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Abstract 
The aim of this research is to explore the question of managing collaboration. Through an adaptation of Tullock’s rent-seeking contest, we explore how variations on prize division between the solvers affect equilibrium effort, and discuss the outcomes with reference to its relevance in practical application. The main findings are: equilibrium effort is not necessarily lower in a collaboration scenario than in a scenario when a solver is working individually; and that the division of the prize significantly varies the optimal effort, especially when competition is introduced between the solvers.
Introduction
Collaboration has always been an attractive prospect because of the promise of the added potential from team dynamics. In recent times, firms have worked together in various forms of partnerships in attempt to profit from each other’s expertise, resources, networks, and etcetera through leveraging and developing each other’s competencies. A well known example of collaborative success is when Apple and Canon worked together to produce LaserWriter. Nevertheless, everything has its drawbacks; collaboration is not a fool-proof way to triumph. For instance, Apple and IBM failed in their joint venture, Taligent, an object-oriented operating system which dissolved in January 1998. One of the causes was the difference in corporate culture of each firm. It goes to show that successful collaboration has a dependency on several factors, such as the compatibility of the parties involved in the sense of their goals, the accountability each party has, and even on the details of the partnership contract so as to avoid dispute on responsibilities.
Working together raises complex problems, and there are various forms of collaboration too; namely licensing agreements, joint ventures, various partnership agreements, outsourcing, and innovation contests. In this paper, we will simplify the situation in order to model it and examine the outcomes. As mentioned in the previous paragraph, only when both parties are compatible for team work do they gain from the collaboration. Therefore in this paper, we will investigate how the identical agents with symmetric utility functions will optimally act in an innovation contest. To put them on equal grounds, we assume that both agents are equally endowed with skills and knowledge, in a first best world where there is perfect information.  The scenarios we will examine are: solvers working individually; a pair of solvers working together for a prize they will split equally; a pair of solvers working together for a prize they will split based on the amount of effort exerted in relation to each other; and finally a pair of solvers working for the prize in a true group scenario. Through this, we will compare the effort level of agents in each situation, and discuss the practical implications of the findings for both managers and agents.
For this paper, the research can be structured around two main hypotheses:
H1: Collaboration decreases the amount of effort required by each solver
It is a generally accepted notion that collaboration allows for a lower equilibrium effort than individual work—that is, by working with another, the effort needed is decreased. Through this research, we will find out if this hypothesis is an absolute truth.
H2: The type of division of the contest winnings will affect the effort level of individuals working as a team
To test this hypothesis, we apply two types of prize division, the first is when the prize is split equally, and the second is when the prize is split according to the contribution of effort made in participation. Then, we will also look at the situation when the prize is not divided, as the solvers act as a true group.
The structure of this paper will be as followed: in the next section, relevant related literature will be referred to; then the model development will be featured; this will be followed by the results; which in the following section will be discussed; and finally the paper will be concluded with suggestion for further research.

Related Literature

This research has been initially inspired by Terwiesch and Xu (2008), which is a paper that uses economic models to depict the interaction between seeker and solver in order to analyze the interaction. Terwiesch and Xu (2008) has found the following: 1)the seeker can benefit from a larger solver population because he obtains a more diverse set of solutions, which mitigates and sometimes outweighs the effect of the solvers' underinvestment in effort; 2) the inefficiency of the innovation contest resulting from the solvers' underinvestment can further be reduced by changing the award structure from a fixed-price award to a performance-contingent award; 3) and in comparing the quality of the solutions and seeker profits with the case of an internal innovation process, one can to predict which types of products and which cost structures will be the most likely to benefit from the contest approach to innovation. This paper is interesting as it provides a good rule of thumb for firms to use in deciding on an innovation strategy, be it an external innovation contest or developing an innovation internally. So although we will look at solvers within an innovation contest, unlike Terwiesch and Xu (2008) this paper will analyze a situation where the only two solvers collaborate within an innovation contest, rather than looking at a large number of solvers working individually within an innovation contest held by the seeker.
Other related academic research includes more advanced models of rent-seeking behavior in innovation contests that have been motivated by Gordon Tullock’s research on rent-seeking, first published in 1980. Tullock (1980) considers a contest in which two players compete for a monopoly rent, for which the players value to an equal extent. Existing analyses branching from Tullock’s initial paper have mainly explored the nature of equilibrium with varying numbers of solvers (eg: Baye et al, 1993), different valuation of the rent by each solver (eg: Hillman and Riley, 1989; Ellingsen, 1991; Leininger, 1993), and being mainly concerned with the occurrence of under or over dissipation of rents. Schoonbeek and Kooreman (1997) have expanded on Tullock’s rent-seeking contest by introducing a minimum expenditure requirement, and found that in that extended model, there is more than one Nash equilibrium. They have also found that the size of the player’s valuations of the prize and the minimum expenditure affects the outcome equilibriums. 

Hence, similar to a large number of related researches, we will be employing his well used contest success function in part of the model; however, dissimilar from the existing literature in this topic, we are not looking at solvers with asymmetric values, or at scenarios with more than 2 solvers. Nonetheless, an interesting outcome has been revealed using the model applied in this paper, which contributes to the less explored focus of when players have symmetric valuations of the rent in an innovation contest.
Model Development 
The situation we look at uncomplicated—an innovation contest within a firm where there are two solvers, who are equally endowed in knowledge and skills, and have symmetric utility functions. In this innovation contest, a solver would work individually or in a pair to produce a good for the seeker, who would be their manager.

Individual Work

A solver’s utility would be composed of the prize multiplied by his performance return on the improvement effort, minus his cost of effort. So, the utility of a solver, i, working individually is represented by the following function:
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P represents the prize to be won in the innovation contest, and let us assume that P=1 for simplicity in computation. Effort is denoted as e, and each solver can improve his solution by investing in effort. Hence there is a function r(ei) that is increasing and concave which represents the performance return on the improvement effort, and is assumed to be [image: image3.png]


. The cost of effort is denoted as [image: image5.png]L2
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, which is deducted from the solver’s utility function.

Collaborative Work

The utility of a solver, A1, working in a team of two is represented by the following function:
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The utility of the other solver, A2, has a symmetric utility function:
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As per the previous, P represents the prize to be won in the innovation contest, which is assumed at P=1 for simplicity in computation. However in this case, the solver does not gain the whole prize, but rather a fraction of the prize, i.e.:[image: image9.png]x P



. We will examine two possible options for the value of[image: image11.png]


. First, the option that [image: image13.png]


, which is an even split of the prize between the two solvers; and Second, the option that [image: image15.png]e




, which represents a scenario where the manager can allocate the reward according to the effort put in by the participant. In applying Gordon Tullock’s contest success function, it causes the potential winnings for the first solver to be decrease as the effort of his follow solver increases in comparison to his own effort, introducing a competition element between the two solvers in partnership. Effort is denoted as e, and each solver can improve his solution by investing in effort. Hence there is a function r(ei) that is increasing and concave which represents the performance return on the improvement effort, and is assumed to be [image: image17.png]


. As this scenario involves teamwork, [image: image19.png]ve.e,



 has been added to denote the increased potential garnered from collaboration. And once more the cost of effort is denoted as [image: image21.png]L2
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, which is deducted from the solver’s utility function.

We will extend the model above to examine the situation whereby the solvers act as a true group. In such a situation, the utility function of a solver can be denoted as:
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The second solver’s utility function is symmetric:
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The function includes the cost for both the solvers, and there is no division of the prize—as a true group the entire prize belongs to each solver together. 

In the next section, we will derive the optimal effort for a solver in the various scenarios by differentiating the functions and finding e*. Through this we will explore how the optimal effort and utility changes due prize distribution and variations to the form of the function r(ei).
Results

(all figures rounded to 5 decimal places)
First we will explore the scenario where a solver is working individually:

Solo Scenario

Solver i’s utility is [image: image25.png]U(4) = P(Jfe;) - jef
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To find maximum let [image: image28.png]
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Substituting the value into the utility function gives:
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The results for the optimal effort and its utility show that in working independently, a solver would receive a utility almost the same as the effort put in.
Next we look at the scenarios where the solvers work in pairs:

Solver 1’s utility is denoted as [image: image36.png]Ze2
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Equal Split Scenario

When [image: image38.png]
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To find maximum let [image: image46.png]



And since the functions for both agents are the symmetric, [image: image48.png]


, we can substitute that in to get:
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Which then provides us with the value   [image: image51.png]e’ ¥ 0.5765



 
Substituting the value into the utility function gives:
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Now we will deviate from the main model and use other functions of effort to look at the variations in maximum utility as the optimal effort changes due to the variation of the performance function, r(e). We have depicted the utility for a solver in the format: 
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In variants of r(e), the value [image: image56.png]


 changes. In the main examples, we have used [image: image58.png]


, which is [image: image60.png]


 for the above function. Now, we will look at the extremes of this curve—where the power of e in r(e) is small, representing a decreasing marginal return on e as the curve of the graph flattens out as effort increases; and where the power of e in r(e) is large, representing an almost constant marginal return on e as the graph is  almost straight. 
Figure 1 Illustration of Performance Curves (not to scale)
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For the former, we first let r(e)= e0.1; this reflects the situation where the marginal returns of effort is decreasing the most. 

Plugging in the values as in the previous workings, we find that e*[image: image63.png]


0.37181, and U*[image: image65.png]


1.02258. Then, taking it to the extreme as the power of e approaches 0, the e*[image: image67.png]


 0.25, and U*[image: image69.png]


0.96430 

For the other extreme, let r(e)= e0.9; this shows that as the marginal return on effort decreases at a minimal level, and again plugging in the new r(e), we calculate that e*[image: image71.png]


0.71533, and U*[image: image73.png]


0.84152. Taking this further, we experiment with when the power of e approaches 1, and we find that the e*[image: image75.png]


 0.75, and U*[image: image77.png]


0.86564.
From this we have illustrated that the higher the marginal returns, the higher the optimal effort, but the lower the maximum utility. This is interesting, as logically we would expect that in a situation like when the power of e is 1, where one can continuously increase one’s return, one would be able to reach a higher utility by working more. Perhaps the reason is that the increase in optimal effort causes this decrease in utility. 
Competition Scenario
Now we explore a scenario where there is competition between the solvers. This can be illustrated when [image: image79.png]
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1.60679 or 2.39978
This result is surprising—logically, it can be reasoned that with more people working on a project, less effort is needed; however, here the optimal effort is much higher than in the solo scenario. 
Substituting the value into the utility function gives the following:

First, when [image: image92.png]e’ ¥ 1.60679
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 2.39978;
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We observe that the utility for both equilibrium efforts are much higher than that of the previous two scenarios.
True Group Scenario

Finally, we look at the scenario where the pair of solvers acts as though they are in a true group.
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Now we substitute in [image: image102.png]e, =
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1; and the utility at this value is:
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Here, we find that although the group acts as an individual solver, its end utility is twice as much as the effort that was put in. Comparing this to the solo scenario where there is actually one solver, we can observe that it is much more profitable for solvers to work together as one unit, like a hive of bees or a colony of ants, than it is for solvers to work by themselves.

The results obtained in this section are summarized in Table 1, and in the next section we will discuss the implications of the results for the hypotheses and the real world.
Table 1: Summary of Results

	Setting
	Utility function for an agent
	e*
	U*

	Solo Scenario
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	0.59528
	0.59436

	Competition Scenario
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	1.60679 or 2.39978
	6.99306 or 8.11658

	Equal Split Scenario
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	0.57865
	0.88260

	
	As the power of e in r(e) approaches 0
	0.25
	0.96430
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	0.37181
	1.02258
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	0.71533
	0.84152

	
	As the power of e in r(e) approaches 1
	0.75
	0.86564

	True Group Scenario
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Discussion of Results
The foremost conclusion we can draw is that the collaboration scenarios (Equal Split Scenario, Competition Scenario, True Group Scenario) is more attractive due to the higher optimal utility that can be gained in comparison to the solo scenario. This is not surprising as we are aware that collaboration allows for a higher potential utility due to the inclusion of teamwork dynamics. So we will move on to address the implications of the results on the hypotheses stated in the first section of the paper:

H1 is found to be partially true—collaboration does decrease the amount of effort required by each solver, but only when comparing the solo scenario and the equal split scenario. 
We see that the optimal individual effort amounts to [image: image115.png]el N



0.59528, and this is more than the effort calculated in the equal split scenario. In the latter case, [image: image117.png]e;
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 0.57865, which shows that the effort level for each solver has been diminished due to the inclusion of teamwork dynamics ([image: image119.png]ve.e,



) in the function. This shows us that indeed, working in a team benefits the members as they need not exert as much effort and yet are able to achieve higher utility—[image: image121.png]U (A,




0.59438 is less than [image: image123.png]U (A, A,)



0.88260. This is useful because the equal split scenario is most reflective of the real world, where prizes are split equally as it is not possible to accurately quantify or compare the different varieties of contribution each team member brings to the table. As for the competition scenario and the true group scenario, we see that collaboration does not decrease the optimal effort of a solver. Yet, we find that the amount of utility gained per unit of effort is higher. Therefore, we can conclude that collaboration may not always decrease the optimal amount of effort, but it always results in a higher utility, giving reason for collaboration.
H2 is found to be true. The results show that as the division of the prize, [image: image125.png]


P, changes, so does the resultant effort of each solver. 
We can observe that by including the Tullock contest success function to create the competition scenario, the effort exerted by the solvers is much higher, and in turn the solvers receive a much higher utility. Optimal effort in the competition scenario is [image: image127.png]el N



1.60679 or 2.39978, which is higher than the optimal effort in the equal split scenario where [image: image129.png]el N



0.57865. This may be explained by the fact that in the latter scenario, there is opportunity for free-riding, which can explain the “more relaxed strategy” a solver may embark on in pursing the win. Our findings also coincide with Terwiesch and Xu (2008), as they find that changing the award structure from a fixed price award to a performance contingent award reduces underinvestment in effort made by the solvers. In addition, using competition to stimulate innovation is not a new tactic. In fact, it was the factor in the Renaissance period that motivated artistic innovation through rivalry between the artists. And in a more modern example, a recent article reported that the director of General Electric’s Global Research Group said that it has helped his company develop better products and services (Ferrari and Goethals, 2010).
Results for different technology

Next, we discuss the findings in our small detour—exploring a variation in the form of the function r(e). We have surprisingly found that the higher the marginal return on the success function, the higher the optimal effort, but the lower the maximum utility. As mentioned earlier, logically we would expect that in a situation like when the power of e is 1, where the decrease in marginal return occurs later and in a less significant way, one would be able to achieve a higher utility by per increase in effort unit than in the opposite scenario when the power of e is 0. We proposed that a reason for this is because the additional amount in optimal effort resulted in this decrease in utility, and we can conclude from this that a difference in the technology of the situation affects the optimal outcomes for the solvers. For a manager, this finding is relevant as the manager’s aim is to have his employees put in as much effort as possible. Thus, in an alternative situation of imperfect information, a manager would ideally have his employees think that their r(e) is almost straight, so that they will put in more effort.
Further implications for real life situations
In reference to the ratio of effort put in and utility gained, we can see clearly that in the solo scenario, the ratio of effort to utility is almost 1:1, and the most gain lies in the competition scenario, followed by the true group scenario and then the equal split scenario. And these results come from a world where there are no obstacles in achieving the full potential gain from collaboration such as communication issues, there are no work distribution issues, no problem of free riders, no worry about transfer of knowledge to less endowed partner, etcetera.
Competition between solvers

Unfortunately, as we do not exist in a first best world with perfect information, it is neither economically practical nor plausible for a manager to quantify the value of the contributions of each solver in the team as in the competition scenario. For example: solver 1 may have contributed the idea and nothing else, while solver 2 created the product. In this case it is clear that solver 2 puts in more physical effort than solver 1, however without solver 1’s inspirational idea there would not have been a winning product. Alternatively, solver 1 may have presented the product and sold the idea excellently, while solver 2 was the one that created the product. Similarly to the previous example, solver 2 has done the work, but then without solver 1, it would not have won the contest. Thus is it right to give the majority of the prize to a certain solver for either putting in more effort or being the catalyst that allowed for the win? 
So as we can see in real life, applying the Tullock contest success function is not fully possible as there is a problem of quantifying the worth of each solver’s contribution. There are alternative substitutions that could be implemented to attempt to overcome such a dilemma, for example a manager could drop in unexpectedly to check on the progress, have each solver grade their contribution, or simply leaving the distribution of the prize for the team to figure amongst themselves. But the feasibility of application would be subjective to the technology available, the skills of the manager, and even the structure of the firm. 
Prize sharing
In addition, the true group scenario is not fully feasible either—the closest we can come to that in real life is perhaps a duo musical act, or achievement for a brand or company. Yet within that, each of the member’s actions would be different, resulting in dissimilarity in their gains or losses, and thus their ultimate valuation of the potential prize. Thus, unless the prize is a club good, i.e.: has the characteristic of being non-rivalrous but of course excludable if not there is no need to earn the prize, a practical situation in which the true group scenario would arise would not exist. Examples of a prize can be shared amongst the winners in this true group scenario is access to a private park, the earned title or award for the winning group, or access to an exclusive private screening of a film. Looking into the animal world, there is evidence of just how profitable operating as a true group can be—looking at the success of hive animals like termites, bees, wasps and ants or cooperative pack animals like wolves or lions. But of course, nothing is fool-proof and there will always be someone trying to free ride even though the punishment is great. In an ant colony, if members discover a worker-female attempting to reproduce, they will attack her. And yet knowing this, there would be female ants that still attempt to cheat in this way.
Prize distribution

Furthermore, we find that the easiest, and thus more practical option, is to award the winnings evenly between the solvers. And of course in real life, there is interaction between the solvers too. This means that solvers can urge each other on and create a situation where each one contributes a just amount of effort into their collaboration. In other words, the solvers can sort amongst themselves the just distribution of effort, which would ultimately correspond with the equal split of the prize, assuming of course, that the end benefit outweighs the cost of monitoring each other.
Non-identical solvers

As mentioned in existing literature, each solver may not allocate identical values to the prize. Furthermore, a solver may decide that it is the process that is more important than the prize. Such asymmetry exists in real world situations and should be taken into consideration. Exploration into this line is featured in the paper of Matros 2006, “Rent-seeking with asymmetric valuations: addition or deletion of a player”. Moreover, in the practical world, solvers do not always act efficiently. Terwiesch and Xu (2008) describes that solvers tend to under-invest in effort, which makes it optimal for a seeker to have a larger solver population to so that the benefit from an increased diversity in the set of solutions outweighs that under-investment. Hence we can see that for a manager, the optimal strategy for his solvers may not be collaboration, but rather individual work, so that the manager has access to a larger number of possible solutions.

Free riding

An option we did not investigate is if one of the solvers does not put in effort at all. In the real world, this may or may not be discovered by the manager. This means that there is a problem of solvers not being accountable for their actions, which may allow for free riding actions. So if for instance, Agent 2 does not do any work, and thus nullifies added value of teamwork dynamics, featured as [image: image131.png]ve.e,



 in our model. In the instance of such case, Agent 2’s goal would be to appear as though he was contributing and free ride. As such, Agent 2 may merely expend effort on convincing the manager that he is the one who did the majority of the work—and this effort might even be more than doing the actual work itself, making it rather illogical to do so! And if he does not reveal the indolent behavior of his collaborator, Agent 1 would have his own utility decreased due to the free-riding Agent 2. This is an ideal example to highlight the importance of accountability in managing collaboration.

Finding the optimal effort in real life

A dilemma from the solver’s point of view exists: we know from game theory that there may be more than one equilibrium outcome in a game. So with a different success function r(e), there may be different results, and in a practical world where one does not have his utility function in a neat formula to calculate out the options, chances are one may operate at the lowest equilibrium. Such a person would lose out on the higher utility that could have been gained from operating at the next equilibrium. Alternatively, such a person may be under the impression that there is another equilibrium he could operate at (and get higher returns), when there exists none. As a consequence, in the real world of imperfect information, a person would not be able to know his or her own optimal effort.
To collaborate or not?

Collaboration is not an endeavor to embark on lightly. Just like any other project, it needs careful consideration of a number of factors, and then good execution in order to turn into a success. And even after taking into consideration that, the seeker may be unlucky because the solvers have a lack of inspiration, reproduce unoriginal solutions or even defect to a competitor. On that note, observe the following Figure 2, after which we will expand on the advantages and disadvantages of collaboration.
Figure 2: Balancing out the Pro's and Con's of Collaboration

[image: image132.png]PRO'S

CON's

(apparent) decrease in
individual effort

Sourceof stimulation &
creativity

Increased Resources

More effective use of
idualtalents

hle gs




Our findings show that there are challenges to overcome even in the choice of the type of rent dissipation. Then, looking to the consideration of whether to collaborate, there are a number of advantages and disadvantages that should be considered. The positive thinker looks at the advantages: increased expertise to draw on, greater resources at hand, more effective use of individual talents, source of stimulation and creativity, transfer of knowledge and skills, the apparent decrease in individual effort, etcetera. And hence may leap into the decision to collaborate without taking into account the disadvantages: transfer of knowledge or skills, free riders, additional costs (travel, material, time, administration, equipment and materials may have to be brought to a new location, and equipment would have to be reinstalled), and the possibility of poor management which would result in poor communication, slow progress, or mismatch in goals.
Conclusion and Suggestions for Further Research
The findings of this research have shown that 1) collaboration is preferable to individual work; 2) equilibrium effort is not necessarily lower in a collaboration scenario than in a scenario when a solver is working individually; and that 3) the division of the prize significantly varies the optimal effort, especially when competition is introduced between the solvers. In a practical context, this means that in order to maximize effort put in, managers should use a system whereby solvers are, or made to believe that they are, in competition with each other. Although this is also beneficial to the solvers as it provides a higher utility, solvers may prefer a system where the prize is equally shared, on account of the possibility to free ride on the additional effort put in by the solver’s collaborator. So even though the utility gained is lower than in a competition scenario, the lower equilibrium effort may hold the charm to this system.
Suggestions for further research

Once more, we can still gain from research that features more than 2 solvers in a team (however when number of solvers reaches a certain point it would be difficult to coordinate and operate effectively), as exemplified in the paper of Baye, Kovenock and De Vries 1993: “The solution to the Tullock rent-seeking game when R > 2: Mixed-strategy equilibria and mean dissipation rates*”.

Another avenue for further research can be seen from the paper of Baye, M.R. and Hoppe, H.C. (2001), which has found results that allow for application of theorems and results meant for rent-seeking games to other games. In the same way, one could investigate how the models used in this paper may be adapted to other games, and it would be fascinating to see if the outcomes turn out to be similar or divergent from the results here. 
We mentioned the problem of free riding in the discussion section—this model can be taken further by adding a condition for obtainment or forfeit of the rent. For instance, if the effort by one of the agents is zero or less than a certain value, then the entire prize goes to the collaborating agent. 
Also, we know from basic game theory that is possible to have more than one equilibrium in a game, so we suggest that more exploration with a different success function r(e) to try and produce alternate results.
And finally, applying empirical data to test out the results is an option which would allows us to calculate the profitability of a solution given the inputs (effort, expertise, market uncertainty, technical uncertainty). This could be done through organizing a closed experiment, whereby the participants’ effort and expertise could be graded and used to predict the possible outcomes.
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