Research (NIESR), Clark (2009) and Cogley et al. (2003), amongst others. The density
forecasts of the Bank of England are based on the deliberations of the Monetary Policy Committee (MPC).

The density forecasts of NIESR are produced by NiGEM, a large-scale macroeconometric model.

Inflation has had different magnitudes of volatility over time. Figure 1.1 shows this; inflation in the the
mid-1980s and 1990s (mid part in Figure 1.1) is much less volatile than it was in the 1970s or the early 1980s
(left part in Figure 1.1). On the other hand, due to the recent credit crisis, volatility of inflation increased
sharply (right part in Figure 1.1). Inflation also has had different levels over time. Figure 1.2 shows these

different levels of inflation.

1 1 ! 1 1 ! 1 !
a0 100 150 200 240 300 350 400 450

Figure 1.2: 12-month CPI-all measure of Inflation over the period 1970-2008



Shifts in volatility have the potential to result in forecast densities that are either far to wide or too narrow.
While shifts in the level of inflation have the potential to result in forecast densities that are centered too high
or too low. Several studies (Groen et al. (2009), Kohn (2007), Stock and Watson (2006), Clark (2009), Cogley
and Sargent (2005) and Cogley et al. (2003)) have shown the importance of both time-varying coefficients

and stochastic volatility in the (density) forecasting of inflation.

The combination of PCR with density forecasts has not been evaluated yet. The objective of this thesis is
to combine a principal component regression, time-varying level and stochastic volatility model with density

forecasts in order to forecast inflation. This leads to the following research question:

Does the use of a regression model that includes macroeconomic factors, a time-varying level and stochastic

volatility lead to more accurate density forecasts for inflation compared to benchmark models?

When the proposed models indeed provide better forecasting accuracy than the benchmark models, they
could be applied in practical applications of forecasting inflation. In order to answer the research question,

this thesis performs an empirical analysis.

Methodology I

Define research Answer research
Acquire data Define models Apply models Define tests Analyze results
question question

Figure 1.3: Approach of the research

The remainder of this thesis is organized following the structure as depicted in Figure 1.3. Chapter 2 describes
the dataset that is used in this thesis. Chapter 3 defines the models that are used in this thesis. Chapter 4
describes the application of the models to the data. Chapter 5 defines the tests that are used to evaluate the
forecasts. Chapter 6 analyzes the empirical results. Chapter 7 provides a conclusion and discussion of the

research. The appendices provide technical details.



Chapter 2

Data

The dataset that is used in this thesis is an updated version of the dataset that was used by Stock and
Watson (2005). This chapter describes the dataset of Stock and Watson (2005) and the processing of this

dataset, following the process as depicted in Figure 2.1.

I Data processing I
Extend series ; . . Modified dataset
Stock & Watson with new data Add core CPland I:z:;lfy w;t::]n ;I,—,rzr:;:r:; saenels as applied
dataset (2005} {2005:M01 - PCE series rem“ "W"Se oA PRy throughout this
2009:M12) thesis

Figure 2.1: Process concerning the changes to the data

2.1 Original dataset

The original dataset has been used in the Stock and Watson (2005) article concerning the application of

principal component regression in order to (among others) forecast inflation. In the article, the dataset has



shown its value in this kind of analysis'. Hence, the Stock and Watson (2005) dataset is a fair choice for use

in this thesis.

The dataset of Stock and Watson (2005) consists of monthly observations on U.S. macroeconomic variables
over the period 1959:M01 through 2003:M12. The dataset is a balance of series that represent different
aspects of the entire economy. The dataset includes 128 (+2)? different predictor variables that fall into 14
different categories, a summary of which is presented in Table 2.1. A full list of variables per category is

listed in Appendix A.

Table 2.1: Categories of predictor variables

Category name # of series
Real output and income 15
Employment and hours 29
Real retail 1
Consumption 1
Housing starts and sales 10
Real inventories 3
Orders 7
Stock prices 4
Exchange rates )
Interest rates and spreads 17

Money and credit quantity aggregates 11

Prices indexes 21 (42)
Average hourly earnings 3
Consumer expectations 1

IStock and Watson (2005) screened automatically for outliers and observations exceeding 10 times the interquartile range
from the median and replace them by missing values. Regarding outliers and observations exceeding 10 times the interquartile

range from the median, this thesis leaves the dataset intact.
2The addition of these two variables in price indexes is explained in section 2.3.



2.2 Timeline

The Stock and Watson (2005) dataset covers the timeline up to 2003:M12. As new data is available, the
dataset can be extended. This should be done for three reasons. First, extending the dataset provides a more
up to date view of the appropriateness of the methodology. Second, the crisis that recently occurred provides
additional information in the behavior of the models. Third, more data over time provides more forecasts to
evaluate and therefore enhanced results. The dataset of Stock and Watson (2005) is updated up to December
20093. The sources of the data are listed in Appendix B.

2.3 Variables

This thesis focuses on the evaluation of forecasts of the CPI-All measure of inflation. However, there are
other measures of inflation: Core-CPI, PCE-All and Core-PCE. The latter two, core-CPI and core-PCE are
not available in the dataset of Stock and Watson (2005). To use the information of these measures as well,
Core CPI and Core PCE have been added to the dataset. The sources of core CPI and core PCE are listed
in Appendix B. Although not applied in this thesis, it is possible to evaluate the Core-CPI, PCE-All and

Core-PCE measures of inflation as well.

2.4 Incomplete series

Some series contain insufficient data in order to fill the complete timeline (e.g. in one series, the last four
months of data lacks, and in another series, the last ten months of data is absent). This incompleteness is
caused by two reasons. The first cause concerns data that is simply no longer measured*. The second cause

concerns data that is not available yet (e.g. because it is not measured yet).

3Special thanks to Peter Exterkate for providing the updated Stock and Watson (2005) dataset.
4An example of a series that is no longer measured is the Dollar-Guilder exchange rate, it is no longer measured due to the

introduction of the Euro.
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Procedures of dealing with such incomplete series include the imputation and deletion. Imputation can be
implemented through the expectation maximization algorithm. However, this thesis uses a deletion procedure.
This procedure is implemented through excluding an incomplete series for further analysis as soon as it enters
a window (the rolling window is explained in section 4.1). Analysis performed on previous windows is not
affected by this exclusion. For clarity, the procedure is illustrated in Figure 2.2. Table 2.2 lists the excluded

series with the first date of occurrence.

% x X Xy % o) X Xy b B S |
=1__=x, X X Xy =1 x, Ky RS X =1 x, x; x4
=2 x, Xy Ky Xyz t=2 x, Xy K39 R =2 x, x, x4
t=3 =x, Xy Ky Xy =3 X, X X, X 1=3 x, X; X,
=4 x, X Xy Xy t=4 x, Xoq Ky Kgq =4 x, x, X,
1=5 x, X5 s Xys =5 X, Xas s X5 I=3 X, Xy X
=6 X, Xy X X =6 x, Xy XM K =6 x, 1 X
=7 x, - Xy X4y t=7 x, - g Xy =7 x; x5 x4
=8 x4 - Xag Xag =8 x4 - Kg Kag =8 x; X5 Xy
=9 =x, - X Xy =9 x, ® Xy Xy =9 x, x, x,
1. There is no missing data within the 2. When the window is shifted on 3. For this specific window, the
current window datapoint further, one variable has variable with missing data is

missing data within the window removed
Figure 2.2: Procedure of handling incomplete series
Table 2.2: Exclusion of series

Series name Occurrence of first exclusion
S&P’s Common Stock Price Index: Industrials (1941 — 43 = 10) 2004:M01
Index Of Sensitive Materials Prices (1990 = 100)(Bci-99a) 2004:MO05
Money Stock: M3(M2+Lg Time Dep,Term Rp’s&Inst Only Mmmfs)(Bil$,Sa) 2006:M01

11



2.5 Stationarity

Stationarity is a requisite for applying principal component analysis. In order to make the series stationary,
the series are transformed by taking logarithms and/or first and second differences. The kind of transforma-
tion for each variable is given in Appendix A. The transformations are the same kind of transformations as

Stock and Watson (2005) use.

2.6 Final dataset

To summarize, data processing is applied to the original dataset; extending the timeline, adding new variables,
dealing with incomplete series and transformation for stationarity. These four modifications lead to he final

dataset. The next chapter defines the models that are used in this thesis.

12



Chapter 3

Models

This chapter describes the models that are used in this thesis. Section 3.1 describes the benchmark models.

Section 3.2 describes the proposed models. Section 3.3 provides a description of the density forecasts.

3.1 Benchmark models

Two well known models are used as benchmark models. These models are the Random Walk model and
the Autoregressive model. The Autoregressive model is also used by Gavin and Kliesen (2008), Stock and
Watson (2002) and Gillitzer and Kearns (2007) as a benchmark model. The Random Walk model is only

used by Gavin and Kliesen (2008) as a benchmark model. This section describes both benchmark models.

13



3.1.1 Random Walk model

The random walk is a mathematical formalization of a series that consists of taking consecutive random

steps. The system of equations that belongs to the random walk is:
T =T+ OtenEen (3.1)

In (07,1) =1In (07) 4 nes1 (3.2)

Where 7 is the h month growth rate of inflation, &; ~ N (0,1), 7 ~ N (O, 072,), and Cov (1, e;) = 0. Equation
(3.2) shows a random walk process for the volatilities, known as stochastic volatility, and is explained in

section 3.2.3.

3.1.2 Autoregressive model

The autoregressive model is typically applied to autocorrelated time series data. The system of equations

that belongs to the autoregressive model is:
T = a0 + B (L) T + Orpnersn (3.3)

In (UtQJrl) =1In (Uf) + Ner1 (3.4)

Where 7 is the h month growth rate of inflation, 3 (L) is a lag polynomial in nonnegative powers of L with
L < oo, 7y is the 1-month growth rate of inflation, &, ~ N (0,1), s ~ N (O, 0,2]) and Cov (n¢, &) = 0. Equation
(3.4) shows a random walk process for the volatilities, known as stochastic volatility, and is explained in

section 3.2.3.

14



3.2 Proposed models

The system of equations that belongs to the proposed models is:

7Tth+h = nyh + B(L)T + V(L) Fy + 0t rn€tn (3.5)
Xt = AFt + €t (36)
In(o7,,) = In(07) + nega (3.7)

Where 7 is the h month growth rate of inflation, 3 (L) and (L) are lag polynomials in nonnegative powers
of L with L < oo, 7y is the 1-month growth rate of inflation, e, ~ N (0,1), F; is a k X 1 vector of principal
components, X; is an IV x 1 vector of predictor variables, e; is the IV x 1 vector of idiosyncratic disturbance,

ng ~ N (O, U%) and Cov (n;, &) = 0. The following sections describe the separate parts of this system.

3.2.1 Principal component regression

This section describes equation (3.5) and (3.6) in the system of equations. By using equation (3.5) and
(3.6), one assumes that m and X; admit a dynamic factor representation (Stock and Watson (2002)). Prin-
cipal Component Analysis (PCA) is used for estimating equation (3.6). Subsequently, Principal Component
Regression (PCR) is used for estimating equation (3.5).

15



Forecasting a variable of interest using a large number of macroeconomic variables is not feasible in using
a linear regression model due to overfitting. PCA can be applied when some of the large number of ma-
croeconomic variables are correlated. PCA involves a mathematical procedure that transforms the possibly
correlated variables into uncorrelated variables. These uncorrelated variables are called principal compo-
nents. The main feature of PCA is that only a few principal components account for a large proportion of

the variance of the macroeconomic variables.

The first principal component accounts for as much of the variance in the data as possible. Each following
component accounts for as much of the remaining variance as possible. When applying this method, it is
possible to account for a high percentage of the variance in the data, using only a fraction of the initial
number of variables. With the resulting smaller set of variables, an ordinary least squares regression can be
performed in order to forecast the variable of interest. The combination of PCA and ordinary least squares

is called principal component regression (PCR).

The remainder of this section describes the mathematical specification of PCA, and explains how the obtained

principal components can be used in a regression.

Principal component analysis

The objective of PCA is to obtain a linear combination of the original variables with maximum variance.
Let X be the datamatrix including the k variables of (full) rank &, this requires no perfect multicollinearity
among the observed variables. This matrix X has to be standardized. Let u be the linear combination that
has to be found. The next step is to choose u in order to maximize the variance of z = Xu, which can be
written as
Var (z) = u'Ru.

Because X is standardized, —(nil)X’ X = R is the sample correlation matrix and the covariance matrix.
The solution of the problem is not unique, it has in fact infinitely many solutions. To solve this problem, a

restriction of unit length is imposed to u, that is uw'u = 1. The objective can now be stated as:

16



Choose u to maximize u’'Ru,

such that u'u = 1.

This optimization problem can be solved by the Lagrangian, it is given by

L=uRu—-\(uu-1).

Taking the derivative of L with respect to the elements of u results in

B—L = 2Ru — 2)\u.
ou

Setting this equation equal to zero and solving this obtains the following condition

Ru = \u.

This is a simple eigenvalue - eigenvector problem, where the vector u is an eigenvector and the scalar A
is called an eigenvalue. Solving this problem leads to k eigenvectors uj,ug,...,ux with &k corresponding

eigenvalues A, Ao, ..., A\g.

It is interesting to see that the variance that is accounted for by the principal components is
Var (z) = u'Ru=u'\u=\

This can be interpreted as the variance of a principal component. The selection of a number of principal

components can be made on the basis of these eigenvalues. The component corresponding to the largest

eigenvalue is often referred to as the first principal component, the component corresponding to the second

largest eigenvalue is referred to as the second principal component, and so on. Suppose the first r principal
iz Xi

components are selected for further usage. These first r principal components explain =% Ve
=1 "7

17



Let D be the diagonal matrix with the eigenvalues, sorted, on the diagonal and let U be the matrix of
corresponding, sorted, eigenvectors. The principal components consist of component scores; the expression

of the influence of an eigenvector on a specific sample. The component scores can be computed as follows:
F. = (D7U') X,

The principal components with component scores are required for PCR.

Principal component regression

The next step is to use these principal components in a regression. This leads to the following expression
which is also depicted in equation (3.5):
B(L)m + ~(L)Fy.

A principal component regression model with & principal components, p lags of the principal components
and ¢ lags of the dependent variable is written as PCR(k, p, ). Generally, next to PCR(k, p, ¢) two restricted
versions are analylized (Gavin and Kliesen (2008), Stock and Watson (2002)). The first restriction concerns
p = g = 0; no lags of the dependent variable and no lags of the principal components. The second restriction

concerns p = 0; no lags of the principal components.

3.2.2 Time varying level

Chapter 1 stated that different levels are present in the inflation series. In order to take this feature into ac-
count, this thesis follows Orphanides and Wei (2010) and uses exponential smoothing as a time varying level.
Exponential smoothing allocates exponentially decreasing weights, as observations get older. Hence, recent
observations are assigned relatively more weight in forecasting than older observations. The mathematical

representation of the exponential smoothing in this thesis is given by

1

O tih = (i vi> <z:; viwt_i> , (3.8)

i=0
where M is the number of observations used to determine the time varying level. The parameter v controls

how aggressively the weights of older observations decrease.

18



3.2.3 Stochastic volatility

Chapter 1 stated that shifts in volatility are present in the inflation series. Stochastic volatility allows for
continuous changes in the conditional variance of the shocks. It has shown it importance in the density
forecasts of inflation, Clark (2009): ”Compared to models with constant variances, models with stochastic
volatility have lower RMSEs, significantly more accurate interval forecasts (coverage rates), probability in-
tegral transforms (PITs) that are closer to uniformity, normalized forecast errors (computed from the PITs)
that are much closer to a standard normal distribution, and average log predictive density scores that are

much lower.”

Following Stock and Watson (2006), stochastic volatility is modeled in equation (3.7)! with a random walk
process. The next step in the research is specifying the type of forecasting, which is provided in the next

section.

3.3 Density forecasts

Following Cogley and Sargent (2005), Cogley et al. (2003) and NIESR, the density to be forecasted is assumed
to be normally distributed. A density forecast of this type requires a mean and a variance. To model the
mean of the density, equation (3.5) is used. Please refer to sections 3.2.2 and 3.2.1 for further description
of this equation. To model the volatility of the density, equations (3.2), (3.4) and (3.7) are used. Which is
written again for clarity:

ln(0t2+1) =1In(o7) + M1

This equation allows volatility to change over time. The next chapter describes the empirical application of

the models that are defined in this chapter.

Tand (3.2), (3.4) in the Benchmark models

19



Chapter 4

Applying the models

This chapter describes the empirical application of the models as defined in chapter 3. Section 4.1 describes
the estimation procedure. Section 4.2 describes the specification of the models. Section 4.3 describes the

actual application of the models.

4.1 Estimating the models

The models are estimated using a rolling window with a Metropolis-within-Gibbs MCMC algorithm as
described by Jacquier et al. (1994). This method was successfully used by, among others, Cogley and Sargent
(2005), Cogley et al. (2003), Brandt and Jones (2005) and Jacquier et al. (2004). This section describes the
estimation procedure: The rolling window, and the specification of the Metropolis-within-Gibbs MCMC

algorithm.

20



4.1.1 Rolling window

The forecasts in this thesis are out-of-sample. For the out-of-sample forecasting of inflation and in order to

use the same amount of information for each forecast, a rolling window forecasting methodology is employed.

This section explains the rolling window methodology.

o

1
1
i+1 '
1
1

window

Figure 4.1: Hllustration of the i-th and (i41)-th eight period rolling window with a forecast horizon of h = 3.

The first window contains the first 7" observations. Estimate the model for the first window and obtain the

h-period ahead forecast, shift the window one period forward and follow the procedure again. The rolling

window procedure is illustrated in Figure 4.1 for the i-th and (i41)-th windows with an eight period rolling

window and a forecast horizon of h = 3.

21



4.1.2 Metropolis-within-Gibbs MCMC sampler

The stochastic volatility model contains unobserved variables, o?. Bayesian estimation methods can easily
deal with unobserved variables. Jacquier et al. (1994) describe a Bayesian estimation method for models
with stochastic volatility. The specific estimation method that they describe and that is (slightly adapted)
used in this thesis is called the Metropolis-within-Gibbs MCMC sampler. This estimation method concerns

M-H samplers for the o7 variables and Gibbs samplers for the remaining variables.

Prior specification

Following Cogley and Sargent (2005), Cogley et al. (2003), natural conjugate priors are chosen for 5 and 03,,
making the priors proper. The priors are assumed to be independent across the different blocks, resulting in
the following prior specification: p (5, 0727, 08) =p(B)p (03]) P (08),

p(B) ~ N (b,B),

p(02) ~1G (60/2,10/2),

The algorithm

The algorithm for obtaining posterior results is illustrated by a flowchart in Figure 4.2. Details on the different

steps are given in Appendix C.

The posterior results are used to compute the posterior mean of 7TZL+h and Uf ' ,» which together result in
the density forecast N (7" ,,,67,,). In order to use the model that is described in this section in an actual
application, there should be some choices made. The choices that are made for this research are listed and

motivated in the next section.
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Figure 4.2: Flowchart of the Metropolis-within-Gibbs MCMC algorithm

4.2 Specifying the models

This section lists and motivates the choices that are made for the actual application of the model. These
choices concern consecutively the priors, the initial values, the number of lags and number of components,
the forecast horizon and growth rates, the rolling window, the time-varying level, the variance of the Random
Walk sampler and the number of draws. Refer to Appendix C.1 for an introduction to the notation that is

used in this section.

4.2.1 Priors

At this point, the values of the priors as defined in section 4.1.2 need to be filled in. The priors of this thesis
follow Cogley and Sargent (2005) and Cogley et al. (2003).

The prior for 8 is chosen p(8) ~ N ((X’X)_lX’w*,l()OO X I) , the variance of this prior is very large,
making it a diffuse prior.

2

The prior for o},

is chosen p (O’%) ~ IG (@, %) , the scale parameter §y of this prior is very small, making

it a diffuse prior.
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4.2.2 Initial values

The initial values of o7 in the first window are log (7} — Xtﬁo)2 ,te{l,...,T}, where By = (X’X)_1 X'*.
The initial value for o3 is the initial value of o?. That is, 02 = log (7} — X *50)2. In the second and
subsequent windows, the posterior means of the previous window are used as initial values. That is, the
posterior mean of o7 of the previous window is used as initial value for o2 in the current window, the
posterior mean of o3 of the previous window is used as initial value for o7 in the current window, etc. Since
there is no posterior mean for 6%, | in the previous window, the value of ¢ in the previous window is used

as initial value for 02 (as well as initial value for o2._,).

4.2.3 Number of lags and number of components

AR

Figure D.1 in Appendix D shows that for both the 12- and the 24-month growth rate of inflation, the partial
autocorrelations are significantly different from zero for up to one and two lags. The partial autocorrelations
are not significantly different from zero for up to three lags or more. With this in mind, an AR(2) model is

estimated as benchmark model.

PCR

Stock and Watson (2002) show the value of using the complete dataset in principal component regression.
Following Stock and Watson (2002), the complete dataset of the macroeconomic variables is used to compute
the principal components. The number of components is chosen by both Gillitzer and Kearns (2007) and
Stock and Watson (2002) through BIC. To save computation time, the number of components in this thesis is
fixed. The numbers of components analyzed are one, five and ten. The variance explained with one principal
components is on average 19%. The average variance explained for the model with five principal components
is 46%. The average variance explained for the model with 10 principal components is 61%. Consequently,

by adding more principal components, approximately 25% more variance of the macroeconomic variables is
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taken into account.

Stock and Watson (2002) analyze zero, one and two lags of the principal components. Following them, this

thesis analyzes these numbers of lags of the principal components in the PCR models.

With the result of Figure D.1 in Appendix D in mind, as discussed in the previous section, zero and two lags

of the dependent variable are included as predictor variable.

4.2.4 Forecast horizon and growth rates

As Stock and Watson (2008) state in their paper, the forecasting of inflation tends to focus on one- and
two-year forecast horizons. Following them, this thesis obtains forecasts with a 12- and 24-month forecast
horizon. The h—month forecasts of the inflation variables concern growth rates over A months. The h-month
annualized growth rate is computed by 7 = %Ah In CPI;. These growth rates are computed in order to

forecast over the whole (T, T + h) period instead of solely the endmost (T'+ h — 1, T + h) period.

4.2.5 Rolling window

Following Stock and Watson (2008), each window contains ten years of data, i.e. 120 observations. The
forecasts are made for the period of 1970:M06 through 2008:MO08 respectively 1971:M06 through 2007:M08
resulting in a sequence of 459 respectively 435 density forecasts for a 12—, respectively 24—month forecast

horizon.

4.2.6 Time-varying level

The time varying-constant is computed, in line with the length of the window, over 120 observations. That
is, M = 120 in Equation (3.8). For the first 120 observations, the available observations up to that point are

used to compute the time-varying level. For example; if the first 15 observations are available, M = 15.
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Orphanides and Wei (2010) try several values for v and find that different values for v obtain similar results.

With this in mind, this thesis uses the same value for v as Orphanides and Wei (2010), namely v = 0.98.

4.2.7 Variance of the Random Walk sampler

The value is chosen such that the algorithm mixes well while ensuring convergence. Several values for w have

been tried: w = 0.75 has shown that it works best.

4.2.8 Number of draws

For the first window, 20.000 simulations of the sampler are drawn. The first 15.000 simulations are discarded
to allow for convergence in the chain, resulting in a sample of 5.000 simulations from the posterior density. For
the second and subsequent windows, 15.000 simulations of the sampler are draw. The first 10.000 simulations
are discarded to allow for convergence in the chain, again resulting in a sample of 5.000 simulations from the
posterior density. The 15.000 simulations are sufficient due to the initial values of the second and subsequent
windows!. Panel (a)-(d) of Figure D.2 in Appendix D show that the chains converge. The next section

describes the application of the models.

4.3 Applying the models

All the models that are described in chapter 3 have been estimated with matlab. The actual script can
be obtained by the writer of this thesis. The estimation in matlab has been carried out by using thirty
computers. These computers have been running simultaneously for five days of 9 hours. The result of this
estimation has led to an outcome of 28 series containing density forecasts of inflation. The next chapter

defines the tests that can be used to analyze the density forecasts.

1See section 4.2.2
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Chapter 5

Defining the tests

For the assessment of a density forecast, two types of comparisons are considered. The first type is the
comparison of the forecasted density, p; (7;), with the true density f; (m;) of the data generating process.

The second type is the comparison of two competing density forecasts py; () and pa; (7).

This chapter is structured as follows. Section 5.1 discusses the probability integral transform, the Berkowitz
LR test and the assessment of the serial autocorrelation plots. These tests deal with the first type of com-
parison. Section 5.2 discusses the Kullback-Leibler information criterion, which deals with the second type

of comparison.

5.1 Comparing a density forecast with the true density

Density forecasts can be assessed by comparing the forecasted density with the true density. These two
densities are related through the probability integral transform, which is defined as z;. This section shows
that, if the density forecast is correct, the sequence of probability integral transforms is i.i.d. U (0,1) for a
one-period forecast horizon. Knowing this, one can compare the forecasted density and the true density by

assessing the sequence of probability integral transforms {z;}.
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5.1.1 Probability Integral Transform

The probability integral transform (Diebold et al. (1998), Clements (2004) and Berkowitz (2001)) is the

cumulative density function corresponding to the density p; (;) evaluated at 7,

= /m Do (u) du = Py ().

— 00

op ! . . .
Assume %T(Z‘) continuous and nonzero. The density ¢; of 2! is given by

apt_l (2t)
8zt

qt (2t) = ’ Tt (Pt_l (z)) =

When the forecasted density is equal to the true density, q; (2¢) ~ U (0, 1) holds. Thus, the forecast densities
can be tested by assessing whether {z;} ~ ii.d. U (0,1). This involves a joint hypothesis of independence
and uniformity. Several tests are available to evaluate this joint hypothesis. The uniformity can be checked

informally by assessing the PIT histograms. Uniformity can be checked formally with the Berkowitz LR test.

5.1.2 Berkowitz LR

Berkowitz (2001) proposed to take the inverse normal cumulative distribution function transformation of the
probability integral transformations z;. This results in a series @1 (z;) = z}. This obtains the following null
hypothesis:

Hy: {z} ~iid.N(0,1).

Testing for normality is convenient; tests for normality are widely seen as more powerful than tests for
uniformity (Mitchell and Hall (2005)). Berkowitz (2001) proposes a three-degree of freedom test of zero-
mean, unit variance and independence. The assumption is normality, therefore, a standard likelihood ratio

test statistic can be constructed:

LR=-2[L(0,1,0) - L ((,6%7)],

1Using the change of variable formula, p; (m) = 81377(77) and m = Pfl (2t) .
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where L (fi,62,p) is the value of the log-likelihood of a Gaussian AR(1) model:

L(p,6%p) = —% log(2m) — %log [0?/ (1= p?)]
(21—p/(1=p)? T-1
- 1202/ a—2 2 log (27)
T 2
T3 ()

Under the null hypothesis, LR ~ x? (3). The null hypothesis is rejected if the test statistic calculated from
the data is greater than the critical value of the x? (3) distribution for some desired probability.

Berkowitz (2001) proposed this test only for a 1-period-ahead forecast horizon; when the forecast horizon is
larger, there is serial dependence expected in the sequence of probability integral transforms {z;}, and thus
in {z}}. The test can be be generalized to a two-degree of freedom test of zero-mean and unit variance. This
generalized berkowitz LR test allows for serial dependence in the sequence of probability integral transforms.

This obtains the following null hypothesis:
Hy:{zf} ~N(0,1).
The assumption is normality and therefore, de likelihood ratio test statistic can be constructed as
LR=-2[L(0,1) - L (i,6%)],

where L (ﬂ, 62) is the value of the log-likelihood:
o T T (2 — p)?
2\ _ 2 t
where 62 = (y + 22?:_11 ¢j for ¢; = E[z{z;_;]; the Newey-West estimator for 62, following Mitchell and
Hall (2005) and Giacomini and White (2006). Under the null hypothesis, LR ~ x? (2). The null hypothesis is
rejected if the test statistic calculated from the data is greater than the critical value of the x? (2) distribution

for some desired probability. Independence can be checked informally by assessing the serial autocorrelation

plots.
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5.1.3 Assessment of the serial autocorrelation plots

Independence can be checked through assessing the serial autocorrelation plots of the series {z;—Z}, {2 —%}2,
{2z —z}® and {z; — z}* (Clements (2004) and Diebold et al. (1998)). The serial autocorrelations of accurate
models fit in between the confidence intervals. The serial autocorrelations of inaccurate models do not fit
in between the confidence intervals. Therefore, the serial autocorrelation plots provide information about
the deficiencies of density forecasts by contributing in the detection of dependence patterns. There is by
construction autocorrelation in the first h lags. There are two ways to take this feature into account. First,
divide the forecasted series in h separate series and assess the series. Second, do not take the first h lags
into account when assessing the autocorrelation plots. As a result of the relatively large values for h that
are used in this thesis, the second way of dealing with the feature is used in this thesis. The following list

describes how the assessment of the different serial autocorrelation plots have been used in this research.

e The mean is as measure of accuracy of a probability distribution. Significant serial autocorrelations in

{z: — z} indicates that the model does not accurately forecasts the mean of inflation.

e The variance is a measure of volatility of a probability distribution. Significant serial autocorrelations

in {z; — z}? indicates that the model does not adequately forecasts the volatility of inflation.

e The skewness is a measure of asymmetry of a probability distribution. Because the forecasted distribu-
tion is symmetric, significant autocorrelations in {z; —z}? indicates that the real density is possibly not
symmetric. Serial correlation in {z; — Z}® can be caused by either up- or downside-risk or alternately
both up- and downside-risk. This indicates that other densities that capture the difference between

upside and downside risk should be considered.

e The kurtosis is a measure of peakedness of a probability distribution. High kurtosis signifies more of the
variance is the result of infrequent extreme deviations. Significant serial autocorrelations in {2z, — z}*
indicates that the density does not capture infrequent extreme deviations. This indicates that other

densities that capture the fatter tails should be considered.

Since the conditional mean and conditional skewness are related, significant autocorrelations in the condi-

tional mean cause significant autocorrelations in the conditional skewness. Therefore, two cases should be
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noted. The first case concerns the event that the pattern in the serial autocorrelation plots of {z; — z}3
coincides with the pattern in the serial autocorrelation plots of {z; —Z}. The second case concerns the event
that the pattern in the serial autocorrelation plots of {z; — z}® does not coincide with the pattern in the
serial autocorrelation plots of {z; — Z}. In the first case, the conditional skewness dynamics are captured by
the density forecasts. In the second case, the conditional skewness dynamics are not captured by the density

forecasts. The same notes are applicable for the patterns in the serial autocorrelation plots of {z; — z}? and

{Zt — 2}4.

The PITs, Berkowitz LR test and serial autocorrelation plots allow comparing the forecasted density to the
true density. However, one might also be interested in comparing two competing densities. The Kullback-
Leibler information criterion has been used in order to compare competing densities. The Kullback-Leibler

information criterion is explained in the next section.

5.2 Comparing two competing density forecasts

The Kullback-Leibler information criterion (KLIC) is a well respected measure of ’distance’ between two
densities. Mitchell and Hall (2005) proposed to use the KLIC to test for equal predictive performance for
two density forecasts. This section describes the method as Mitchell and Hall (2005) proposed, adapted to
this thesis.

5.2.1 The Kullback-Leibler information criterion

Suppose there are two competing density forecasts p1¢ (7) and pa; (7). The test constructed is based on the

sequence {d;}, where d; is defined as:

dy

n fy () — Inpre (m)] — [In fy (7)) — Inpgy (7)),

= Inpy (Wt) —Inpy, (7Tt) .
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The null hypothesis of equal accuracy is defined as:
Hy: E[d]=0.

This hypothesis can be evaluated using the sample mean d = &>, | T [Inpa; (m;) — Inpyy (m;)] . The test can

be constructed based on the fact that d has, by the central limit theorem, the following limiting distribution:
VT (d— E[d]) £ N (0,9),

where  is the covariance matrix given in Mitchell and Hall (2005), allowing for parameter uncertainty.
Because parameter uncertainty is asymptotically irrelevant, this reduces to a DM-type test in the absence of
parameter uncertainty (Mitchell and Hall (2005)). Under the null hypothesis, the test statistic is standard
normally distributed. That is:

4/v/Sa/T <N (0,1),

where Sq = (o + 2 Z?;ll ¢; for ¢ = E [did;—;]; the Newey-West estimator for S; (Mitchell and Hall (2005),
Giacomini and White (2006)). The null hypothesis is rejected if the test statistic calculated from the data
is greater than the critical value of the N (0, 1) distribution for some desired probability. The next chapter

describes the results of the testing.
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Chapter 6

Analyzing the results

As stated in chapter 1, inflation has had different sizes of volatility over time. It is therefore interesting
to examine the density forecasts of inflation within different periods of time. Following Gavin and Kliesen
(2008), this thesis uses 1983:M01 as the date of the structural break in many macroeconomic variables
including inflation. The length of the rolling window is ten years, and in order to take solely information after
the structural break into account, the forecasting has been started at 1994:MO01 respectively 1995:M01 for
the 12- respectively 24-month forecast horizon. Consequently, the periods 1994:M01-2007:MO08 respectively
1995:M01-2007:MO8 for the 12- respectively 24-month forecast horizon have been assessed in addition to the

assessment of density forecasts over the whole forecast period.

This chapter is structured as follows. The principal components are analyzed in section 6.1. The estimated
mean and variance are analyzed in section 6.2. Results for the 12-month forecast horizon over the period
1970:M06 through 2008:MO08 are discussed in section 6.3. Results for the 24-month forecast horizon over the
period 1971:M06 through 2007:MO08 are discussed in section 6.4. Results for the 12-month forecast horizon
over the period 1994:M01-2007:MO08 are discussed in section 6.5. Results for the 24-month forecast horizon
over the period 1995:M01-2007:MO08 are discussed in section 6.6. The chapter concludes with relating the

results to findings in the literature in section 6.7.
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6.1 Analyzing the principal components

Figure E.1 respectively E.2 show the cross correlation plots of the principal components with the 12- respec-

tively 24-month growth rate of inflation over the whole sample period.

Two results are important based on the cross correlation plots. The first result is that the cross correlations are
generally quite small. The second result concerns the unexpected behavior of the cross correlation plots. The
choices in section 4.2.3 were made based on two assumptions. The first assumption concerns a higher number
of the component results in decreasing cross-correlation with inflation. The second assumption concerns an
increasing number of lags of a component results in decreasing cross-correlation with inflation. However,
the cross correlation plots show that the cross correlations of the components and lags of components
with inflation behave unlike expected and on top of that, the cross correlations are generally quite small.
Consequently, in some models variables are included that do not have significant correlations with inflation,

which is harmful. It possibly causes even worse forecasts of inflation than not including these variables.

As a result, neither the components nor the lags of components should be chosen by increasing number. It
should for example be possible to select the first third and tenth component together with only the third
lag of the first component. This is a totally different approach than Gavin and Kliesen (2008), Stock and
Watson (2002), Gillitzer and Kearns (2007) carry out. However, it is something that certainly should be

investigated.

6.2 Analyzing the estimated mean and variance

This section analyzes the out-of-sample estimated mean and variance for both the 12- and 24-month forecast

horizon. The estimated mean and variance for the models are depicted in Figure E.3 - E.6 in Appendix E.

The Random Walk model captures shifts in inflation for both the 12- and 24-month forecast horizon. The
AR(2) model does not manages to capture the shifts in inflation. There are no shifts in inflation in the period

1994-2008%, it is likely that the AR(2) model outperforms the RW model in this period.

11994 is approximately point 270 in the graphs
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The models with the same amount of principal components show the same patterns in the graphs. While the
models with different amounts of principal components show different patterns in the graphs. Therefore, the
dynamics of the figures are likely determined by the number of principal components and not by the added
lags of the dependent variable or number of lags of the principal components. Since in the period 1994-2008
the models show less variation in the mean compared to the real mean than in the period 1971-1994, the

models all seem to provide better forecasts of the mean of inflation in the 1994-2008 period.

A striking feature of the estimated variance plots for the 12-month forecast horizon is the fact that the
models all seem to have the same level of variance after the mid 1980s2. On the other hand, the models
with 5 and 10 principal components show in general a lower level of variance in the period up to the mid
1980s while the level of the other models is in general a lot higher in that period. Note that adding more
components (and thus more regressors) results per definition in lower variances. Another striking feature is
the overestimation of the volatility-peak in the late 1980s> in the 24-month forecast horizon by almost every

model.

6.3 Analyzing the 12-month forecast horizon

This section analyzes the 12-months-ahead density forecasts over the period 1970:M06 through 2008:MO08S.
The probability integral transform (PIT) provides a general indicator of the accuracy of a density forecast,

it is therefore a good point to start in the assessment of the models.

6.3.1 PIT and Berkowitz LR

Uniformity of the PITs is checked by assessing the PIT histograms. Figure E.7 in Appendix E shows the

histograms of the analyzed models for the 12-month forecast horizon.

The histograms show clustering of mass on both sides of the distributions of the PITs. This clustering of mass

2The mid 1980s are approximately point 150 in the graphs
3The late 1980s are approximately point 200 in the graphs
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either reflects estimated forecast distributions that are too narrow or the estimated mean is occasionally too
high and occasionally too low. Both reflections indicate that there are relatively too much forecasts with a
probability near zero or one. The stochastic volatility allows for much freedom in the models. A possible
explanation is that this freedom leads to under-estimating the volatility. However, conclusions on this subject
can only be made if the models are compared to the same models but without stochastic volatility. This is

however beyond the scope of this thesis.

Based on the histograms, it is clear that neither of the models provide an accurate density forecast. This is
also indicated by the Berkowitz LR tests that are depicted in Table E.1 in Appendix E; the null hypothesis
of uniformly distributed {z:} can be rejected at a 5% significance interval for every model. The independence
of the PITs is assessed by examining the autocorrelation plots of {z; — z}, {z; — 2}2, {z; — Z}® and {z —z}*

in the next section.

6.3.2 Assessing the serial autocorrelation plots

The autocorrelation plots of the AR(2) model show high positive autocorrelations in the conditional mean
(and skewness) dynamics. This indicates that there is too much persistence in the estimate of the mean of
the density forecasts. The autocorrelation plots show negative autocorrelations in the conditional variance
(and kurtosis) dynamics. This indicates that the AR(2) model responds in the opposite direction to shifts in
the volatility.

The autocorrelation plots of the models with five and ten principal components show high correlations in
both the conditional mean (and skewness) and conditional variance (and kurtosis) dynamics. This indicates
that there is too much persistence in the estimates of the mean and variance of the density forecasts for

these models.

The PCR models with one principal component show somewhat smaller autocorrelations than the models
with five and ten components, there is however still too much persistence in the estimates of the mean and

variance of the density forecasts for these models.

The Random Walk is the only model that captures the conditional variance (and kurtosis) dynamics. The
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Random Walk also performs relatively good on the conditional mean (and skewness) dynamics compared to

the other models.

6.3.3 KLIC

The KLIC test statistics are listed in Table E.2 in Appendix E. The associated probabilities are listed in
Table E.4. The ranking based on the KLIC is depicted in Table 6.1.

Surprisingly, the models with one principal component perform relatively poorly based on the KLIC while the
serial autocorrelation plots show that the one principal component models capture the conditional mean (and
skewness) dynamics better than the other PCR models. However, the conditional variance (and kurtosis)
dynamics are not captured at all by the one principal component models. This provides a possible explanation

for the one principal component models performing relatively poorly based on the KLIC.

Table E.4 shows that adding lags of the principal components or lags of the dependent variable to a
PCR(z,0,0), € {1,5,10} model does not result in significantly different density forecasts. Table E.4 also
shows that adding more components to a PCR(1,z,y), € {0,1,2},y € {0,2} model does not result in sig-
nificantly different density forecasts. The only significant difference at the 10% level in the density forecasts
of the PCR models is between PCR(1,0,0) and PCR(5,0,2). The Random Walk model density forecasts are
however significantly different from some of the PCR models at the 10% level.

Table 6.1: KLIC ranking of the 12-months-ahead density forecasts.

1. RW 8. PCR(10,1,2)
2. PCR(10,0,0) 9. PCR(5272)
3. PCR(5,02) 10. PCR(10,2,2)
4. PCR(10,02) 11. PCR(1,2.2)
5. PCR(5,12) 12. PCR(1,0,2)
6. PCR(1,1,2) 13. AR(2)

7. PCR(5,0,0) 14. PCR(1,0,0)
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6.4 Analyzing the 24-month forecast horizon

This section analyzes the 24-months-ahead density forecasts over the period 1971:M06 through 2007:MO0S.

6.4.1 PIT and Berkowitz LR

Uniformity of the PITs is checked by assessing the PIT histograms. Figure E.22 in Appendix E shows the

histograms of all the analyzed models for the 24-month forecast horizon.

As in the 12-month forecast horizon, there is clustering of mass on the sides of the distributions. The same

explanation as in the 12-month forecast horizon is applicable and will therefore not be repeated here.

Based on the histograms, it is clear that neither of the models provide an accurate density forecast. This
is again also indicated by the Berkowitz LR tests that are depicted in Table E.5 in Appendix E; the null
hypothesis of uniformly distributed {z;} has been rejected at a 5% significance interval for every model. The
independence of the PITs is assessed by examining the autocorrelation plots of {z; — z}, {z; — 2}2, {z; — z}®

and {z; — Z}* in the next section.

6.4.2 Assessing the serial autocorrelation plots

The Random Walk model shows negative autocorrelations in the conditional mean (and skewness) dynamics
of the density forecasts. This negative autocorrelation is probably caused by the delay in the density forecasts

that occurs by construction.

The AR(2) models shows positive autocorrelations in the conditional mean (and skewness) dynamics, again
indicating that there is too much persistence in the forecasts of the mean. On the other hand, the auto-
correlation plots of the AR(2) model shows that the AR(2) model captures the conditional variance (and

kurtosis) dynamics quite well.
The autocorrelation plots of the models with five and ten principal components show high correlations in the
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conditional mean (and skewness) dynamics. The models with five components capture the conditional vari-
ance (and kurtosis) dynamics while the models with ten principal components do not capture the conditional

variance (and kurtosis) dynamics.

The models with one principal component show in the autocorrelation plots that they capture almost all the

dynamics. There is however slightly positive autocorrelations in the early lags.

6.4.3 KLIC

The KLIC test statistics are listed in Table E.6 in Appendix E. The associated probabilities are listed in
Table E.8. The ranking based on the KLIC is depicted in Table 6.2.

The models with one principal component and lags of inflation perform relatively good. However, the Random

Walk model is still not outperformed.

Table E.8 shows that adding lags of the principal components or lags of the dependent variable to a
PCR(%,0,0), z € {5,10} model does not result in significantly different density forecast. However, adding
lags of the principal component and lags of the dependent variable for the PCR(1,0,0) model, does result in

significantly different density forecasts.

The only significant difference at the 10% level in the density forecasts of the PCR models is between
PCR(1,z,y) and other PCR models. The PCR(5,x,y) and PCR(10,z,y) models do not provide significant
different density forecast when compared to each other. In addition, the Random Walk model density forecasts

are again significantly different from some of the PCR models at the 10% level.

Other than in the 12-month forecast horizon, the serial autocorrelation plots show that the one principal
component models capture both the conditional mean (and skewness) and the conditional variance (and
kurtosis) dynamics. It appears that capturing the variance (and kurtosis) dynamics leads to a high ranking

in the KLIC.

Surprisingly, the AR(2) model outperforms models that include lagged inflation. However, the AR(2) model
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does not contain a time-varying level. The time-varying level perhaps does not contribute to more accurate

density forecasts.

Table 6.2: KLIC ranking of the 24-months-ahead density forecasts.

1. RW 8. AR(2)

2. PCR(1,22) 9. PCR(5,0,2)
3. PCR(1,0,2) 10. PCR(1,0,0)
4. PCR(1,1,2) 11. PCR(10,1,2)
5. PCR(10,2,2) 12. PCR(10,0,0)
6. PCR(5,00) 13. PCR(52.2)
7. PCR(10,02) 14. PCR(5,1,2)

6.5 Analyzing the 12-month forecast horizon over the period

1994:M01-2008:M08

This section analyzes the 12-months-ahead density forecasts over the period 1994:M01 through 2008:MOS.

6.5.1 PIT and Berkowitz LR

Uniformity of the PITs is checked by assessing the PIT histograms. Figure E.37 in Appendix E shows the
histograms of all the analyzed models for the 12-month forecast horizon over the period 1994:M01-2007:MO08.

Other than the PITS of the whole sample period, not all models show clustering of mass on both sides of
the distributions of the PITs. Some models show only clustering of mass on the left side of the PITs. This
indicates that the density forecast still reflect estimated forecast distributions that are too narrow or the
estimated mean is sometimes too high. The latter reflection is strengthened by the fact that inflation shows
a downward trend in the late 1980s and early 1990s. Concluding, there is definite improvement compared to

the PITs of the whole forecast period.
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Based on the histograms, it is clear that still neither of the models provide an accurate density forecast.
This is also indicated by the Berkowitz LR tests that are depicted in Table E.9 in Appendix E; the null
hypothesis of uniformly distributed {z;} has been rejected at a 5% significance interval for every model. The
independence of the PITs is assessed by examining the autocorrelation plots of {z; — 2z}, {z; — 2}2, {z; — z}®

and {z; — 2z} in the next section.

6.5.2 Assessing the serial autocorrelation plots

The Random Walk models shows small negative autocorrelations in the conditional mean (and skewness)
dynamics. These autocorrelations are again probably caused by the delay in the density forecasts that
occurs by construction. The autocorrelations for the conditional variance (and kurtosis) dynamics show

small significant positive and negative autocorrelations.

The AR(2) model captures the conditional mean (and skewness) dynamics. It shows slightly negative and
positive autocorrelations in the conditional variance while there is no significant autocorrelation in the

kurtosis dynamics.

The PCR model with one principal component capture and no lags captures all the conditional dynamics at
once. The models with lags of the factors and/or lags of the dependent variable show slightly negative and

positive autocorrelations in the conditional variance (and kurtosis).

The conditional mean dynamics are captured by all the models with five and ten principal components. The
conditional skewness dynamics however are sometimes positively autocorrelated. This indicates that the real
density of inflation might suffer from upside risk. Higher values of inflation are in general less desirable than
lower values of inflation. Therefore, if there is indeed skewness in the real density of inflation, upside risk is

expected. This reinforces that the direction of the conditional skewness that is found makes sense.
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6.5.3 KLIC

The KLIC test statistics are listed in Table E.10 in Appendix E. The associated probabilities are listed in
Table E.12. The ranking based on the KLIC is depicted in Table 6.3.

The PCR models with one principal component perform relatively well. This appears also in the 24-month
forecast horizon of the whole forecast period, but not in the 12-month forecast horizon of the whole forecast

period.

The PCR models with five and ten components perform relatively poorly. This appears also in the 24-month
forecast horizon of the whole forecast period, but not in the 12-month forecast horizon of the whole forecast

period.

It is striking that neither of the density forecasts are significantly different based on the KLIC.

Table 6.3: KLIC ranking of the 12-months-ahead density forecasts over the period 1994:MO01 through
2008:M08.

1. AR(2) 8. PCR(5,0,2)
2. RW 9. PCR(1,0,0)
3. PCR(1.22) 10. PCR(10,0,2)
4. PCR(1,02) 11. PCR(10,1,2)
5. PCR(1,12) 12. PCR(5,12)
6. PCR(10,0,0) 13. PCR(10,2,2)
7. PCR(5,0,0) 14. PCR(522)

6.6 Analyzing the 24-month forecast horizon over the period

1995:M01-2007:MO08

This section analyzes the 24-months-ahead density forecasts over the period 1995:M01 through 2007:MO08.
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6.6.1 PIT and Berkowitz LR

Uniformity of the PITs is checked by assessing the PIT histograms. Figure E.52 in Appendix E shows the
histograms of the analyzed models for the 12-month forecast horizon over the period 1995:M01-2007:MOS.

As also indicated in the 12-month forecast horizon of the period 1994:MO01 through 2008:MO08, not all models
show clustering of mass on both sides of the distributions of the PITs. Some models show only clustering
of mass on the left side of the PITs. This indicates that the density forecast still reflect estimated forecast
distributions that are too narrow. There is however definite improvement compared to the PITs of the whole

forecast period.

Based on the histograms, it is clear that neither of the models provide an accurate density forecast. This is
also indicated by the Berkowitz LR tests that are depicted in Table E.13 in Appendix E; the null hypothesis of
uniformly distributed {z;} has been rejected at a 5% significance interval for every model. The independence
of the PITs is assessed by examining the autocorrelation plots of {z; — 2}, {z; — 2}2, {2; — z}® and {2 — z}*

in the next section.

6.6.2 Assessing of the serial autocorrelation plots

The Random Walk models shows negative autocorrelations in the conditional mean (and skewness) dynamics.
These autocorrelations are again probably caused by the delay in the density forecasts that occurs by
construction. The autocorrelations for the conditional kurtosis dynamics show small significant positive and

negative autocorrelations while the autocorrelations for the conditional variance show no autocorrelations.

The AR(2) model captures the conditional variance (and kurtosis) dynamics. It shows slightly negative au-

tocorrelations in the conditional mean while there is no significant autocorrelation in the skewness dynamics.

All the PCR models capture conditional variance (and kurtosis) dynamics. The PCR models with one prin-
cipal component show significant negative autocorrelation in the conditional mean (and skewness) dynamics,
while the PCR models with five components show significant autocorrelations in the conditional mean dy-

namics but not in the conditional skewness dynamics. Furthermore, the PCR models with ten principal
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components capture all the conditional dynamics at once. However, all the models show different patterns
in the conditional mean dynamics compared to the conditional skewness dynamics. All the PCR models
appear to have smaller autocorrelations in the conditional skewness dynamics than in the conditional mean

dynamics. This indicates again that the inflation series might suffer from upside risk.

6.6.3 KLIC

The KLIC test statistics are listed in Table E.14 in Appendix E. The associated probabilities are listed in
Table E.16. The ranking based on the KLIC is depicted in Table 6.4.

Except for the benchmark models, the ranking appears somewhat the same as the 12-month forecast horizon
over the period 1994:M01-2007:M08. Striking is the number one ranking of the AR(2) model. This ranking is
especially remarkable since the AR(2) model was ranked last in the 12-month forecast horizon of the whole

forecast period.

Just as in the 24-month forecast horizon over the whole forecast period and the 12-month forecast horizon
over the period 1994:M01-2007:M08, the models with one principal component perform relatively well. The
PCR(1,1,2) model is even favored over the Random Walk model.

Only two pairs of density forecasts are significantly different based on the KLIC. The first pair is PCR(5,0,0)
and PCR(10,1,2) with the first models as favored. The second pair is PCR(10,0,0) and PCR(1,1,2) with the

second model as favored model.

If it is possible to relate the findings of this research to findings in the literature, it strengthens the results.

The next section relates the findings of this research to the findings in the literature.
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Table 6.4: KLIC ranking of the 24-months-ahead density forecasts over the period 1995:M01 through
2007:MO08.

1. AR(2) 8. PCR(5,2.,2)
2. PCR(1,1,2) 9. PCR(10,0,0)
3. RW 10. PCR(1,0,0)
4. PCR(1.2,2) 11. PCR(5,1,2)
5. PCR(1,02) 12. PCR(10,1,2)
6. PCR(5,0,2) 13. PCR(10,2,2)
7. PCR(5,00) 14. PCR(10,0,2)

6.7 Relating findings to the literature

Gillitzer and Kearns (2007) find that adding lags of inflation is required to account for structural change.
They consider forecasts in the period 1960:Q3-2005:Q4 and consequently, their results should be compared
to the forecast densities that are considered in section 6.3 and section 6.4. As Gillitzer and Kearns (2007),
this research finds that adding lags of inflation is required for PCR with one principal component. This
research does not find that adding lags of inflation is required for PCR with five or ten components. The
latter is not contradictory to the findings of Gillitzer and Kearns (2007) as they consider only models with

two principal components and lags of inflation.

Gillitzer and Kearns (2007) find significant improvement of the PCR models with lags of inflation over their
AR model. For the same forecasting period, this improvement is also found in this research. Gillitzer and
Kearns (2007) find that PCR models with two principal components and no lags of the dependent variable
do not outperform AR. The PCR(1,0,0) model in this research does not outperform the AR(2) in both the
12- and 24-month horizon. The PCR(5,0,0) and PCR(10,0,0) models outperform the AR(2) models. The
latter is again not contradictory to the findings of Gillitzer and Kearns (2007) as they consider only models
with two principal components and lags of inflation. In conclusion, it can be stated that the results of this

research are related to the results of Gillitzer and Kearns (2007).
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Gillitzer and Kearns (2007), Stock and Watson (2002) also find that adding lagged inflation dramatically

improves the forecasts. As described above, this result can be related to this thesis.

Stock and Watson (2002) show that without adding lagged inflation their DI forecasts are actually worse
than their autoregressive forecasts. At the 12 month horizon, only the PCR(1,0,0) model is performing worse
than the AR(2) model. At the 24 month horizon, the PCR(1,0,0) and PCR(10,0,0) models perform worse
than the AR(2) model. The finding of Stock and Watson (2002) can therefore not completely be related
to the findings in this research. Nevertheless, the difference can be explained: the forecast period of Stock
and Watson (2002) is until 1998:M12, this thesis however analyzes forecasts for ten additional years. When
comparing the results of sections 6.3 and 6.4 to the results of 6.5 and 6.6, the conclusion that there is much
difference in the performance of the AR(2) model can be drawn. Consequently, the difference of this research

concerning the Autoregressive model compared to the research of Stock and Watson (2002) can be explained.

Stock and Watson (2008) find it curious that Gavin and Kliesen (2008) found their AR(12) model out-
performing their Random Walk model at the 12-month forecast horizon. The Autoregressive model in this
thesis outperforms the Random Walk model at both the 12- and 24-month forecast horizon in the forecasting
periods considered in section 6.5 and 6.6. Stock and Watson (2008) presume that this surprising result is
either a consequence of including earlier and later data than Atkeson and Ohanian (2001) or indicates some
subtle differences between using quarterly data and monthly data. This thesis follows the forecasting period
of Gavin and Kliesen (2008) and also uses monthly data. Other than taking over the statement of Stock and
Watson (2008) nothing can be concluded here.
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Chapter 7

Conclusion & Discussion

This thesis provides an answer to the following research question: Does the use of a regression model that
includes macroeconomic factors, a time-varying level and stochastic volatility lead to more accurate density
forecasts for inflation compared to benchmark models? In order to answer this research question, an empirical

analysis has been performed.

The macroeconomic factors are estimated with principal components and used in a principal component
regression. The density forecasts of inflation have been obtained through the Random Walk model, the Au-
toregressive model (both benchmark models) and twelve different Principal Component Regression models.
The forecasting of inflation in this thesis focused on 12- and 24-month forecast horizons. The assessment of
the density forecasts has been carried out for the periods 1970-2008 and 1994-2008, resulting in four different

assessments of the fourteen models. The main results can be summarized as follows.

e Based on the empirical research conducted in this thesis, the proposed model does not increase density
forecasting accuracy of inflation compared to the benchmark models. In neither of the four assessments,

there is a Principal Component Regression model that outperforms both benchmark models.

e Regarding the benchmark models; the Random Walk model has proven to be the most consistent

performing model, it is only outperformed by the Autoregressive Model (twice) and the PCR model
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with one principal component, one lag of the principal component and lagged inflation (once). Whereas
the Autoregressive model is the least (12-month forecast horizon) and a moderate (24-month forecast

horizon) performing model in the 1970-2008 period.

e The density forecasts over the period 1994-2008 are generally more accurate than the density forecasts
over the period 1970-2008. This difference is explained by the structural break in many macroeconomic
variables (including inflation) around 1983. This structural break has led to less volatile inflation,

allowing for more accurate density forecasts.

e The Principal Component Regression models with one principal component generally provide more
accurate density forecasts than the Principal Component Regression models with five or ten principal
components. Adding lagged inflation in the Principal Component Regression models also improves
forecasting accuracy. Both results are likewise found by Gillitzer and Kearns (2007) and Stock and

Watson (2002).

e Models that capture the volatility dynamics appear to provide accurate density forecasts. On the other
hand, models that capture the mean dynamics in general do not provide accurate density forecasts.
Capturing the volatility dynamics appears to be more important for accurate density forecasts than

capturing the mean dynamics.

e There density forecasts show that the real density appears to have skewness in both the 12- and 24-
month forecast horizon over the period 1994-2008. This indicates that inflation suffers from upside risk.
This is strengthened by the statement that higher values of inflation are in general less desirable than

lower values of inflation.

The findings of this thesis suggest that more empirical and theoretical research is necessary to come to a

complete answer of the research question. Five recommendations for further research are given.

1. The time-varying level should be assessed in order to determine whether it provides significant im-

provement.

2. Other methods of selection components and lags of components should be analyzed in order to deter-

mine whether they outperform the benchmark models.
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3. Other measures of inflation should be considered; CPI-core, PCE and PCE-core as the core measures

of inflation are typically easier to forecast (Fisher et al. (2002)).

4. Different forecasting periods should be considered in order to determine the robustness of the models.

This is important because forecast accuracy of models tends to differ across forecasting periods.

5. Other probability densities should be considered. The two-piece normal density (Wallis (2004)) is a

possible choice as it takes upside (or downside) risk into account.
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Appendix C

Estimating the models

C.1 Rewriting the model for further usage

. . . / /
For convenience, some new notation is introduced. Let II7 = [Wf, ... ,7752] and ET = [o1€1,...,07e7]". Let

B=1[8(L),y(L).B = [ao,B(L)] or B =1 depending on the model that is used. Let X; the vector of pooled
predictor variables, including a zero if a constant is used. Let m} = 7' — o 4 respectively 77 = 7' for models

where the time-varying level is included respectively where the time-varying level is not included.

With this new notation, the model can be rewritten as:

Tion = XiB + €tin (C.1)

In(071) = In(0F) + 11 (C.2)
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C.2 The algorithm

Step 1

Specify the initial values:

log U?(O) and 0,27(0),

and set m = 1.

Step 2

Simulate (™1 from p (ﬂ|072](m), ET, HT) (Normal distribution),

O~ N (XX + BT T (X + B1) 7 (XX B7Y) ) where ™) = L 32 o™,

Step 3

The conditional distributions have the following form®:

p(logaf,a%wﬁ,J%,HT)
p (logogt,@J%,HT)
p (", Bllog o, log o2, 02) p (log o7, log 02 |02
p (17, Bllog 02, 0m?) p (log 02, |02)
x p (HT, Bllog 0,52, log U%t) D (log Jf, log O’Et|02)

p(10g0t2|10g02_t,5,0'727,HT) =

o p (. Bllogat) p (logof|log oy y,07) p (log o7y |log o7, o7)

Direct draws from these distributions is not feasible. Therefore, a Metropolis-hastings accept/reject step is

1.2 _ 2 2 2 2
02y =01s--,04_1,04415-- 07
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used. To generate a sample from p (log o?lo?,, B, O, HT), a proposal density has to be identified.

This thesis uses a random walk sampler with the proposal density equal to a normal distribution, that is:

logo loga( ™) ~ N logaz(m),wxa2 ,w € (0,1)2. C.3
t n

Yielding to the following simulation procedure:
Simulate log o2*, equation by equation, from p <loga |log o2, B(m+1) i(m)7 HT) (Normal distribution),

logo?* ~ N (log o2 4 x U%>7

set log o} 2mt1) _ = log o2* with probability a,
set log o; 2mtD) _ og crtz(m) with probability 1 — a,
where
P (log o?*|logo?,, Bm+1), of,(m))
a = min{ 5 5 , 1}
p (log o7 [log a2, 0m1), 3™ )
p (Wf, B(m+1)| log 02 ) (IOg 0% *| log Ut 1 Un) (IOg Jt+1 iR ‘ lOgU ) Q(m))
= min{ 2(m) 2(m) m) _2(m) T
p(ﬂf,ﬁ(m+1)|log0t ) (10g0 |10g‘7t 15,0n ) (10g‘7t+1 |10g‘7 yOn )
Step 4

Simulate o5, 2m+) from p( ,27\,6(“+1),ET,HT) (Inverted Gamma distribution),

1 ZT: Aln a?(erl) 2
T 2ot 152(m+1’; ) ~ X2 (T)
n

2The variance of the random walk sampler should be smaller than the the innovation variance oy,. If this is not the case, the

sampler will walk around the probability space as a random walk.
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Step 5

Simulate o445, from

Step 1
Set j = —h.
Step 2
Simulate log 044, from p (log ot45| log 0727(m+1)) (Normal distribution),

logoyyj ~ N <log Ut+j—1a0'721(m+1))7

Step 3
Set j = j+ 1 and go to step 2.

log Ut(T;:rl) = log 044, is obtained from j = h.

Step 6

Simulate wgf,j Y from p (wt+h| Blm+1), oif,:r 2 Ht> (Normal distribution),

Toon ~ N (aw,t+h + X{ﬁ(m“),exp (logot(fil) + %a%))

Step 7

Set m = m + 1 and go to step 2.
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Appendix D

Applying the models
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Figure D.1: Partial autocorrelation plots of inflation.
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Figure D.2: Draws of different parameters in the sampler.
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Appendix E

Analyzing the results
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Figure E.1: Cross correlations plots of the principal components with the 12-month growth rate of inflation.
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Figure E.4: Estimated mean for h = 24.
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Table E.1: Berkowitz Likelihood Ratios and p-values for the models evaluated with a h = 12.

Model LR p-value
RW 1,12E4-03 0
AR(2) 1,92E+03 0
PCR(1,0,0)  2,20E+03 0
PCR(5,0,0)  2,79E+03 0
PCR(10,0,0) 2,46E4+03 0
PCR(1,0,2) 2,21E+03 0
PCR(5,0,2) 1,98E+03 0
PCR(10,0,2) 3,78E+03 0
PCR(1,1,2)  2,46E4+03 0
PCR(5,1,2) 3,16E+03 0
PCR(10,1,2) 4,15E+03 0
PCR(1,2,2) 2,17E+403 0
PCR(5,2,2) 4,33E+03 0
PCR(10,2,2) 5,11E+03 0
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(c) (d)

Figure E.8: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z —2)® and (z —2)* of RW

with h = 12.
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(c) (d)

Figure E.9: Panels (a)-(d) show sample autocorrelations of (z —z), (z — 2)°, (z — 2)® and (z — 2)" of AR(2)
with h = 12.
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(c) (d)

Figure E.10: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (z —2)" of

PCR(1,0,0) with h = 12.
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(c) (d)

Figure E.11: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z —2)°

PCR(5,0,0) with h = 12.
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Figure E.12: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z —2)°
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(c) (d)

Figure E.13: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (z —2)" of

PCR(1,0,2) with h = 12.
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(c) (d)

Figure E.14: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (z —2)" of

PCR(5,0,2) with h = 12.
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Figure E.15: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(10,0,2) with h = 12.
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Figure E.16: Panels (a)-(d) show sample

PCR(1,1,2) with h = 12.
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Figure E.17: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(5,1,2) with h = 12.
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Figure E.18: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(10,1,2) with h = 12.
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Figure E.19: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(1,2,2) with h = 12.
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Figure E.20: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (z —2)"
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Figure E.21: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(10,2,2) with h = 12.
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Table E.5: Berkowitz Likelihood Ratios and p-values for the models evaluated with h = 24.

Model LR p-value
RW 1,48E4-03 0
AR(2) 1,72E+03 0
PCR(1,0,0)  2,37E+03 0
PCR(5,0,0)  5,78E+03 0
PCR(10,0,0) 7,22E+03 0
PCR(1,0,2) 1,95E+03 0
PCR(5,0,2)  5,29E+03 0
PCR(10,0,2) 7,78E+03 0
PCR(1,1,2) 1,91E+03 0
PCR(5,1,2) 7,01E+03 0
PCR(10,1,2) 9,11E+03 0
PCR(1,2,2) 1,78E+03 0
PCR(5,2,2) 6,37TE+03 0
PCR(10,2,2) 1,13E+04 0
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Figure E.22: Histogram of the probability integral transforms with h = 24.



(c) (d)

Figure E.23: Panels (a)-(d) show sample autocorrelations of (z — %), (z —2)*, (z — 2)° and (z —2)* of RW
with h = 24.
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(c) (d)

Figure E.24: Panels (a)-(d) show sample autocorrelations of (z — %) , (z — 2)*, (z — 2)° and (z — 2)" of AR(2)
with h = 24.
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Figure E.25: Panels (a)-(d) show sample
PCR(1,0,0) with = 24.
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Figure E.26: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)°

PCR(5,0,0) with h = 24.
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Figure E.27: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z —2)® and (z — %)

PCR(10,0,0) with h = 24.

105

4 oof



02 I I L I L L L L

(c)

Figure E.28: Panels (a)-(d) show sample
PCR(1,0,2) with b = 24.
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Figure E.29: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z — 2)°

PCR(5,0,2) with h = 24.
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Figure E.30: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z —2)® and (z — %)

PCR(10,0,2) with h = 24.
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Figure E.31: Panels (a)-(d) show sample
PCR(1,1,2) with b = 24.
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Figure E.32: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)"
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Figure E.33: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z —2)°
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Figure E.34: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z —2)°

PCR(1,2,2) with h = 24.
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Figure E.35: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (z —2)" of

PCR(5,2,2) with h = 24.
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Figure E.36: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (z —2)" of

PCR(10,2,2) with h = 24.
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Table E.9: Berkowitz Likelihood Ratios and p-values for the models evaluated with a h = 12 over the period
1994:M01-2008:M08.

Model LR p-value
RW 8,75E+02 0
AR(2) 6,47E+02 0
PCR(1,0,0) 1,01E403 0
PCR(5,0,0) 1,88E+03 0
PCR(10,0,0) 1,10E+03 0
PCR(1,0,2)  1,07E+403 0
PCR(5,0,2) 1,25E403 0
PCR(10,0,2) 2,44E+03 0
PCR(1,1,2)  1,94E+03 0
PCR(5,1,2)  1,85E+03 0
PCR(10,1,2) 2,14E+03 0
PCR(1,2,2) 1,20E+03 0
PCR(5,2,2) 3,45E+03 0
PCR(10,2,2) 3,70E+03 0
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Figure E.37: Histogram of the probability integral transforms with h = 12 over the period 1994:M01-
2008:MO08.



(c) (d)

Figure E.38: Panels (a)-(d) show sample autocorrelations of (z — %), (z — 2)*, (z — 2)° and (z —2)* of RW
with h = 12 over the period 1994:M01-2008:M08.
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(c) (d)

Figure E.39: Panels (a)-(d) show sample autocorrelations of (z — %) , (z — 2)*, (z — 2)° and (z — 2)" of AR(2)
with h = 12 over the period 1994:M01-2008:MO08.
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Figure E.40: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z — 2)°

PCR(1,0,0) with A = 12 over the period 1994:M01-2008:MO08.

122

40 45 50

and (z —3%)*

of



(c) (d)

Figure E.41: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(5,0,0) with A = 12 over the period 1994:M01-2008:MO08.
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Figure E.42: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z —2)°

PCR(10,0,0) with h = 12 over the period 1994:M01-2008:MO08.
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Figure E.43: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z — 2)°

PCR(1,0,2) with h = 12 over the period 1994:M01-2008:MO08.
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(c) (d)

Figure E.44: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(5,0,2) with h = 12 over the period 1994:M01-2008:MO08.
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Figure E.45: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z — 2)°

PCR(10,0,2) with h = 12 over the period 1994:M01-2008:MO08.
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(c) (d)

Figure E.46: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(1,1,2) with h = 12 over the period 1994:M01-2008:MO08.
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Figure E.47: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z —2)°

PCR(5,1,2) with h = 12 over the period 1994:M01-2008:MO08.
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(c) (d)

Figure E.48: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(10,1,2) with h = 12 over the period 1994:M01-2008:MO08.
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(c) (d)

Figure E.49: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (z —2)" of

PCR(1,2,2) with h = 12 over the period 1994:M01-2008:MO08.
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(c) (d)

Figure E.50: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(5,2,2) with h = 12 over the period 1994:M01-2008:MO08.

132



(a) (b)

(c) (d)

Figure E.51: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (z —2)" of

PCR(10,2,2) with h = 12 over the period 1994:M01-2008:MO08.
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Table E.13: Berkowitz Likelihood Ratios and p-values for the models evaluated with a h = 24 over the period
1995:M01-2007:M08.

Model LR p-value
RW 1,49E+03 0
AR(2) 6,80E+01 0
PCR(1,0,0)  1,28E+03 0
PCR(5,0,0)  3,86E+03 0
PCR(10,0,0) 3,92E+03 0
PCR(1,0,2)  4,81E+02 0
PCR(5,0,2)  3,18E+03 0
PCR(10,0,2) 5,78E+03 0
PCR(1,1,2)  2,53E+02 0
PCR(5,1,2)  4,52E+03 0
PCR(10,1,2) 5,54E+03 0
PCR(1,2,2)  7,14E+02 0
PCR(5,2,2) 4,16E+03 0
PCR(10,2,2) 7,44E+403 0
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(b) AR(2)

(c) PCR(1,0,0)

(d) PCR(5,0,0)

(e) PCR(10,0,0)

(f) PCR(1,0,2)

(g) PCR(5,0,2)

(h) PCR(10,0,2)

(i) PCR(1,1,2)

(k) PCR(10,1,2)

(1) PCR(1,2,2)

(m) PCR(5,2,2)

138

(n) PCR(10,2,2)

Figure E.52: Histogram of the probability integral transforms with h = 24 over the period 1995:M01-

2007:MO08.



(c) (d)

Figure E.53: Panels (a)-(d) show sample autocorrelations of (z — %), (z — 2)*, (z — 2)° and (z —2)* of RW
with h = 24 over the period 1995:M01-2007:M08.
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(a) (b)

(c) (d)

Figure E.54: Panels (a)-(d) show sample autocorrelations of (z — %) , (z — 2)*, (z — 2)° and (z — 2)" of AR(2)
with h = 24 over the period 1995:M01-2007:M08.
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(a) (b)

(c) (d)

Figure E.55: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (z —2)" of

PCR(1,0,0) with h = 24 over the period 1995:M01-2007:MO08.
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(c) (d)

Figure E.56: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(5,0,0) with h = 24 over the period 1995:M01-2007:MO08.
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(a) (b)
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Figure E.57: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(10,0,0) with h = 24 over the period 1995:M01-2007:MO08.
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(a) (b)

(c) (d)

Figure E.58: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(1,0,2) with h = 24 over the period 1995:M01-2007:MO08.
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(a) (b)

(c) (d)

Figure E.59: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(5,0,2) with h = 24 over the period 1995:M01-2007:MO08.

145



08

06

04

02

-0.2

I
25

(c)

!
30

N
40

N
45

50

08

06

04

02

-0.2

(d)

Figure E.60: Panels (a)-(d) show sample autocorrelations of (z —z),(z —2)°,(z —2)°

PCR(10,0,2) with h = 24 over the period 1995:M01-2007:MO08.
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(c) (d)

Figure E.61: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(1,1,2) with h = 24 over the period 1995:M01-2007:MO08.
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(c) (d)

Figure E.62: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (z —2)" of

PCR(5,1,2) with h = 24 over the period 1995:M01-2007:MO08.
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Figure E.63: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(10,1,2) with h = 24 over the period 1995:M01-2007:MO08.
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(c) (d)

Figure E.64: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(1,2,2) with h = 24 over the period 1995:M01-2007:MO08.
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(c) (d)

Figure E.65: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(5,2,2) with h = 24 over the period 1995:M01-2007:MO08.
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(c) (d)

Figure E.66: Panels (a)-(d) show sample autocorrelations of (z —%),(z —2)°,(z —2)® and (2 —2)" of

PCR(10,2,2) with h = 24 over the period 1995:M01-2007:MO08.
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