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Abstract

In this thesis we develop a testing framework for evaluating and comparing the accuracy of
copula-based multivariate density models to forecast joint extreme events. The unique feature of
our newly developed goodness-of-fit test is that it allows us to focus on a specific part of the
copula distribution. The test has a clear intuition as it is based on likelihood based scoring rules
that can be interpreted in terms of the Kullback-Leibler Information Criterion (KLIC). We show
that the results based on the conventional weighted likelihood scoring rule show a clear bias
towards fat-tailed models. Our proposed scoring rules based on conditional likelihood and
censored likelihood do not suffer from this bias. Extensive Monte Carlo simulations and an
empirical financial application based on bivariate density forecast models confirm that these
two scoring rules are proper. Moreover, we show that their power increases with sample size.
Among the proper scoring rules, the censored likelihood scoring rule generally shows the most
powerful results in the left tail of the copula distribution. For the purpose of forecasting negative
extreme events, we therefore recommend academics and risk managers to use our test based on
the censored likelihood scoring rule to decide on the model that best suits the true data
characteristics.



1. Introduction

Problems in quantitative finance are often multidimensional and hence require the joint
modeling of random variables, including their interdependencies. Random variables may
represent, for example, different risk factors such as financial returns. Their joint behavior has
key impact on the riskiness of the portfolio and therefore is of paramount importance to risk
managers. Empirical evidence shows that the joint behaviour of financial variables generally
shows dependence, especially in the tails of the distribution (i.e. the extreme outcomes). McNeill
et al (2005) mention that “dependence between extreme outcomes” and “concentration of risks”
are indeed key issues in financial risk management. These phenomena are captured in three
stylized facts of multivariate asset returns. Firstly, the tails of multivariate asset returns contain
higher exceedance correlations and stronger quantile dependence as compared to the normal
distribution. This phenomenon is also known as tail dependence. Moreover, the dependence
between assets returns appears to be asymmetric, i.e. it is stronger in “bear” markets than in
“bull” markets (Patton, 2004). Third, the dependence is time-varying; the level of (exceedance)
correlation varies substantially over time. Adequately modelling these stylized facts of
multivariate asset returns is of considerable importance in financial applications, including
portfolio selection, option pricing, asset pricing models, Value-at-Risk (VaR) calculations and
forecasting models (Chen and Fan 2006). Although we restrict this research to financial
applications, it should be emphasized that the theory presented in this thesis can also be applied
in other disciplines ranging from health sciences, hydrology, environmental science to macro
economics.

In order to model dependence between extreme outcomes of different random variables, recent
developments of multivariate density models are promising. Granger (2002) points out that it is
most natural to study the entire conditional density, because (parts of) predictive distributions
directly answer questions about forecasting moments.! In order to model the multivariate
nature of the problem, copulas gained extreme popularity due to their flexibility. Once the
distribution functions of the individual random variables are obtained (the marginals), copula
models can be used to “couple” these marginals to a joint distribution function. The main
advantage of copulas over classical families of multivariate distributions is that the selection of
the copula model is independent from the choice of the marginal distributions? (Alexander,
2008). A wide variety of copulas exists, each with their own predescribed dependence
properties. Therefore, accurate goodness-of-fit testing is of crucial importance to examine
whether the selected model reflects the basic true data characteristics. In this thesis we combine
the theory of existing goodness-of-fit tests on (1) univariate density forecasts in tails and (2)
copula based multivariate density forecasts. This provides us with a testing framework for
evaluating and comparing the accuracy of copula-based multivariate density models to forecast
joint extreme events.

The literature on goodness-of-fit tests to evaluate the accuracy of univariate density forecasting
models is expanding rapidly. An important group of these tests focuses on relative predictive
accuracy and compares measures of relative distance between the competing density forecasts

' In contrast, traditional point forecasts are criticized for being rather uninformative without any
indication of their uncertainty.

2 In contrast, classical families of multivariate distributions, such as multivariate (log-)normal, or
student’s-t distributions require the individual variables (marginals) to be of the same parametric family
of distributions. Copulas do not suffer from this limitation due to Sklar’s theorem (1959), see section 2.2.



and the true (but unobserved) density. Proposed distance measures are, amongst others, the
integrated squared difference, the mean squared error, or the Kullback-Leibler Information
Criterion (KLIC). Most of these goodness-of-fit tests are designed for evaluating the entire
distribution, whereas financial risk managers are mostly interested in the left tail of the
distribution. Diks et al (2010) recently introduced two tests that compare the forecast accuracy
of univariate density forecast in a specific region, such as the left tail. They adopt the existing
weighted likelihood ratio (WLR) framework of Amisano and Giacomini (2007) based on KLIC-
type distance measures, but replace the full likelihood by conditional and censored likelihood
respectively. Diks et al (2010) emphasize that this approach does not suffer from a bias towards
density forecasts with more mass in the region of interest, contrary to the tests based on WLR. In
terms of Winkler and Murphy (1968), the likelihood-based tests introduced by Diks et al (2010)
are analytically proven to be proper, which means that a correctly specified density forecast
always receives a higher average score than an incorrectly specified density forecast.

Research on the theory and applications of copulas skyrocketed in the last few decades3.
However, goodness-of-fit tests for copulas gained considerable academic interest only recently
(Embrechts, 2008). Appendix 2 shows an up to date overview of goodness-of-fit tests for
copulas. It turns out that the “jury” is still not out on the best procedure. At this point, it should
be emphasized that most of the available goodness-of-fit tests only allow for indirect
comparisons of competing copula specifications and are based on in-sample fit. In other words,
most tests evaluate the validity of a single copula and do not consider the forecasting ability of
the selected model. The approaches are mostly indirect in the sense that comparison of
alternative copula specifications is only possible by performing the same test on competing
copulas, such that the model that performs best on these statistics can be selected. Goodness-of-
fit tests based on a direct comparison of two copulas are introduced by Patton (2006) and Chen
and Fan (2006). They introduce tests based on pseudo likelihood, and rely on scoring rules
based on the KLIC-difference, here defined as a distance measure between the copula model
under consideration and the true (but unobserved) copula. Diks et al. (2009) provide a
forecasting extension of this test, and use comparable techniques based on out-of-sample log-
likelihood scores.

In this thesis, we develop a test to directly evaluate the predictive ability of copula based
multivariate dependence models focused on the left tail of the copula distribution.* As a crucial
ingredient of our test, we consider three different KLIC-based scoring rules, similar to Diks et al
(2009). The first scoring rule we consider, the conventional weighted likelihood (wl) scoring
rule, is based on full likelihood and is accused of favouring models with more probability mass in
the left tail. This bias towards fat-tailed models is confirmed in both our extensive Monte Carlo
experiments and our practical application of the test, in which we evaluate various multivariate
density models to forecast daily MSCI Total Returns of USA, Mexico, Argentina and Brazil. When
using the scoring rules based on conditional likelihood (cI) and the censored likelihood (csi)
however, our Monte Carlo experiments demonstrate that these spurious rejections against fat-
tailed models are virtually absent, in particular for large sample sizes. These results indicate that,
in contrary to the wl scoring rule, the cl and csl scoring rules are proper and hence are more
reliable for the purpose of evaluating joint extreme events. Among the two proper scoring rules

? For a study of Genest et al (2009) on the explosive development of copula theory we refer to Appendix 1.
4This test is also generalized to other specific regions of the distribution, but since we will restrict this
research to financial applications we focus on extreme negative outcomes, i.e. the left tail.



the csl scoring rule exhibits the most powerful results in most cases, which could be explained by
the fact that it also uses information revealed by the observations outside the region of interest.

The main contribution of this thesis to existing literature is that our goodness-of-fit test focuses
on a specific region of the copula, which can be considered as unique in the academic literature.
Furthermore, it extends existing research about goodness-of-fit tests that directly compare the
forecasting accuracy of two competing copulas, whereas most existing tests indirectly compare
several copula specifications. At last, we extend existing literature on tests that concentrate on
out-of-sample fit. We test the forecasting accuracy of two competing models, in contrast to most
tests in the current literature that evaluate in-sample fit.

The remainder of this thesis is organized as follows. In Section 2, we will elaborate on the
fundamentals of copulas, introduce several commonly used copula families, and discuss
procedures to implement copula based multivariate density models. Section 3 discusses the
main methods that are used in this thesis, including the scoring rules that are used as the basis
for our newly developed goodness-of-fit test. In Section 4 the finite sample properties of the
proposed predictive ability tests are assessed by extensive Monte Carlo simulations. The
practical usefulness of the tests is illustrated with an empirical application in Section 5. We
summarize and conclude in Section 6 and provide several suggestions for further research in
Section 7.



2. On Copulas

2.1 Introduction
As an introduction to copulas, we will first discuss the traditional models for multivariate
dependence modeling, and their major drawbacks.

Traditionally, the multivariate dependence between random variables has been described using
classical families of multivariate distributions, such as the multivariate (log-)normal, gamma,
student-t or extreme value distributions. The main drawback of the use of classical families of
multivariate distributions is that the individual behavior of the random variables under
consideration (the marginals) must then be characterized with the same parametric family of
distributions (Genest et al, 2007). This means that (1) the univariate distributions of the
marginals and (2) the dependence between the marginals cannot be separated, although they
are entirely different concepts. On the one hand, univariate empirical asset returns rarely show
“nice” symmetric behavior, as large negative outcomes generally occur more often than large
positive ones (negative skewness) and periods of large returns generally alternate periods with
low returns (volatility clustering)s. On the other hand, the dependence between the marginals is
rarely “nicely” linear, because of the stylized facts of multivariate asset returns as described in
the introduction. One should be aware of the fact that multivariate asset returns usually show
tail dependence, asymmetric dependence and time-varying dependence. Concluding, in order to
model the complex multivariate dependence structure of financial assets, using classical families
of multivariate distributions is often too restrictive, in particular for symmetric distributions.

As will turn out soon, copula models avoid this main restriction, as they isolate the dependence
structure from the structure of the marginal distributions (Alexander, 2008). This allows us to
model a joint distribution in two stages. The marginal distributions may be specified first, and
the dependence between the marginals can be modeled hereafter by a function called a ‘copula’.
Due to its flexibility, copula theory and applications have gained considerable popularity in
recent years and the amount of research on copulas skyrocketed starting the end of the nineties,
especially in finance (see appendix 1 for details, Genest et al 2009).

As an extra motivation to use copula models, we return to the following question: if we are
aware of the restrictions of using classical families of multivariate distributions, why are they
(still) widely used in financial models such as Capital Asset Pricing Model (CAPM)? It turns out
that if the multivariate normal distribution is used, linear correlation can be used as dependence
measureé. Embrechts et al (2002) recall the advantages of linear correlation, as, among others, it
is straightforward to work with and easy to manipulate under linear transformations. However,
they also nicely point out several major pitfalls of linear correlation that can lead to misleading
results. Working with linear correlation is therefore accused of being used for convenience
rather than accuracy (Alexander, 2008). Appendix 3 summarizes the pitfalls of working with
linear correlation and shows that copula models do not suffer from these.

® Other “stylized facts” of univariate empirical asset returns are fat tails (excess kurtosis) and no
significant autocorrelations, see for example Embrechts (1997). For more details see section 5.2.1.

6 In fact, linear correlation could be used for any other elliptical distribution, which is a generalization of
the normal distribution (see section 2.3.1)



2.2 Copula theory

Throughout this section, we will show several fundamental results in copula theory using the
simple case in which (X,Y) denotes a pair of random variables with joint distribution function H
having margins F and G. Thus for all x,y € R,

Hx,y)=PX<x,Y<y), Fx)=PX<x), Gly) =P <y)
If the domain is not further specified, it is meant to be simply R?.
The copula function C can be formally defined as follows:

Definition 2.1 A (bivariate) copula is a cumulative distribution function (cdf) on [0,1]?> whose
margins are standard uniform.

To verify whether a (bivariate) right-continuous function is a copula or not, we can make use of
the requirements for a distribution function” and derive the following lemma:

Lemma 2.1 A right-continuous function C: [0,1]?> — [0,1] is a copula if and only if

(1) C(u,0) =C(0,v) =0 forall u,v €[0,1]

(ii) C(u,1) =u and C(1,v) = v forallu,v €[0,1]

(iii)  Cis quasi-monotone: Le. forany 0 < u; <u, <landany0 <v, <v, <1,
C(uz,v3) — C(uy, v2) — C(up,v1) + C(uy,v1) = 0.

Note that a combination of requirement (i) and (ii) checks whether the marginals are standard
uniform. The quasi-monotonicity condition (requirement (iii)) is also known as the rectangle
property: it simply means that C assigns non-negative probability to any rectangle [u,v,] X
[u,, v,] €[0,0] x [1,1] and ensures that the copula function is nondecreasing.

A nice general result follows from these properties of the copula: given two arbitrary univariate
cdfs F and G, any copula can be wused to construct a bivariate distribution

H(x,y) = C{F(x),G(y)} with margins equal to F and G8. Sklar (1959)’s theorem states that this
general result is not restrictive:

Theorem 2.1 (Sklar (1959); following Nelsen (2006)) Let H be a bivariate cdf with margins F and
G. Then there always exists at least one copula C such that,

H(x,y) = C{F(x),G(y)} forall x,y €R (2.1)

Furthermore, C is unique if F and G are continuous; otherwise C is uniquely determined on the
RanF X RanG, where RanF and RanG denote the ranges of the marginal distribution functions F
and G. Conversely, if C is a copula and given any distribution functions F and G, then the function H
defined by (2.1) is a bivariate distribution function with margins F and G.

Proof See Nelsen (2006)

” Nelsen (2006): A distribution function is a function F with domain R such that F is non-decreasing,
F(—00) = 0 and F(c0) = 1.
8 This statement can be proved by verifying the requirements of a cumulative distribution function (cdf)



Note that C is unique if and only if the marginal distributions F(x) and G(y) are continuous,
which we will assume throughout.

In addition, one can rewrite (2.1) as:
C(u,v) = H{F1(u),G1(v)} for all u € RanF,v € RanG (2.2)

Where F~1(u) = min{x:F(x) >u) and G !(v) = min{y:G(y) = u) denote the generalized
inverses of the marginal distribution functions F and G.

Sklar’s theorem implies that the choice of the copula is not constrained by the choice of its
marginals: given any set of uniform marginal distributions (F(x), G(y)) and any copula C,
equation (2.1) can be used to construct a joint distribution with the given marginal distributions.
This is great news for the flexibility of the copula. In stark contrast to standard multivariate
distributions, every copula can couple whatever continuous uniform marginals together with
their own predescribed interdependence. Intuitively, copulas “glue” the marginals together and
“shape” them to their own taste (Embrechts, 2008).

Copulas exist in many forms, each with their own dependence structure. Tail dependence is an
important distinctive characteristic of different copula specifications. To allow for asymmetric
tail dependence, it is often measured by coefficients of upper and lower tail dependence. The
coefficient for lower tail dependence can be defined by A, =lim,,0C(q,q)/q. Note that 4,
basically corresponds to the conditional probability that the random variable X is a tail event,
given that Y takes a value in its lower tail (Alexander, 2008). To measure upper tail dependence,
it is convenient to work with the survival copula (or rotated copula) of a copula C. The survival
copula can be interpreted as the mirror image of the copula C, and is defined as:

Cuv)=u+v—-1+C1—-u1-v), for all u € RanF,v € RanG (2.3)

The coefficient for upper tail dependence can now simply be defined as A, = limqloC_(q, q)/q.
Symmetric copulas have equal tail dependence and, more generally, admit the representation
C(uq,uy) = C (ug,uy). The characteristics of the popular copula families, such as Elliptical
copulas and Archimedean copulas will be discussed in section 2.3.

The flexibility of copulas as dependence measure attracted much interest in academic literature.
However, it should be noted that copulas also have their shortcomings. Mikosch (2006) for
example, provides several critical notes, and reminds us of the fact that copulas are designed to
describe dependence between random variables and not processes, i.e. the approach is static
rather than dynamic. For the purpose of time series modelling, Patton (2006) therefore
introduced a conditional copula specification as a multivariate distribution of uniform random
variables conditional on some information set F;_;. Patton provides an extension of Sklar’s
theorem, allowing to decompose H(x,y|F;—,) into the two conditional marginal distributions
F(x|F:—1) and G (y|F:_1) and the conditional copula C(. |F:_1):

Hx,y|Fe—1) = CF(x|Fr_1), G| Fe—1)|Fe-1} forall x,y €R (2.4)

In our implementation of multivariate density models in section 2.4 we focus on the conditional
copula specification, as it is more natural to consider dynamic forecasting models in the context
of time series variables.

10



2.3 Copula Families

In this section, we introduce several classical families of copulas and discuss their basic
characteristics. For greater generality, we will consider the multivariate case, where x denotes
(x4, .., X4) € R% and X stands for a random vector (X, ..., X;) in R,

2.3.1 Elliptical Copulas

Elliptical copulas are implicit copulas, in the sense that they are built from multivariate elliptical
distributions (Alexander, 2008). Since elliptical distributions generalize the multivariate normal
distribution, we first introduce the normal (or Gaussian) copula.

Consider a random vector (Xy,.., X;) from the multivariate normal distribution with mean
vector y and positive definite correlation matrix X. The marginal densities are standard normal

px) = % exp (—x2/2) while the joint density is d-variate normal:

_ (x—u)’E_l(x—u))

1
hs(xq, o, Xq) = Wexp ( > X1, Xg ER (2.5)

Note that the distribution functions of neither Hy(x;, ..., x4) nor ®(x) are explicit, they can only
be expressed as an integral. The copula of (X;, ..., X;) is called the Gaussian (Normal) copula with
the correlation matrix X for parameters and is defined as:

CE4 Uy, o Ug) = Hy{® T (uy), .., @7 (ug)}, Uy, . Ug € (0,1) (2.6)

Where & !(u) = min{x: ®(x) > u) is the generalized inverse of the standard normal
distribution function @®. The expression of the Gaussian copula is not explicit, but can be
obtained rather easily using the so called inversion method in (2.6).

The Gaussian (normal) copula density can be obtained by differentiating (2.6) and is of the form:

Rs{® ™ (g, ® T (ug)}

cs(Uq, oy Ug) = P P TR P T Uyq, .. Ug € (0,1) 2.7)
Such that c£® boils down to:

1 §al-ng
cE(uy, .., ug) = 7z €XP (— T)’ Uy, .., Ug € (0,1) (2.8)

Where & = (&~ *(uy), ..., ' (uy)) and I the d X d identity matrix. Also for marginals that are
not standard normal, the Gaussian copula density can be expressed as in (2.8). Given d
continuous marginal distributions F;(x;) and correlation matrix X, Alexander (2008) provides a
stepwise approach to construct a Gaussian Copula density:

Algorithm to construct a Gaussian Copula density (Alexander, 2008)
Step 1: Setu; = F;(x;) fori = 1 ...d for the (not necessarily normal) marginals
Step 2: Apply the inverse Gaussian distribution, & = ®~*(u;) fori = 1,...,n

Step 3: Use the correlation matrix X and the vector § in the copula density (2.8)

Figure 2.1: Algorithm to construct a Gaussian Copula density, given d marginal distributions F;(x;) and correlation
matrix X as introduced by Alexander (2008).
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The derivation of a Gaussian Copula as described above can be generalized to the elliptical
copula. To understand this connection, we first briefly describe the elliptical distribution.

If X~N4(u, %) then X = u + AZ, where Z~N4(0,1;) and A the Cholesky factor of Z, i.e. AAT = Z.
We introduce two random variables: U = Z/||Z||, and R = [|Z]|, with ||z]|, = /212 + ---+Zf,

such that the elliptical distribution can now be formally defined as:

Definition 2.2 We say that X follows an elliptical distribution with mean vector y, positive
definite dispersion matrix ¥ and radial part R if and only if X admits the following representation:

X =pu+RAU (2.9)

Where A is the Cholesky factor of X and U is a random vector independent of R and uniformly
distributed on the sphere S, = {z € R%: ||z||, = 1}.

Similar to the multivariate normal distribution, cdfs of elliptical distribution are (rarely) explicit.
The density however often is. If X has density h then there exists a non-negative function g, the
so-called density generator, such that:

1
h(x) = Wg{(x - w)'E (x — W}, x € RY (2.10)

For a proof and further details, see Fang et al (1990). For example, the density generator to
obtain the multivariate normal distribution is g = mexp (— ’Z—C) Indeed, the d-variate normal

distribution in (2.5) is obtained by substituting this specific density generator in function h(x) of
(2.10). In table 1 we list three common elliptical distributions that we use in this thesis, in terms
of their density generator g. The Student-t Copula CZTN and the Cauchy Copula C£® can also be
obtained using inversion method in (2.5). One should however substitute the inverse Gaussian
distribution (Cb_l(u)) for T, 1(u) and Tj 1(u) respectively, where T, 1(.) represents the inverse
Student-t distribution. The densities of the Student-t and Cauchy Copula can also be obtained
similarly to the Gaussian copula, by adopting the algorithm in figure 1 with two modifications.
First, one should again use T, *(u) and T; (u) instead of ®~*(u). Second, in Step 3 the more
general representation in (2.7) should be used instead of the Gaussian copula density in (2.8).

Family Elliptical density generator g(x) Tail dependence coefficients
) 1 x
Gaussian WGXP (— E) )[L = AU =0
r{(d + v)/2} Xy ~(d+v)/2 (1= p12)
Student-t — - = = — —_—
Heer e ) G B R
d+1
r {—} d+1 2(1 —
2 == . (1 —p12)
Cauchy W (1+x) 2 AL = Ay = 2T, (= A+,

Table 2.1: Three common families of Archimedean copulas with their Archimedean generator and tail
dependence coefficients. NB: the density generator is given in a general d-dimensional setting, whereas the
tail dependence coefficients are given for the bivariate copula, that is fixing d=2.
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The Gaussian and Cauchy Copula only have the correlation matrix ¥ as parameters, while the
Student-t copula has an additional degrees of freedom parameter v to control the degree of tail
dependence. Note that as a general result, the Student-t copula nests the Gaussian Copula when
v = o0 and the Student-t Copula is equal to the Cauchy Copula when v = 1. The relation between
the copulas can be nicely interpreted in terms of tail dependence. On one side of the spectrum,
there is the Gaussian Copula with zero (“minimum”) tail dependence, that is 1, = A1y = 0, as
described in section 2.1. At the other side of the spectrum we have the Cauchy copula with
(“maximum”) positive tail dependence, see table 1. The tail dependence of the Student-t Copula
can attain all values within this spectrum, and therefore is always positive and decreasing in the
degrees of freedom parameter v. The Student-t Copula is thus more flexible than both the
Cauchy copula and the Gaussian Copula, at the cost of estimating an extra parameter v.

Figure 2.2 visualizes the differences between the three copulas, showing the densities of the
Gaussian, Student-t and Cauchy copula and a sample of size n = 10,000 from the bivariate
copulas €<%, CZT_V and C$% From left to right we observe an increasing probability mass in the
corners near (0,0) and (1,1) (which in the remainder we will call the left and the right tail
respectively), implying increasing tail dependence.

As the general description of elliptical distributions suggests, there exist many other elliptical
distributions such as the Hyperbolic or the Pearson Type II distribution. Furthermore, one could
consider mixtures of elliptical distributions, or introduce skewed elliptical distributions. For the
purpose of this thesis however, we restrict ourselves to the symmetric elliptical distributions as
given in table 2.1. We consider these three specific distributions as they are often used in
practice (in particular the Gaussian and Student-t copula), and they can be easily compared.

GAUSSIAN COPULA p,, =05 STUDENT-T COPULA p,=05v=5 CAUCHY COPULA p,, =05

SN
A0
o

GAUSEIAN COPULA p,, =05

1

A

0.8 08

0.6 0B

0.4 0.4

0.2}

Figure 2.2: The three upper graphs show the density of the (bivariate) Gaussian Copula, the Student-t Copula
and the Cauchy copula respectively. The lower scatter plots show a simulation sample of n=10,000 of the
three corresponding copula specifications. In all graphs, the parameters are fixed to p;, = 0.5 and v = 5 (for
the student-t Copula).
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2.3.2 Archimedean Copulas

Where elliptical copulas are derived from multivariate distributions, Archimedean copulas are
based on an Archimedean generator function. If this generator function, which we denote by
P(u) throughout, satisfies certain conditions, Archimedean copulas can be built. This concept is
formalized in the following definition.

Definition 2.3 A non-decreasing and continuous function :[0,0) — [0,1] which satisfies the
conditions P(0) = 1 and lim,_, Y (x) = 0 and is strictly decreasing on [0,inf{x:y(x) = 0}]is
called an Archimedean generator. A d-dimensional copula C is called Archimedean if it permits the
representation

Cluq, .., ug) =P Hp(uy) + -+ P(uy)}, Uy, .., Ug € 0,1) (2.11)

For some Archimedean generator { and its (pseudo) inverse ¥~1:(0,1] —» [0,00) where by
convention ¥ (c0) = 0 and P ~1(0) = inf {u: Y (u) = 0}.

The density function of the Archimedean copula as given in (2.11) is

d
(o tg) = WD) + 4 p | [$e)  wug €0 212)
i=1

Since any convex, monotonic decreasing function can be used as Archimedean generator, a large
variety of Archimedean copulas exists. In this thesis we consider three common families of
Archimedean copulas, the Clayton, Gumbel and Frank copula. Their corresponding Archimedean
generator functions and tail dependence coefficients are summarized in table 2.2.

The Clayton copula is given as follows:
C§ (uy, ) = w0+ +ugf —d+1)"° (2.13)

The Clayton copula contains asymmetric dependence, as it does not contain upper tail
dependence, i.e. 1;; = 0, but positive lower tail dependence of 1, = 279, which is increasing in
its parameter 6. This implies that the Clayton copula is best suited for applications in which
negative outcomes are likely to occur together.

Archimedean generator y(x) Parameter Range Tail dependence coefficients

Family
1 A, =2"Y0,=0 if6>0
Clayt —(x7f - 0> —1 { L Ay
ayton g~ b A, =2y =0 ifo <0
Gumbel (—logx)? 6=>1 A, =0, Ay =2—2/0
e x 1
Frank —log (ﬁ) 6 ER A=Ay =0

Table 2.2: Three common families of Archimedean copulas with their Archimedean generator and tail
dependence coefficients.
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The expression of the Gumbel copula is given as:

C5™(uq, ., ug) = €Xp (—[(— logu)l + -+ (- logud)e]l/g) (214)

The Gumbel copula also contains asymmetric tail dependence. It has lower tail independence, i.e.
A, = 0, but upper tail dependence of 1;; = 2 — 21/9. Consequently, standard Gumbel copulas are
mostly used for applications in which extreme positive outcomes are likely to occur together.
One can also use the survival Gumbel copula (or rotated Gumbel copula), which is a mirror
image of the standard Gumbel copula. Consequently, tail dependence is reversed, such that
A, =2-2Y%and 1, = 0.

The Frank copula is given as:

Fr __1 (exp(=fuy)—1)...(exp(-bug)—1)
CET (s, . uq) = —<log (1 + g ) (2.15)
The Frank copula is symmetric and shows tail independence, similar to the elliptical Gaussian
copula. As compared to the Gaussian copula however, it turns out that for increasing parameters
the dependence in the center of the distribution is getting relatively stronger. The Frank copula
is therefore best suited for applications in which tail dependence is weak.

The differences between the different Archimedean copulas become apparent in Figure 2.3. We
display both the Copula densities and a sample of n = 10,000 from Cgl, C§* and C{". In order to
make the parameter values of the different copulas comparable, we express the parameter
values in terms of the Kendall’s tau t, a commonly used measure of concordance for copulas (see
Appendix 3 for details). The relation between Kendall’s tau 7 and the Archimedean generator
function Y can be given as:

Lo (t)
o Yo'(®)

7€) =1+4 dt (2.16)

Using this result we may derive the following expressions:

ayton copula: § = — :
Clay la: 6 = = 2.17
Gumbel copula: 6 = i (2.18)
Frank copula: [Miﬁ = % with D(8) = %fog ett—1 dt (2.19)

Figure 2.3 shows the results for T = 0.5. Note that T = 0.5 corresponds to the linear correlation
parameter of p;, = 0.71, as the relation between Kendall’s tau and p is given by p = sin (% T).

Appendix 4 provides figures of the six copulas considered in this thesis for different values of z,
such that the dependence structures of the copula specification can be directly compared.
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CLAYTON COPULA 8=2 GUMBEL COPULA 8=2 FRANK COPULA B=1574

Figure 2.3 The three upper graphs show the density of the (bivariate) Clayton Copula, the Gumbel Copula and
the Frank copula respectively. The lower scatter plots show a simulation sample of n=10,000 of the three
corresponding copula specifications. In all graphs, the copula parameter values are set to match Kendall’s tau
fixedtor = 0.5.
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2.4 Estimating Copula-based multivariate density models

An important assumption we make in this thesis, is that the parameters of the marginals can be
separated from each other and from those of the copula function.® This implies that the
estimation of the marginal distributions and the copula parameters can proceed separately. In
the context of this thesis, this assumption implies that the calibration of the parameters of a
copula based multivariate density model can be separated in multiple stages. The multistage
approach has the main advantage that it makes the estimation procedure more flexible.
However, a relative disadvantage is that the multistage procedure comes at the cost of a loss of
efficiency, as compared to the single step procedure in which the parameters of the marginal
distributions and their copula are estimated simultaneously. Parameter estimates of a copula
based density model may be obtained by either parametric, semi-parametric or nonparametric
estimation. In the remainder of this section we briefly discuss each of these three estimation
approaches, and provide several popular single stage and multistage estimation procedures.

2.4.1 Parametric estimation

The advantage of a fully parametric copula-based multivariate density model is that maximum
likelihood (ML) can be applied to obtain efficient estimates of the (conditional) copula and their
(conditional) marginals. The parameters of a d-dimensional multivariate density model based on
a conditional copula C are obtained by maximizing the following likelihood:

n

n
logfj(yj,tlj:t—l) +Z log C(F1(Y1,t|7:t—1)' Fz()’z,tw:t—ﬂ: ---:Fd(yd,tlj:t—l)lg:t—l) (2.20)
t=1j t=1

d
=1
Where F(y; ¢|F-1) and fj (v ¢|Fe-1),j = 1, ..., d, are the conditional marginal distributions and

densities respectively, and c(y]-,t|3-"t_1) is the conditional copula density, defined as:

d

d
o C(uy, oo, ug|Fr_qp) (2.21)

C(ul, ...,ud|Tt_1) = au
1 ass

The most straightforward way to estimate a fully parameterized copula-based multivariate
density model, consists of a single step in which all parameters in the above expression are
estimated simultaneously. Under the assumption that the parameters of the marginals can be
separated from each other and from those of the copula function, multistage procedures can be
introduced. A widely used method is the Inference Functions for Margins (IFM) procedure (Joe,
1997), given in figure 2.4. This approach basically divides the likelihood of (2.20) in a “marginal
part” (the left part of the expression) and a “copula part” (the right part of the expression) and
estimates the corresponding parameters in separate stages. The advantage of this approach is
that it is computationally relatively easy and tractable, but at the cost of efficiency compared to
the single-step approach. One could also use the two-step approach to decide on the most
appropriate copula family and then estimate all parameters (marginal and the selected copula)
in a final fully parametric round of estimation (McNeil et al, 2005).

9 This assumption is justified by our argument that in principle, the dependence structure of the copula
has nothing to do with the individual dependence structure of the marginals, see section 2.1.
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Inference Functions for Margins (IFM) (Joe, 1997)
Stage 1: Univariate ML: Estimate parameters of the conditional marginals (left part of (2.20))

Stage 2: ML: Estimate parameters of the copula (right part of (2.20))

Figure 2.4: Stepwise IFM method (see Joe, 1997) for parametric estimation of both the marginals and the copula

The main drawback of a fully parametric approach is that the results depend on correctly
specified distributions of both the marginals and the copula specification, which turns out to be
rather difficult in practice.

2.4.2 Semi-parametric estimation

If one is highly uncertain about the functional form of the marginals, one could consider non-
parametric estimation of the marginals. This method is rank-based and makes use of the
empirical cdf to obtain an estimate of Fj(.)1°:

n
1
Fin() = —— 1ZI(YM <) (2.22)

If the copula is estimated parametrically, this estimation approach belongs to the class of semi-
parametric estimation methods. A two step estimation procedure (Genest et al, 1995) is given in
figure 2.5 and is usually called the Canonical Maximum Likelihood. Its main advantage is that it
does not assume a structure of the marginals (Alexander, 2008), i.e. the procedure is robust to
misspecification of the marginal distribution. Working with ranks has several advantages; they
are always defined and are invariant by monotone increasing transformations of the marginals
(Genest and Favre, 2007). However, a major disadvantage of relying solely on ranks is that one
could ignore some valuable information about the variables of interest.

A compromise between fully parameterized and non-parameterized estimation of the marginals
is also possible. Chen and Fan (2006) introduce the semi-parametric copula-based multivariate
dynamic (SCOMDY) model which assumes a parameterized conditional mean and conditional
variance of the random variables under consideration. The procedure consists of three steps
which are summarized in figure 2.6. First, the conditional mean and variance are estimated
parametrically using Quasi Maximum Likelihood. The (standardized) innovations that result
from the first stage can now be used to estimate the marginals non-parametrically. In the third
step, Maximum Likelihood can be used to estimate the copula parameters.

Canonical Maximum Likelihood (Genest et al,1995):
Stage 1: Empirical CDF of the marginals to estimate the marginal distribution as in (2.22)

Stage 2: ML: Estimate parameters of the copula (right part of (2.20))

Figure 2.5: Stepwise approach for the Canonical Maximum Likelihood estimation procedure (Genest et al, 1995)

'* Note that the division is by n+1 instead of n to ensure that the marginals lie strictly in the unit cube, see
McNeil et al (2005)
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As any conditional mean and conditional variance specification can be used in the first step, the
structure of the SCOMDY model is very flexible. For example, one can choose a certain
(asymmetric) ARMA-GARCH model to capture the possible nonlinear, asymmetric dependence
structures of the marginals.

Semi-Parametric Copula-based Multivariate Dynamic (SCOMDY) (Chen and Fan, 2006)

Stage 1: Univariate Quasi Maximum Likelihood (QML): estimate the parameters of the
conditional mean and conditional variance of the variables of interest.

Stage 2: Apply (2.22) to the residuals from Stage 1 to obtain the marginal distributions Fj(.).

Stage 3: ML: Estimate parameters of the copula (right part of (2.20))

Figure 2.6: Stepwise SCOMDY procedure (see Chen and Fan, 2006) for semi-parametric estimation of the marginals
and parametric estimation of the copula

2.4.3 Non-parametric estimation

If the dependence structure of both the marginals and their copula specification are unknown
and highly uncertain, the copula € may be estimated non-parametrically by the empirical copula.
This method is based on a transformation of a random sample of (X;,Y;), ..., (X;;, ¥;,) to the pairs
of ranks (R4, S51), ..., (R, Sp). De Heuvels (1979) formally defined the empirical copula as:

1 v /R S;
Cn(u,v)=n+121(n+1ﬁu,n+1Sv>, u,v € [0,1] (2.23)
i=

Where C,, is an asymptotically unbiased estimate of C. In the empirical copula (2.23) both the
marginals and the copula are estimated non-parametrically, which has the obvious advantage
that it is free of parameter uncertainty. Moreover, the approach is robust to misspecification of
the marginals. However, relying solely on ranks also has its disadvantages. As highlighted in the
last subsection, nonparametric estimation could ignore valuable information about either the
marginal distributions or their copula structure. Furthermore, Alexander (2008) points out that
in practice the empirical copula can be very “spiky” in the sense that small changes in the sample
can cause a substantial change in the estimated parameters. Another disadvantage is that a loss
of efficiency occurs compared to the single stage parametric ML approach.
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3 Methods

The main goal of this thesis is to develop a new goodness-of-fit test that compares the predictive
ability of copula based multivariate dependence models in the left tail. That is, we basically focus
on the (out-of-sample) goodness-of-fit step, that shows which model best captures the basic data
characteristics in the left tail. To this end, we introduce scoring rules and equal predictive ability
tests based on KLIC scores, measuring the distance between the true probability density and the
candidate density. In this section, we first discuss the estimation and prediction procedures that
precede goodness-of-fit testing in Section 3.1, and elaborate on our newly developed goodness-
of-fit tests in Section 3.2.

3.1 Estimation Framework and Forecast Methods

As described in the last section, a wide range of estimation procedures is available to fit a copula
model to data. Our newly developed goodness-of-fit test has the advantage that it is valid under
any of the parametric, semi-parametric and nonparametric estimation procedures of copula
models as described in section 2.4. This is due to the fact that the test is valid under general
conditions by adopting the forecasting framework of Giacomini and White (2006). This specific
framework compares the accuracy of forecast methods rather than forecast models. A forecast
method is defined to be the set of choices the forecaster makes at the time of prediction,
including the density model itself, the parameter estimation, and the estimation window. In the
framework of Giacomini and White (2006) the (rolling) estimation window is required to be
finite, and the model parameters are estimated in a moving window of fixed size. The advantage
of comparing forecast methods rather than forecast models, is that in the former parameter
estimation is treated as an integral part of the density forecast. Consequently, parameter
estimation uncertainty is not an issue when comparing competing (copula based) density
forecasts, as it is part of the respective competing forecasting method. Comparing forecast
methods has the further advantage that it allows the comparison of both nested and non-nested
copula models. (Diks et al, 2009, 2010)

Adopting this framework of forecast methods simplifies our research considerably. We can
create an environment in which we can keep all things equal, except for the different selected
competing copula based density forecast models. To this end, we define an in-sample estimation
window of a fixed size of R past observations in which we estimate both the parameters of the
marginal distributions and the copula parameters. After the in-sample estimation step, we create
P one-step-ahead forecasts of the selected copula based density forecast models and apply our
test of equal predictive accuracy. In this way we isolate the performance of the selected density
forecasting models so we can focus on the goodness-of-fit step and need not to worry about
estimation uncertainty.
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3.2 Scoring rules and equal predictive accuracy tests

In this section we develop scoring rules that directly compare the out-of-sample tail behavior of
two competing copula specifications for multivariate density forecasts. These scoring rules can
be used as the basis for a formal goodness-of-fit test to evaluate the forecasting ability of
alternative copula specifications in tails.

In the literature, several likelihood-based scoring rules have appeared to measure the distance
between the proposed estimated density forecast and the true (but unobserved) density. We
will focus on scoring rules based on the Kullback-Leibler Information Criterion (KLIC), which
measures the distance between the density forecast and the true (but unknown) density. KLIC-
type scoring rules have a clear intuition and are particularly useful for testing relative predictive
accuracy, i.e. comparing one predictive density directly with another. We combine the KLIC-
based scoring rules introduced in Diks et al (2009) to compare multivariate density forecasts for
the entire density with the techniques proposed in Diks et al (2010) for evaluating univariate
density forecasts in tails.

In the next subsection, the KLIC-based scoring rule to compare forecasts of entire univariate
distributions will be further elaborated. This basic scoring rule is extended two different ways in
the forthcoming subsections. First, the KLIC-based scoring rule will be extended to compare
entire copula-based multivariate densities, following Diks et al (2009). Second, we extend the
univariate scoring rule to focus on specific regions of the distribution, such as the left tail,
following Diks et al (2010). Finally, we will come up with a newly developed scoring rule to
evaluate multivariate density forecasts in a specific region, based on Kullback-Leibler
divergence.

3.2.1 Comparing univariate density forecasts

The univariate Kullback-Leibler Information Criterion (KLIC) for a certain predictive density f;
is given as:

KLIC(ft) fpt(Yt+1)1 og ?tgtﬂ) dyi4q = IEt[log P (Yey1) — log ft(Yt+1)] (3.1)

where p; is the true conditional density. For the purpose of goodness-of-fit testing, the goal is to
minimize KLIC(ft). Intuitively, the smaller the KLIC score, the closer is f; to the true conditional
density p,. Therefore, a higher value of E,(log f;(Y;,,)) is preferred. In practice however, p; is
unknown, hence E,(log f;(Y;;1)) is unknown. In order to circumvent this problem, we introduce
the so called KLIC-score S;q:

Ser1 = log fr (Ves) (3.2)

Which has conditional mean E;(S;4;) = E;(log f;(Y41)). The KLIC-score has the advantage that
it is observable, given a certain predictive density. Furthermore, it has a clear intuition as it boils
down to a straightforward logarithmic scoring rule. S;, is high if an observation falls in a region
with high predictive density, and attains a low value if it falls in a region with low predictive
density. Obviously, the highest KLIC-score is preferred.
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Two competing predictive densities fA,t and fB,t can be statistically compared using a Diebold

Mariano type test statistic!! with the null hypothesis
Hy: E(log fa:(Ye41)) = E(log f5:(Yey,)  forallt=RR+1,..,R+P—1 (3.3)

with R the length of the rolling in-sample period, and P the number of observations in the
forecasting period. We can define the score differences as:

diyq = long,t(Yt+1) - long,t(Yt+1) (3.4)

. = 1 @T—
Next we can use the sample average of the score difference, dg p = ;Z{:}% d;,4, to construct a

Diebold Mariano (DM) type test statistic:

(3.5)

trp =

Q
=
o]

Gkp/P

Where 6}%,10 is a heteroskedasticity and autocorrelation-consistent (HAC) variance estimator of

the asymptotic variance o3 p = Var(vndg p), which satisfies 6%, — 0 p 2o (Diks et al, 2010).
Giacomini and White (2006) show that the test statistic tg p is asymptotically standard normally
distributed under the null-hypothesis of equal KLIC-scores!2.

3.2.2 Comparing multivariate density forecasts

In order to extend the basic KLIC score of (3.2) to a higher dimension d, we define a d-

dimensional vector of interest Y, = (Y1,t» Yotr s Yd,t)’with corresponding marginal distributions
Fi,F,, ..., F;. We consider a conditional copula based model C; as in (2.4) with log-likelihood:

Z;'i=1 108fj (yj,t) +10g ¢:(Fy (1), Fo2), o Fa(Var)) (3.6)

Where c; is the conditional copula density. Analogue to (3.1), the KLIC of a multivariate one-
step-ahead predictive density f; for Y., is given as:

KLIC(ft) = IEt[log Pe(Yip1) — {Z?:llog fj,t(yj,tﬂ) + log 6t(ﬁt+1)}] (3.7)

With U, = (Flyt(ylltﬂ),Fz_t(yzrtﬂ), w»Fat(Var+1))' the conditional multivariate PIT of ¢é,.
Again, the goal is to minimize KLIC(ft), so a higher value of IEt[Zjizllogﬁ,t(Yj,Hl) +
log ét(ﬁHl)] is to be preferred. Along the same reasoning as the univariate case, we introduce
KLIC-score S;,1:

d
Sevr = ) 108 fe(Vern) +10g (Ter) (38)
=1

11 Note that this is a general result, provided that the densities under consideration are normalized to have
unit total probability: by taking differences of the KLIC(£) in (3.1) the term E[log p;(Y;41)] drops out.

12 This statement holds if (i) {Z;} is ¢-mixing of size - q/(2q — 2) with ¢ = 2, or a-mixing of size -q/(q-2)
with q > 2; (ii) Eld;4,]?7 < oo for all t; and (iii) 62 = Var(¥ndgp) > 0 for all n sufficiently large. See
Theorem 4 of Giacomini and White (2006) for a proof and further details.
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Given d predictive marginal densities fj_t for j = 1...d and a conditional copula specification ¢,

St4+1 is observable. Two competing multivariate density models with different (well-defined)
conditional copula specifications é,; and Cg;, can now be compared using a DM-type test

statistic as in (3.5). Furthermore, we introduce identical predictive marginal densities fj_t for

both models, because we want to isolate the predictive performance of the different copula
specifications. Now we can test the null-hypothesis of equal KLIC-scores:

Hy: E(SA,t+1) = E(SB,t+1) (3.9
Since the identical predictive marginal densities cancel out, the null hypothesis boils down to:
Hy: E(log 6A,t(ﬁt+1)) = E(log éB,t(ﬁt+1)) (3.10)
We can define the score differences as:

dey1 =108 84t (Upyq) —log g (Upyq) fort+1=R+1,..,T=R+P (3.1D)

. 3 1 @r— .
If we compute the sample average of the score difference as dg p = ;ZL,% d; 41, We obtain a test-

statistic similar to (3.5):

dgpp
Qrp = —— (3.12)
r 1/6123,;’/}’

For 6}%‘}) we again use a conventional HAC-estimator of aﬁp. Qrp can be compared to the

standard normal distribution under the null-hypothesis of equal KLIC-scores.

A comparison of the univariate and multivariate scenario is given in table 3.1.

Univariate Density models Multivariate density models
Hy: E(S;l+1 = E(S§+1 E(log fA,t(Yt+1)) E(log 6A,t(0t+1))
= E(log fB,t(Yt+1)) = E(log 6B,t(ﬁt+1))13
Score differences: d,, , log fat(Yey1) —log f:(Yey1) log 8, :(Us11) —log é5:(Usyy)
O_lR,P aR,P

Test statistic tpp = —2 Qrp = 2—
/O’R,P/P /O‘R,P/P

Table 3.1: The ingredients for Diebold Mariano based goodness-of-fit tests in (3.5) and (3.12), to compare the
predictive ability of density forecast Model A and Model B based on Kullback-Leibler divergence. The left
column shows the univariate scenario, whereas the right column shows the multivariate version, under the
assumption that model A and B only differ in their copula specification.

" Under the assumption that model A and B only differ in their copula specification.
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3.2.3 Comparing univariate density forecasts in tails

In many practical applications a particular region of the density is of most interest. In finance for
example, major interest goes out to left tail behavior, for instance to calculate important risk
measures such as Value-at-Risk (VaR) or Expected Shortfall (ES). Therefore, it is relevant to
consider goodness-of-fit tests that evaluate the forecasting performance specifically in a certain
region of interest. An intuitive approach would be to multiply the scoring rule of (3.2) with a
weight function that is high in relevant regions, and low in irrelevant regions. In order to test
which model shows best performance in the region of interest, one could consider the Diebold-
Mariano test statistic of (3.5). Amisano and Giacomini (2007) proposed such a weighted
logarithmic (wl) scoring rule:

SWl(ftiJ’tH) = W(}’t+1)108ft(}’t+1) (3.13)

For the purpose of left tail evaluation, one could introduce a threshold weight function
W(V¢r1) = 1(y441 < 1) for a certain value of r, where 1(A) = 1 if A occurs and zero otherwise.
Two competing predictive densities, fA_t and fB,t, can be compared using a Diebold Mariano type
test statistic with the weighted score difference, which is defined as:

A A - R
dg‘fl-ll = W(Yt+1)[10g fA,t(yt+1) — log fB,t(yt+1)] and d}‘%’,lp = ;ZLI% d}:ﬁill (3.14)

Fort=t+1=R+1,..,T =R+ P. We can now test the null-hypothesis Hy: E[d}’};] = 0 with
test statistic:

Q|

wl
RP_~N(0,1) (3.15)

trp = =
JB&p/P

However, Diks et al (2010) report several limitations of this weighted logarithmic (wl) scoring
rule. Their main criticisms are based on the observation that the wl scoring rule as defined in
(3.13) ignores the total tail probability F(r). An implication is that $*! may be biased towards
density forecasts with higher F(r), i.e. fat-tailed densities. This may have adverse consequences,
as a fat-tailed density forecast may be favored over thin-tailed forecasts, even if the latter is the
true distribution from which the data are drawn. This observation makes the wl scoring rule
improper, following the terminology of Gneiting and Ranjan (2008). They define a scoring rule to
be proper if under the true conditional density p;, no density forecast f; can receive a better
average score than the actual conditional density p;.

Diks et al (2010) provide a clear illustration of the “improperness” of the wl scoring rule. They
compare the accuracy of fA't,a standard normal distribution, and fB‘t a fat-tailed Student-t
distribution with v degrees of freedom. They point out that for the case v = 5, the relative log-
likelihood score log f, :(Ve1+1) — log f5.:(V¢41) is strictly negative in the left tail (—oo,y*), with
y* = 2.5, see the left panel of figure 3.1. This implies that if the threshold r < y* is used, the
average weighted likelihood score difference &}’{ﬁ; can never be positive, and will be strictly
negative whenever there are observations in the left tail. This has far-reaching consequences for
the outcome of the test statistic in (3.15): even if the actual conditional density p; corresponds to
the standard normal distribution, the test statistic will always be negative and the fat-tailed
distribution fB’t will be favored over the (correct) standard normal distribution fA_t. This
example clearly shows that the wi scoring rule is improper.
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Diks et al (2010) introduce two proper scoring rules to compare univariate predictive densities
in tails, based on conditional likelihood (cI) and censored likelihood (csI).

Conditional on the fact that Y;, 4 is a tail event, we obtain the conditional likelihood scoring rule:

[ft(yt+1)

SUfe Yer1) = 1(Yesr < 1)log (3.16)

F@)

This cI scoring rule is proper as the probability f,(y,4;)is normalized with the total tail
probability F(r) for the region of interest. Moreover, it allows for different tail behavior in the
sense that it defines the distribution of f conditional on the outcome of I(y;y; <7). A
disadvantage of $¢ is that it only evaluates the predictive density f;(v;,,) relative to F(r) for
V¢+1 < 7. This implies that the information about F(r) is lost and the focus is only on the shape
for y,,1 < r. A consequence is that the cl/ scoring rule does not differentiate between density
forecasts with similar tail shape, even if the total tail probability is totally different.

The censored likelihood scoring rule combines the information of the total tail probability F(r),
and the actual value of f;(y,,,) given that Y, is a tail event. The csl scoring rule is given as:

SCSl(ft;yt+1) =141 =< 7) Ingt(yt+1) +1(Yes1 > 1) log[l - ﬁ(r)] (3.17)

Similar to S, the csl scoring rule is proper (in the sense that it corrects for total tail probability)
and takes into account tail behaviour. Intuitively, S°! corrects S¥! with information from the
total tail probability F(r). It “shifts” the wl scoring rule to the right, as the correction term
I(ye41 > 1) log[1 — F(r)] is always positive. Compared to cl scoring rule, the csl scoring rule
uses more information, as it assigns nonzero scores to observations outside the region of
interest (y;,;, > r), whereas S fixes these scores to zero. The csl scoring rule however ignores
the shape of f;(y,,,) for values that fall outside the region of interest (y;4; > 1).

log likelihood ratio
empirical COF

3 . . . . .
4 -3 -2 -1 0 1 2 3 4
Yt

Figure 3.1: Both figures compare the pdf of the standard normal distribution (Model A), with the
(standardized) Student-t(5) distribution (ModelB). The left panel shows the relative log-likelihood scores
log fA,t(ytH) —log fg‘t(ytﬂ). The right panel shows the empricial CDFs of the mean relative scores for the
weighted logarithmic (wl) scoring rule in (3.14), the conditional likelihood (cI) scoring rule in (3.18) and the
censored likelihood (csl) scoring rule in (3.19) for a sample size of n = 2000 independent observations from a
standard normal distribution. We use the threshold weight function I(y,,; < 2.5) and the scoring rule is
defined as the score for the (correct) standard normal distribution minus the (incorrect) student-t
distribution. The graph is based on 10,000 replications. (See Diks et al, 2009)
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The proposed proper scoring rules can be interpreted in terms of Kullback-Leibler divergence,
such that the relative scores of competing models can be computed:

dt(f:-ll-l = SCl(fA,t;yt+1) - SCl(fB,t;yt+1) (3.18)

dfil1 = SCSl(fA,tF}’tH) - SCSl(fB,t;yt+1) (3.19)

These relative scores can be used as the basis for the Diebold Mariano type test statistics as in
(3.15) to test the null-hypothesis of equal predictive ability:
. __drp
tR,P F "’N(O,l) (320)
Gip/P

Diks et al (2010) illustrate the properties of these scoring rules using the same example as
before, comparing fA’t, the (correct) standard normal predictive density, with fB_t, the fat tailed
standardized-t distribution with v = 5. Using the results from the left panel of figure 3.1, we set
the threshold value of weight function I(y;,; < r) to r = —2.5. The mean relative scores of the
weighted logarithmic scoring rule dj5 in (3.14), the conditional likelihood scoring rule dg, in
(3.18) and the censored likelihood scoring rule &ﬁfﬁ in (3.19), are compared using the empirical
CDFs for series of n = 2,000 independent observations from a standard normal distribution,
based on 10,000 replications.

The right panel of figure (3.1) clearly shows that the (improper) wl scoring rule shows a bias
towards the incorrect Student-t distribution, with almost exclusively negative mean relative
scores, indicating a lower score to the (correct) standard normal distribution. The proper
scoring rules do not suffer from this bias and show mostly positive scores. It should be noted
that the mean relative scores based on censored likelihood show the best results in the sense
that they show more positive scores, and stochastically dominate the both the weighted
likelihood and conditional likelihood scores (in this experiment).

Diks et al (2010) also show that these scoring rules can be generalized to more general weight
functions w;(y), which may focus on different regions of interest and are allowed to be dynamic
(e.g. using a time-varying threshold ;). Also in the general context, different predictive densities
can be compared using Kullback-Leibler divergence.
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3.2.4 Comparing multivariate density forecasts in tails
The theory presented in section 3.2.3 can be extended to the multivariate case. Instead of

focusing on the tail behavior of a univariate density forecast f,(y;4,), we are now interested in
the tail behavior of the multivariate density forecast f, for ¥,,,, where ¥, = (Yl,t, s Yd‘t)’ is the
vector of interest with corresponding conditional marginal distributions Fy ¢, ..., Fg.,j = 1, ..., d.
Therefore, it is convenient to work with the KLIC-score of multivariate density forecasts as in
(3.7). We reintroduce the conditional copula C; with corresponding conditional density c;, and

Uprr = (Fre (Yoo o Fd,t(yd,t))' its multivariate conditional PIT.

In order to focus on the left “tail” of the copula, we introduce the threshold weight function

w(Ue1) = [(Uepq < 17) where ugq = (ug 41, ...,udltﬂ),, j=1,2..d and r a d X 1 vector of
threshold values r € [0,1]. In the two-dimensional case, one could visualize this weight function
as focusing on a “block” of size r X r in the lower left corner of scatter plot, see the area
highlighted with the blue scatter points in the left corner of the graphs in figure 3.2. Using this
multivariate threshold weight function, we can extend the three scoring rules as introduced in
the last subsection to a higher dimension. For the weighted likelihood scoring rule in (3.13) we
obtain:

d
SWl(fti ét;ut+1) =I(Uugyq <7) Z log (fj,t(}’tﬂ)) + log( ét(ﬁt+1)) (3.21)

j=1

For the conditional likelihood (cI) scoring rule in (3.19):

d S —~
2 A it (Vet1) A
SCl(ft, ct;ut+1) =I1(ug <71) Zlog —— Jic yHlA +log| —— t( Hl} (3.22)
=1 Ce (F1,t(7”); - Fd,t(r)) Ce (F1,t(7”); e Fd,t(r))
For the censored likelihood (csl) scoring rule in (3.20):
da
SCSl(fD ét;ut+1) =1(Uug <7) Z log (ﬁ'.t(}’tﬂ)) + log ( ét(ﬁt+1))
=1
+1(ueys > 1) log (1 G (R, ...,Fd,t(r))>] (3.23)

Gaussian Copula py, =05 Student-t Copula p,,= 0.5 v=5 Cauchy Copula p,, =04

0.g

Figure 3.2: For three elliptical copulas (from left to right the Gaussian, Student-t(5) and Cauchy Copula), the
region of interest is highlighted with the blue scatter points for weight function I(u, u, < r) and r=0.1.
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Let us reintroduce the two competing multivariate density models from section 3.2.2, Model A
and Model B, that only differ in their copula specification (that is, the corresponding marginal
distributions of both models are identical). The relative difference in scoring rules can now be
computed as:

dipq = S*(ft, Cats ut+1) - S*(ft ,Cpt; ut+1) (3.24)

Where (*) stands for the wi, cl or csl scoring rules as in (3.22), (3.23) and (3.24). The score
differences between Model A and Model B for the three scoring rules can be expressed as:

dg{l—ll = I(ul:+1 <r) _10g(EA,t(ﬁt+1)) - IOg(EB,t(ﬁtﬂ))] (3.25)
¢, (0 ¢5, (U
dft, = 1(upq < 1) |log —— a:( le —log| —— A t+13 (3.26)
Cae (FL:(T); oy Fd,:(’”)) Cpy (Fl,t(r)l ey Fd,t(T))

dfil1 =1(Ugyq <7) [log EA,t(ﬁt+1) — log EB,t(ﬁt+1)] +
(Upyq > 1) [log(l ~ Cae (B, ...,ﬁd,t(r))) “log (1 ~ G (B, ...,F'd,t(r)»] (3.27)

As before, these relative scores can be used as the basis for the Diebold Mariano type test
statistic for multivariate density forecasts as in (3.12). We test Hy: E(SA,t+1) = E(SB,t+1) of equal
predictive ability by using the test statistic:

di,p
|6%/P

Where 6,%,}, is a conventional HAC-estimator of the sample variance and (*) symbolizes wi, cl and

Qip = fort+1=R+1,..,P+R (328)

csl. The obtained test statistics can be compared with the standard normal distribution.

The question rises whether the newly developed scoring rules exhibit similar characteristics as
their univariate counterparts. Since our particular interest goes out to the question whether the
proposed scoring rules are proper, we extend the example presented section 3.2.3 to the
bivariate case. We replace Model A from section 3.2.3 (the standard normal distribution) for the
independent bivariate Gaussian copula (CAGI?) and the (fattailed) Student-t copula is set as the
competing model (Cg’%). As a first graphical check to get a sense of the differences between the
two models, we provide the relative log-likelihood log é5¢ (v¢41) — log éf ;(V¢41) in the three-
dimensional plot in the left panel of figure 3.3. It is striking to see that in the relative log-
likelihood scores are strictly negative in the corners of the figure, i.e. in the “tails” of the copula
distribution. This implies that if the threshold value r is chosen to be small enough (r < ca. 0.1),
the average weighted likelihood score ci}’{}, (from equation 3.25) can never be positive and is
strictly negative whenever there are observations in the region of interest. Note that this
observation is similar to the univariate case, and along the same line of reasoning we conclude
that weighted likelihood scoring rule is improper.
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Analogue to section 3.2.3, we compare the behavior of the mean relative scores of the wl scoring
rule, the cl scoring rule and the csl scoring rule in a simulation of n = 2,000 independent
samples of Model A (Cf_?) and Model B (Cgft‘), with 10,0000 replications. In the right graph of
fiure 3.3 we display the simulation results of d%};, d¢., and d¢$}, from (3.25), (3.26) and (3.27)
with the threshold value fixed at r = 0.1. The results are very similar to those of the univariate
case. As expected from the left graph of figure 3.3, the wl scoring rule turns out to be improper,
because all mean relative scores are negative, indicating a clear bias towards the (incorrect) fat-
tailed model. The proper cl and csl scoring rules do not suffer from this bias and show (mostly)
positive scores. Again, the csl scoring rule shows the best performance with the highest (and
strictly positive) mean relative scores and stochastically dominates the other scoring rules.

m04-06

0.2-0.4 0.8H
50002
u-0.2-00

06}
u-04-0.2
0604

emprical CDF

04}
u-0.3-0.6
5-10-08 0sl
u-12--10

m-14-112

Figure 3.3: Bivariate extension of figure 3.1. We compare the density of the independent Gaussian Copula
(Model A), with the independent Student-t(5) Copula (Model B). The left panel shows the relative log-
likelihood scores log ¢5%(v,+1) —log €} ;(¥¢+1)- The right panel shows the empricial CDFs of the mean relative
scores for the weighted logarithmic (wl) scoring rule (3.25), the conditional likelihood (cI) scoring rule (3.26)
and the censored likelihood (csl) scoring rule (3.27) for a sample size of n = 2000 independent observations
from a independent Gaussian Copula. We use the threshold weight function I(y,,; < 0.1) and the scoring rule

is defined as the score for the (correct) Gaussian Copula minus the (incorrect) Student-t Copula. The graph is
based on 10,000 replications.
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4 Monte Carlo Simulations

In this section we assess the finite sample properties of the predictive ability tests based on the
weighted logarithmic (wl) scoring rule in (3.21), the conditional likelihood (cl) scoring rule in
(3.22), and the censored likelihood (csl) scoring rule in (3.23). Specifically, we focus on the size
and power properties of the test of equal predictive ability of two competing multivariate
density forecasts based on the Diebold-Mariano test statistic as given in (3.28).

We test the null hypotheses that the two competing predictive densities have equal expected
scores, versus the alternative hypothesis that one of the distributions has better predictive
ability, or:

52 E{jﬁ:ﬂzg} fort=R,R+1,..,R+P—1 (4.1)
Where * denotes either wi, cl or csl, such that the score differences as given in resp. (3.25), (3.26)
and (3.27) are obtained. As before, R denotes the length of the rolling in-sample window and P
denotes the number of one-step-ahead density forecasts. The one-sided alternative hypothesis is
chosen to test the properness of a scoring rule, i.e. to test whether a scoring rule on average
favors a correctly specified density forecast over an incorrect one.

4.1 Size

This section contains a bivariate extension of the Monte Carlo simulations of Diks et al (2010) in
which they assess the size properties of univariate scoring rules in tails.

In their article, Diks et al (2010) design a case in which the competing density forecasts under
consideration are both “equally (in)correct”, independent of the value of the threshold r. Key
insight is to focus on the central part of the distribution by taking the threshold weight function
w(y) = I(—r < y <), and choosing the data generating process (DGP) a symmetric conditional
density with mean zero. Two competing densities are defined: f; (x) which is the DGP shifted to
the right with a conditional mean fixed at a certain positive constant A > 0, while f;(x)
corresponds to the DGP shifted to the left with conditional mean fixed at - A. Diks et al (2010)
emphasize that this test-scenario is suitable for assessing the finite sample size properties of the
proposed Diebold Mariano type test statistic as in this scenario the two competing predictive
densities are “equally incorrect”. This follows from the fact that the simulation setup is entirely
symmetric, and the scoring rules considered are invariant under a reflection of zero under both
the DGP and the two competing predictive densities. Note that the two competing density
forecasts have equal predictive accuracy for all values of r, due to the focus on the central part of
the distribution.
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The simulation experiment of Diks et al (2010) can be extended to a multivariate case. For
simplicity, we focus on 2 dimensions and the Gaussian copula. Let f(x) and g(y) denote i.i.d.
standard normal distributed marginal distributions, where we use the notation F(x) = u and
G(y) = v, with u,v € [0,1] for the corresponding cdfs. Furthermore, we take an independent
Gaussian copula as DGP: C5%,(u, v). In the bivariate case the correlation parameter p;, = py; is
the only parameter of the Gaussian copula (which is thus set to zero in the DGP). At this point,
we introduce two competing Gaussian copulas C{%(u,v) and C5%(u, v) with their respective
correlation parameters fixed at p;, = —0.7 and p;, = 0.7 respectively, to assure equal distance
from the DGP. In order to focus on a central, symmetric part of the copula distribution, we
introduce the weight function w(u,v) =Ir<u<l-rr<v<1-r), with 0 <r <051 A
graphical illustration of the situation is given in figure 4.2, for a sample of n = 1000 observations
and r = 0.4. For this combination of DGP and predictive copula specifications, the relative scores
di,, of the wi, cl and csl scoring rules based on w(u, v) are identical. This is due to the fact that
the two competing copula specifications have equal distance from the DGP and their total
probability mass in the region of interest is equal (indicated by the “block” of blue dots in figure
4.1) due to the symmetric property of the Gaussian copula.

DATA GENERATING PROCESS
Gaussian Copula rho=0

CANDIDATE A v CANDIDATE B
Gaussian Copula rho=-0.7 Gaussian Copula rho=0.7

Figure 4.1 Simulation design with equally incorrect predictive copula densities independent of the choice of r.
The DGP is set as an independent Gaussian Copula (upper scatter plot), while the two competing predictive
Gaussian copulas have their correlation coefficients fixed at resp. p;, = —0.7 (left graph) and p4, = 0.7 (right
graph). The focus is on the central part of the distribution with weight function w(u,v) =I(r<u<1-r,r <
v <1 —r),withr = 0.4, and is highlighted with the blue dots in the three scatterplots.

! Note that the probability mass of this weight function corresponds to a “block” in the center of the copula
distribution and is always positive due to the quasi-monotonicity of copulas, see requirement (iii) of lemma 2.1.
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We use the test as defined in (3.28) with the null hypothesis of equal predictive accuracy of the
two competing densities against the alternative that the C{%(u, v) has better predictive ability.
We compute the one-sided average rejection rates (at nominal significance levels of 1%, 5% and
10%) as a function of the threshold value r. The sample size of the simulation experiments is
chosen to be dependent on the threshold level r, such that the expected number of observations
within the region of interest is constant at a value m. We do this by setting the sample size equal
tom/Pr<u<1-—rr<v<1-r). In this way, a fair comparison of rejection rates can be
made for different threshold values. The rejection rates of the tests are expected to be very close
to the nominal significance levels, for every choice 0 < r < 0.5.

Figure 4.2 depicts the results of the size experiments for m = 50 and m = 100, based on 10,000
replications. The rejection rates of the simulations follow our expectations, as they are rather
close to the nominal significance levels for all values of r. For m = 50 and m = 100 the size
properties of the predictive accuracy test appears to be satisfactory. Results for m < 20
however, show less stable results. Unreported results for m =5 and m = 10 show a slight
overestimation of the rejection rates for small values of r, which slowly converges to the nominal
significance level for r — 1. Apparently, the asymptotic distribution of our Diebold Mariano
type test statistic is not a suitable approximation of the real (small-sample) distribution. For
sample sizes with m smaller than 20, one could better use bootstrapping to get a good
approximation of the true distribution. This may be an interesting topic for further research.

SIZE EXPERIMENTS m =250 SIZE EXPERIMENTS  m =100
0.12 T T T T T T T T T 012

10% significance 10% significance
o MWM i MM_/\/\A\/\/\_/\/\/\
0.08F E 008t 2
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rejection rate

0.02f 1 0.0z 1% significance
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R s
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L 1 1 L 1 1
005 01 015 02 025 03 035 04 045 0 005 01 015 02 025 03 035 04 045
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Figure 4.2: One-sided rejection rates to assess the size properties of the equal predictive ability test as
defined in (3.28) when using the weighted logarithmic (wl), the conditional likelihood (cI) and the censored
likelihood (csl) scoring rules under the weight functionI(r <u<1-rr<v<1-r),with0 <r < 0.5, based
on 10,000 replications. The sample size is chosen to be m/P(r<u<1-r,r <v <1-r), and we provide
results for m=50 (left) and m=100 (right). The DGP is an independent Gaussian copula, whereas the two
competing Gaussian copulas have correlation coefficients of resp. p;, = —0.7 and p4, = 0.7. The graphs show
rejection rates against the alternative that the copula with p;, = —0.7 has better predictive ability.
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4.2 Power

To assess the power properties of our test statistics based on multivariate scoring rules, we
perform several simulation experiments where one of the competing density forecasts is correct,
i.e. corresponds exactly with the underlying DGP.

The simulation experiment for two dimensions is set up as follows. As before, we introduce two
independently drawn standard normal marginal distributions f(x)and g(y), and an
independent Gaussian Copula as DGP, i.e. the correlation parameter p;,is fixed to zero.
Furthermore, we introduce two competing copula specifications. The first is equal to the DGP,
that is an independent Gaussian copula, C{%(u,v), the second is an independent students-t
copula with degrees of freedom fixed to five, CZ(u,v). We focus on the left tail of the copula
specification by choosing weight function w(u,v) = I(u,v <r) where 0 <r < 1. Again we
compute one-sided rejection rates against the null hypothesis of equal scores as given in (3.28).
We compute two different alternative hypotheses in order to asses:

“True Power”: Alternative Hypothesis is: correct copula performs better
“Spurious Power” : Alternative Hypothesis is: incorrect copula performs better

All things kept equal, we repeat this experiment for a Student-t Copula as DGP. Obviously, now
Cg (u, v) is the correct copula specification, whereas CAGa (u,v) is incorrectly specified. In all, we
thus provide four different experiments: we assess true and spurious power for both a Gaussian
copula as DGP and a Student-t copula as DGP. We use the sample size m/P(u <r,v <1 —r), for
a given threshold value r and a fixed constant m. Figure 4.3 and 4.4 depict the results of the four
power experiments for resp. m = 5 and m = 40 expected observations in the region of interest,
based on 1,000 replications?!s. Several conclusions can be drawn.

First, the power of the wl scoring rule appears to depend strongly on the choice of the DGP and
the value of the threshold r. In case of the Gaussian copula as DGP, the wl scoring rule performs
poorly for both sample sizes. For the small sample size in figure 4.3, the true power is close to
zero for all threshold values r and the spurious power is high, in particular for values of the
threshold values r < 0.2. The situation does not improve much for the large sample size in figure
4.4. The true power improves slightly in the middle region of the copula (0.4 < r < 0.6), but on
the flipside the spurious power in the tails of the copula soars (to even ca. 100% for r < 0.2).
This implies that the substantial spurious power of the wl scoring rule is not a small sample
problem. If the DGP is set to the Student-t(5) copula however, the wi scoring rule performs very
well. Loosely speaking, compared to the results of the Gaussian DGP the roles for true power and
spurious power are reversed: now the spurious power is approximately zero for both sample
sizes, while the true power is high (in particular for low threshold values) and increases when
the sample size becomes larger. These conflicting results of the wi scoring rule are problematic if
the correct copula specification is unknown, which often is the case in practice. If the null
hypothesis of equal predictive ability is rejected based on the wl scoring rule, this could be due
to true power as in the upper right graphs of figure 4.3 and 4.4, or to the spurious power
exhibited in the lower left figures. This implies that (for this simulation design) the wl scoring
rule is unreliable, in particular for small values of r where spurious power can be close to 100%.

> The number of replications is reduced by the amount of cases when zero observations fall in the region of
interest (this might occur as m denotes the expected number of observations in the region of interest). These
(rare) cases are deleted because in test statistic (3.29) this implies &;Z‘P = 6}3,;, = 0, i.e. division by zero.
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TRUE POWER Ha: (correct) Gaussian copula performs better (m=5)
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Figure 4.3: One sided rejection rates at significance level 5% to assess the power properties of the equal
predictive ability test as defined in (3.28) when using the weighted logarithmic (wl), the conditional
likelihood (cI) and the censored likelihood (csI) scoring rules under the weight function w(u,v) =I(u,v <r)
where 0 < r < 1, based on 1,000 replications and m=5 expected observations in the region of interest. For the
graphs in the left (right) columns, the DGP is the independent Gaussian Copula (independent Student-£(5)
copula). The graphs in the top (bottom) panels show average rejection rates against superior predictive
ability of the correct (incorrect) copula specification, i.e. true (spurious) power.
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Figure 4.4: This figure is similar to Figure 4.4, but now with m=40 expected observations in the left tail.
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Second, similar patterns of spurious power of the wi scoring rule are not apparent for the proper
conditional (cI) and censored likelihood (csl) scoring rules. The proper scoring rules show
limited spurious power with a maximum of ca. 30% in the lower right chart of figure 4.4 (m =5
with the Student-t copula as DGP). In stark contrast to the wl scoring rule, this appears to be a
small sample problem, since for m = 40 the maximum spurious power quickly decreases to
approximately 5% for both the cl and csl scoring rule, which we deem acceptable.

Third, we observe that in general the csl scoring rule performs better than the c/ scoring rule for
both sample sizes. The true power of the csl scoring rule turns out to be at least as high as the c/
scoring rule, in particular for r < 0.5. This can be explained by the fact that the csl scoring rule
uses more information by censoring the observations outside the region of interest, as discussed
in section 3.2.3. In particular for purposes requiring small values of r, such as risk management,
the csl scoring rule might therefore be considered as favorable to the cl scoring rule.

Fourth, in case of the (fat-tailed) Student-t Copula as DGP, the cl and csl scoring rules perform
somewhat disappointing in terms of true power. For all threshold values considered, the true
power of the wl scoring rule performs at least as good as the cl and csl scoring rule, for both
sample sizes. However, the true power for threshold values of r < 0.1, i.e. the left tail, is
increasing for larger sample size, which is an encouraging result. In particular the performance
of the csl scoring rule is promising, as the true power in the left tail is close to 100% for m = 40.

Fifth, for large values of r, that is r = 1, the wl, ¢l and csl scoring rules behave similarly. This
pattern is as expected, because analytically, the scoring rules are equal for r = 1.16
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Figure 4.5: Proxy of the mean relative scores for sample sizes m=5 (left graphs) and m=40 (right graphs),
when using the weighted logarithmic (wl), the conditional likelihood (cI) and the censored likelihood (csI)
scoring rules under the weight function w(u,v) = I(u,v < r) where 0 <r < 1, based on 10,000 replications.
The upper (lower) graphs show the results for the Gaussian copula (Student-£(5) copula) as DGP.

'*If threshold r attains its maximum value of 1, the total tail probability ¢, (F'Lt(r), - F‘d,t(r)) equals 1
and I(u.4q > 1) is zero, i.e. the scoring rules given in (3.21), (3.22) and (3.23) are equal.
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To understand the behavior of the power curves and their relating conclusions more fully, we
proceed by examining the expected mean relative scores of the wi, cl and csl scoring rules. Recall
that the mean relative score is a crucial ingredient for the power plots due to its close relation
with test statistic in (3.28). To obtain a “proxy” of the mean relative scores we simulate 1,000
independent samples from the competing copula specifications A and B. We set Model A equal to
the correct copula specification (equal to the DGP) and calculate the mean relative scores
following (3.25), (3.26) and (3.27). The simulated values of E[d};, ], E[d. 4, r] and E[dEY, ] are
depicted in figure 4.5 for both the Gaussian DGP and the Student-t(5) DGP and sample sizes with
m = 5 and m = 40. Several observations can be made.

First, we observe that figure 4.5 is in line with the power plots in figure 4.3 and 4.4. The areas
with negative expected mean relative scores of the wl scoring rule correspond to the regions
where spurious power is high. Furthermore, the pattern of stronger power for the csl scoring
rule as compared to the cl scoring rule is also apparent in figure 4.5. In particular for small
values of 1, the curve of the expected mean relative score of the csl scoring rule exceeds the curve
corresponding to the cl scoring rule. These results should be expected, since the mean relative
score serves as numerator for the test statistic in (3.28).

Second, the curves of the two graphs at the left hand side in figure 4.5, corresponding to the
small sample size (m = 5) appear to be less stable than the graphs at the right hand side
(m = 40). To gain better insight in the uncertainty of the mean relative scores, we provide the
10% and 90% percentiles for the Gaussian DGP in figure 4.6 and the Student-¢(5) copula as DGP
in figure 4.7. By comparing the left and right graphs of both figures, we observe that increasing
the sample size tightens the confidence interval of the mean relative scores considerably, for all
three scoring rules considered. At this point, it should be emphasized that decreasing pattern of
the true power plots for the cl and csl scoring rules in figure 4.3 and 4.4 is due to the decreasing
sample size, and not due to lower mean relative scores (in fact, the expected mean relative score
are increasing for larger threshold values r). Indeed, if the threshold value r goes up, a smaller
sample size is required to assure m expected observations in the region of interest. In general,
the (absolute) test statistic in (3.28) decreases with sample sizel”. In order to obtain reliable test
statistics, it is therefore crucial to take a large enough sample size.

Because we are mostly interested in the left tail of the copula distribution, we analyze the lower
graphs of figure 4.6 and figure 4.7 in more detail, since these graphs “zoom” in the tail of the
copula distributions with r € [0.01,0.1]. It is striking to see that the overlap of the (80%)
confidence intervals of the three scoring rules is very limited in case of the large sample size
(m = 40). For the Gaussian DGP in figure 4.6, the confidence interval of the csl scoring rule
clearly shows the highest mean relative scores, and thus outperforms the other scoring rules.
The cl scoring rule ranks second, and the wl scoring rule performs the worst with an entirely
negative confidence interval. Note that the bad performance of the wi scoring rule is in line with
its excess spurious power for the Gaussian DGP, which can be understood from the example and
related discussion concerning figure 3.3. In case of the Student-t(5) copula as DGP in figure 4.7,
the wl scoring rule ranks best, followed by the csl and cl scoring rules. These rankings exactly
correspond to the rankings that are apparent from figure 4.3 and 4.4. Again, this suggests that
the power plots and the figures depicting the expected mean relative scores are complementary.

' NB: This effect is direct through a smaller sample size P and indirect through increasing uncertainty 68 p-

36



GAUSSIAMN DGP- 10% and 30% percentiles expected mean relative scores (m=>5) GAUSSIAN DGP: 10% and 90% percentiles expected mean relative scores (m=40)

—wl
------- csl
o @ — —l
5 005F S 005F 1
@ @
@ o
= = i —
=] = =
g = .
g 0 § 0 = ——
£ £ e
e
St
005} b 0051 1
1 1 1 L L L 1 1 1 1 1 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 0.1 0z 0.3 0.4 0.5 0.6 07 0.8 0.9
threshold r threshold r
GAUSSIAN DGP: 10% and 90% percentiles expected mean relative scores (m=5) GAUSSIAN DGP: 10% and 90% percentiles expected mean relative scores (m=40)
6 . . . . r . r r 6 T T T T T T T T
o
= =)
= -
=Y 1o ]
@
5 g 2p
= &
z R i
= =
= E
& § 2t 4
£ £
4t
& . . . . \ . \ \ 5 . . . . . . . .
0.01 002 003 004 005 006 007 008 009 01 001 002 003 004 005 006 007 008 009 01
threshold r threshold r

Figure 4.6: 10% and 90% percentiles for the upper two graphs of figure 4.5, i.e. the mean expected relative
scores of comparing an independent Gaussian Copula with the independent Student-t(5) Copula, with the
independent Gaussian Copula as DGP. The two graphs in the left (right) panel correspond to the m=5 (m=40)
expected observations in the region of interest. The upper two graphs show the results for the full range of r,
thatisr € [0.01, 1], the lower two graphs “zoom” in the left tail of the copula with r € [0.01, 0. 1].
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Figure 4.7: 10% and 90% percentiles for the lower two graphs of figure 4.5, i.e. the mean expected relative
scores of comparing an independent Student-t(5) copula with the independent Gaussian copula, with the
independent Student-t(5) copula as DGP. The two graphs in the left (right) panel correspond to the m=5
(m=40) expected observations in the region of interest. The upper two graphs show the results for the full
range of r, thatis r € [0.01, 1], the lower two graphs “zoom” in the left tail of the copula with r € [0.01, 0. 1].
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To examine how the power changes for varying values of the correlation parameter p;, the
results of the above simulation experiments for p;, = 0.3, 0.6 and 0.9 are given in Appendix 5.
Before we summarize the main findings of these results, we examine the relative log-likelihood
scores (log cgi(ytﬂ) — log cf ((ye+1)) for increasing p;, in more detail (figure 4.8). These graphs
suggest that for increasing correlation, it becomes relatively harder to differentiate between the
(log-)pfds of the competing copula distributions in the center of the copula distributions and, in
particular, in their left and right tails. The results in Appendix 5 confirm this observation: in
general, both spurious and true power decrease for all three scoring rules considered, i.e. for
increasing correlation, the wi, cl and csl scoring rules have more difficulties in differentiating
between the two competing models. The expected mean relative scores of the cl and csl scoring
rules exhibit a stable positive pattern, but their confidence intervals are getting wider. This
pattern, particularly present in the left tail, causes the drop in true power for both proper
scoring rules. Moreover, we experience that for increasing correlation the cl/ scoring rule is
converging to the csl scoring rule and even performs somewhat better in the (extreme) case of
p1z = 0.9. For the wl scoring rule the confidence interval also widens, but the entire interval
experiences a “shift” towards those of the proper scoring rules. However, only in the case of
p12 = 0.9, we experience overlap between the confidence intervals of the wl scoring rule and
either of the proper scoring rules. Based on the results for p;;, = 0.6 and m = 40, we emphasize
that for reasonable correlation and large enough sample size the proper scoring rules are still
highly preferable to the improper wl scoring rule.

So far, we have only considered independent symmetric copulas for our simulation experiments.
The question rises whether similar power results follow if one of the two competing copulas is
asymmetric. To this end, we compare the predictive accuracy of the symmetric Gaussian copula
with the asymmetric Clayton copula, which shows positive dependence in the left tail, as
discussed in section 3.2.3. Basically, we use the exact same set up as described in the beginning
of this section, but substitute the Student-t(5) copula for the Clayton copula. In order to make a
fair comparison between the two copulas we fix the measure of concordance to 7 = 0.2 which

corresponds to p = sin (g T) = 0.31 for the Gaussian copula parameter and 6 = % = (0.50 for

the Clayton parameter. The corresponding results are given in figure 4.9 to figure 4.13.

P =0 Pz =03 Pz =08 pg=08

7z

0s ns 1

Figure 4.8 The upper panel shows the relative log-likelihood scores log cg:‘}(ytﬂ) —log cg,t(ytﬂ) for increasing
values of parameterp;, = 0,0.3, 0.6 and 0.9 (I-r). The lower panel shows their corresponding contourplots.
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Figure 4.10 This figure is similar to Figure 4.8, but now with m=40 expected observations in the left tail.
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Figure 4.11: 10% and 90% percentiles for the upper two graphs of figure 4.8, i.e. the mean expected relative
scores of comparing a Gaussian Copula with a Clayton Copula, with the Gaussian Copula as DGP and the
measure of concordance fixed to T = 0.2 . The two graphs in the left (right) panel correspond to the m=5
(m=40) expected observations in the region of interest. The upper two graphs show the results for the full
range of r, thatis r € [0.01, 1], the lower two graphs “zoom” in the left tail of the copula with r € [0.01, 0. 1].
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Figure 4.1210% and 90% percentiles for the lower two graphs of figure 4.8, i.e. the mean expected relative
scores of comparing a Clayton Copula with a Gaussian Copula, with the Clayton Copula as DGP and the
measure of concordance fixed to T = 0.2 . The two graphs in the left (right) panel correspond to the m=5
(m=40) expected observations in the region of interest. The upper two graphs show the results for the full
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Figure 4.13: Proxy of the mean relative scores for sample sizes m=5 (left graphs) and m=40 (right graphs),
when using the weighted logarithmic (wl), the conditional likelihood (cI) and the censored likelihood (csl)
scoring rules under the weight function w(u,v) = I(u,v < r) where 0 < r < 1, based on 10,000 replications.
The upper (lower) graphs show the results for the Gaussian copula (Clayton copula) as DGP.

The above results concerning the competing Gaussian and Clayton copula are in line with the
conclusions drawn from the comparison of the (independent) Gaussian and Student-¢(5) copula.
Again, the wl scoring rule shows substantial spurious power, favoring the copula model with the
largest probability mass in the region of interest. The cl and csl scoring rule show limited
spurious power, which virtually disappears when increasing the sample size, i.e. their spurious
power is a small sample problem. In terms of expected mean relative scores in figure 4.13, the
two proper scoring rules again show a stable performance with entirely positive expected mean
relative scores. Similar to earlier results, the csl scoring rule performs slightly better, in
particular for small values of r. At last, also the “zoomed” confidence intervals are similar, the
rankings between the different scoring rules (and their related true power plots) are equal. This
result would be expected, since the Student-t(5) copula and Clayton copula both contain
substantial lower tail dependence.

Note that the main difference between the (independent) symmetric and asymmetric simulation
results is visible by comparing their corresponding expected mean relative scores in figure 4.5
and 4.13 respectively. While the curve of the wi scoring does not cross the curves of the proper
scoring rules, there is a clear intersection in figure 4.13 near r = 0.5. This intersection suggests
that, relatively to the proper scoring rules, the wl favors the Clayton copula for small values
r < ca.0.5 (the left tail), and the Gaussian copula for r > ca.0.5. This result is plausible, as the
Clayton copula contains positive lower tail dependence and very weak upper tail dependence.
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5 Empirical Application

In this section we examine the practical relevance of our goodness-of-fit test for comparing
alternative multivariate density models in the left tail. We start this section with a brief
introduction of our dataset, which consists of MSCI Total Return Indices of four different
countries. The corresponding data characteristics are thoroughly investigated in section 5.2,
with particular interest for the stylized facts of financial asset returns. We use this information
to decide on a suitable model for the marginal distributions in section 5.3 and analyze whether
the proposed model works properly. In section 5.4 we present our main results in the form of
tests statistics that are obtained by comparing the six (bivariate) copula specifications as
introduced in section 2.3. We end this section with a short discussion of our results.

5.1 Data

The empirical data sample used in this thesis consists of daily MSCI Total Return Indices of four
countries (USA, Mexico, Argentina and Brazil) in the period from January 2 1992 to July 27 2010
(source: Datastream). To assure continuous data, we remove the days in which the exchange
was closed in at least one of the countries and transform the MSCI Total Return Indices to log-
returns hereafter. The total sample size for each country consists of 4,241 observations, which
allows us to use an in-sample period of R=2,000 observations.

MSCI Total Return Indices measure the market performance and include the performance of
both the price and the income from dividend payments!8. Total return indices have the
advantage that they are available over a large span of time, and they are highly frequently dealt
throughout the world.

We consider these four specific countries from the Americas for two main reasons. First, they
consist of a nice mixture of developed (USA) and developing (Brazil, Argentina, and Mexico)
economies. This allows us to consider dependence structures of both between and within these
different groups. Second, they are situated in similar time zones, such that the information
asymmetry between the countries is limited. For example, if one would compare the total return
indices of a European country with a (Latin-) American country, the time difference could
considerably influence the dependence structure between the two indices, as equities are traded
with different information.

18 .
Source: www.mscibarra.com
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5.2 Stylized facts of asset returns

5.2.1 Univariate stylized facts

When working with financial asset returns, it is informative to check whether the individual
samples exhibit the commonly acknowledged univariate stylized facts in empirical asset returns.
In this section we analyze our data for the presence of these univariate stylized facts, given by:

i) The distributions of returns are not normal
(i) (almost) No significant autocorrelations in returns
(iii)  Small but very slowly declining autocorrelations in squared returns

Stylized fact (i) can be checked by investigating the descriptive statistics of our data in table 5.1.
We compare the results for our data with the characteristics of the normal distribution, which is
symmetric (zero skewness) and has a kurtosis of three. For all four countries considered, the
descriptive statistics in table 5.1 show excess kurtosis and nonzero skewness, implying fat-tailed
and asymmetric distributions. The Jarque-Bera test statistics confirm these observations, as the
null-hypotheses of normally distributed returns are convincingly rejected for all countries, with
p-values of 0.0000.

Figure 5.1 can be used to detect whether stylized fact (ii) and (iii) are present in the data. The
results in the upper panel of figure 5.1 suggest that autocorrelations in (total) returns hardly
exceed the 5% significance bound for all countries considered, which is evidence for stylized fact
(ii). The autocorrelations of squared returns in the lower panel of figure 5.2 however are
significant and slowly decline for increasing lag size. This is evidence for the third stylized fact,
suggesting the presence of volatility clustering, i.e. periods of large returns alternate with
periods of small returns.

USA Mexico Argentina Brazil
Mean -0.0000 0.0004 0.0005 0.0004
Median 0.0006 0.0008 0.0010 0.0012
Maximum 0.1034 0.1191 0.1634 0.2310
Minimum -0.0950 -0.1304 -0.1844 -0.1407
Std. Dev. 0.0129 0.0169 0.0246 0.0239
Skewness -0.2395 0.0578 -0.2923 0.0896
Kurtosis 10.0805 7.6018 9.8247 9.3101
Jarque-Bera 8899.5 3744.4 8290.8 7041.8
Probability 0.0000 0.0000 0.0000 0.0000
Observations 4241 4241 4241 4241

Table 5.1: Descriptive statistics of the daily log MSCI Total Return series in the period 2-1-1992 to 26-7-2010
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Figure 5.1: The upper panel exhibits the sample autocorrelation of the total returns of the full dataset, that is

the period from 2-1-1992 to 26-7-2010. The lower panel shows the sample autocorrelation of the
corresponding squared total returns. The horizontal blue lines display the 5% significance levels.
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5.2.2 Multivariate stylized facts

The joint distribution of multivariate empirical asset returns is typically not normally
distributed, partly due to the univariate stylized facts of asset returns, as discussed in the last
subsection. In this section we focus on the (bivariate) dependence characteristics of our dataset,
and evaluate whether the joint behavior of our data deviates from what would be expected
under normality. In short, we focus on:

i) Tail dependence
(ii) Asymmetric dependence
(iii)  Time varying dependence

In the remainder of this section, we will consider several graphical tools to detect whether the
three above mentioned dependence characteristics are present in our data.

We start off with a brief description of the Chi-plot introduced by Fisher and Switzer (1985), a
useful nonparametric tool to visualize dependence. The Chi-plot complements the rank
scatterplot and relies on the empirical marginal distributions F; and G; and their empirical joint
distribution H;. Under the null hypothesis of independence, one should have H; = F; X G;. The
Chi-plot is obtained by plotting the measures

v = Hi = FiGi (5.1)

T .
VE(A = F)G(1-Gy)

A; = 4 sign(F;G;)max(F?, G?) (5.2)

on the horizontal axis and the vertical axis respectively, where F; = F; — 1/2, G; = G; — 1/2 for
1 < i < n. The measure on the vertical axis, 4;,is bounded by the interval [-1,1] and can be
interpreted as a (signed) measure of distance between the pair (X;,Y;) and the center of the
dataset. The intuition of y; € [-1,1] on the vertical axis is straightforward, as it measures the
departure from bivariate independence. Fisher and Switzer (1985) propose confidence bounds
of +1.78 /+/n for a 95% confidence interval to detect whether positive or negative values of y;
are significant departures from the null hypothesis of independence. Appendix 7 provides
examples of Chi-plots of different copula specifications, and how they change for varying
parameter values. For more details, see Fisher and Switzer (1985, 2001).

Figure 5.2 provides a matrix with the rank scatter plots and corresponding Chi-plots of the six
country pairs of our dataset (full sample). Note that from the rank scatter plots it is hard to judge
by human eye whether (asymmetric) tail dependence is present. It is therefore more informative
to analyze their corresponding Chi-plots. As becomes clear from the Chi-plots, all country pairs
clearly contain positive association that does not go back to zero for |A| = 1, what would be
expected under normality, but it persists. This observation suggests tail dependence, since 1 is a
measure of distance between the pair (X,Y) and the center of the dataset. As a rough check we
compare the results in figure 5.2 with the Chi-plots of different copulas in Appendix 7. As
expected, the Chi-plots generated from our data correspond better to the Student-t Chi-plots
than Gaussian Chi-plots. Note that for T = 0.2 the shape of the asymmetric Gumbel Chi-plot (with
6 = 1.25) in Appendix 7 also shows similarities to the Chi-plots in figure 5.2. However, a quick
comparison also tells us that the asymmetry in tail dependence is not likely to be as extreme as
the Gumbel and Clayton copulas with large values of Kendall’s tau (z > 0.35).
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RANK SCATTERPLOTS AND CORRESPONDING CHI-PLOTS TOTAL RETURNS
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BRAZIL

Figure 5.2 Rank scatter plots and corresponding chi-plots of all country pairs using the full dataset, that is the
period from 2-1-1992 to 26-7-2010. The horizontal red dotted lines in the chi-plots display the 5%
significance control limits.

To analyze the tail dependence from a different perspective, figure 5.3 compares the quantile
dependence of the country pairs in our dataset with their normally distributed counterparts. In
order to create the “tent-shaped” curve of the normally distributed quantile dependence, we
used the empirical correlations derived from our dataset. In figure 5.3, we observe that in
general, the dependence in the lowest quantiles exceeds the dependence corresponding to the
normally distributed distribution, suggesting negative tail dependence. In the highest quantiles
however, the dependence structures of the normal and empirical data are rather similar. These
results suggest asymmetric (tail) dependence, i.e. correlations in “bear” markets are higher than
in “bull” markets. This clearly is a deviation from the symmetric multivariate normal
distribution.

Figure 5.4 provides a rough check of time-varying dependence, showing the 250-day
unconditional correlation of the six country pairs for the full sample period. We observe highly
nonlinear patterns for all six pairs that considerably vary over time. Again this clearly is a
departure from the multivariate normal distribution, which assumes constant correlation.
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Figure 5.3: Quantile dependence of all country pairs using the full dataset, that is the period from 2-1-1992 to
26-7-2010. The blue (red) curve displays the empirical (normally distributed) data.
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Figure 5.4: 250-day historical unconditional correlation of all country pairs using the full dataset, that is the
period from 2-1-1992 to 26-7-2010.

So far, we have found evidence for all three dependence characteristics mentioned at the
beginning of this section. The question rises whether (asymmetric) tail dependence changes
over time. To this end, we introduce the concept of exceedance correlations from Ang and Chen
(2002), and provide the figures of two non-overlapping time periods. Specifically, we select the
first in-sample period of R = 2,000 observations (in figure 5.5) and the last 2,000 observations
of the sample (in figure 5.6).
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As can be observed in the relating figures, the specific shape of the exceedance correlation plots
vary for every country pair and deviate quite strongly from the “tent-shaped” curve as shown by
their normally distributed counterparts. By comparing figure 5.5 and figure 5.6, one can find
evidence for all three dependence characteristics as given in at the beginning of the section.
First, the exceedance correlations in (at least one of) the tails are typically higher than the
middle part of the distribution. Second, this pattern is often asymmetric, in the sense that one of
the tails shows more exceedance correlations than the other. Third, the exceedance correlation
plots seem to change quite strongly over time, as the shapes of the curves in figure 5.5 are rather
different than the corresponding curves in figure 5.6.
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Figure 5.5: Exceedance correlations of all country pairs using the first in-sample period, i.e. the first 2,000
observations from 2-1-1992 to 6-10-2000. The blue (red) curves display the empirical (normally distributed)

data.
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Figure 5.6 Exceedance correlations of all country pairs using the last 2,000 observations of the data sample
from 5-11-2001 to 26-7-2010. The blue (red) curves display the empirical (normally distributed) data.
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5.3 Modeling the marginals

In order to capture the volatility effects that are present in our data (see section 5.2.1), we model
the marginal distributions of our dataset using a model from the class of well-developed GARCH-
type conditional volatility models. This implies that we adopt the SCOMDY framework from
section 2.4.2 to implement the multivariate density models.

The first stage of a SCOMDY model consists of estimating the conditional mean and conditional
variance to obtain the standardized residuals. We consider the asymmetric GJR-model to model
the conditional volatility, following Glosten, Jagannathan and Runkle (1993). Contrary to general
symmetric GARCH specifications, this model is able to treat negative shocks differently than
positive shocks. Intuitively this makes sense, because in practice, “bad news” generally has
larger impact than “good news”. We consider an AR(5) model for the conditional mean return
combined with a GJR(1,1) model for the conditional variance, given by

Vie = Wt T & = Uje T th'tr}j,t, forj =1,2,3,4 (5.3)

where the standardized residuals are i.i.d. with mean zero and variance one and j denotes the
country indices of USA (1), Mexico (2), Argentina (3) and Brazil (4). The conditional mean u;

and the conditional variance h;; in (5.1) for j = 1,2,3,4 are given by

5

Hjt = 8jo+ Z 8i Vit-i (5.4)
i=1

hje = wj + ajele_s +yillgi1 < O0]ef_s + Bihye g, (5.5)

with I[ej,t_l < 0] equal to one if &;,_; < 0 and zero otherwise.

In the second stage of the SCOMDY model, we use the standardized residuals ¢;, resulting from
(5.1) to the marginal distributions Fj, ..., F, by using the empirical CDF. In the third stage, these
marginal distributions are used to estimate the competing copula models parametrically.

Recall that the analysis regarding to the stylized facts of asset returns in section 5.2.1 and 5.2.2 is
based on the (raw) returns y;;. The marginal distributions Fj, ..., F, of the SCOMDY model
however, are based on ¢;, i.e. the standardized residuals obtained from (5.3). Since F;, ..., F, are
used to calibrate the competing copula sepcifications, it is worthwhile to revisit the stylized facts
of asset returns for ¢, and compare them with the results based on y;.. We present the
(squared) autocorrelations (figure 5.7), quantile dependence (figure 5.8), Chi-plots (figure 5.9),
and exceedance correlation plots (figure 5.10) based on the standardized residuals for the first
in-sample period of R = 2,000 observations ranging from 2-1-1992 to 6-10-2000. Note that the
analyses in section 5.2.1. and 5.2.2 are based on the full sample of 4241 observations, while the
model in (5.3) only considers the in-sample period. In appendix 6 we therefore provide a “fair”
comparison of the figures, and provide the corresponding figures of y; . and ¢;; based on the

first 2,000 observations of the sample.

The results suggest that the AR(5)-GJR(1,1) model filters the volatility effects fairly well for the
first in-sample-period of 2000 observations. Compared to figure 5.1, the autocorrelations in
squared returns are substantially lower, suggesting that in most cases, the influence of volatility
clustering is limited.
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The multivariate stylized facts of asset returns however, are still present in our data. In general,
the quantile dependence plots are closer to their normally distributed counterparts than in
section 5.2.2, but still there is quite some evidence for (asymmetric) tail dependence, i.e.
deviation from normality. The curves of the country pairs USA-Argentina and USA-Brasil
however, are hard to distinguish from the curves corresponding to the normal distrubution
(figure 5.9). The Chi-plot exhibits similar characteristics as in the last subsection. Tail
dependence appears to be present and again the Chi-plots show most similarity with the shape
of the Student-t copula or the Gumbel copula with relatively low values of 8. The exceedance
correlation plots are quite similar to those in the last subsection; again there generally is
evidence for (asymmetric) tail dependence.
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Figure 5.7: The upper panel exhibits the sample autocorrelation of the standardized residuals of the first in-
sample period from 2-1-1992 to 6-10-2000. The lower panel shows the sample autocorrelation of the
corresponding squared standardized residuals. The horizontal blue lines display the 5% significance levels.
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Figure 5.8: Quantile dependence of all country pairs using the standardized residuals of the first in-sample
period from 2-1-1992 to 6-10-2000. The blue (red) curve displays the empirical (normally distributed) data.
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RANK SCATTERPLOTS AND CORRESPONDING CHI-PLOTS STAND. RESIDUALS
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Figure 5.9: Rank scatter plots and corresponding chi-plots of all country pairs using the standardized residuals
of the first in-sample period from 2-1-1992 to 6-10-2000. The horizontal red dotted lines in the chi-plots
display the 5% significance control limits.
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Figure 5.10: Exceedance correlations of all country pairs using the standardized residuals of the first in-sample
period from 2-1-1992 to 6-10-2000. The blue (red) curves display the empirical (normally distributed) data.
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5.4 Results

The results of our test statistics in (3.28) for the six country pairs from our empirical application
are displayed in table 5.2 to table 5.7. In the remainder of this section we briefly describe the
used forecast methods?® and explain how to interpret the given tables.

We use the full dataset as described in section 5.1 with a fixed rolling in-sample window of
R = 2,000 observations and consider P = 2214 one-step-ahead forecasts. The out-of-sample
period consists of the period from 6-10-2000 to 26-7-2010. Furthermore, we use the SCOMDY
procedure to estimate the marginal distributions and their copula, as discussed in the last
subsection. Recall that we isolate the performance of the copula specifications by comparing
forecasts methods that only differ in their respective copula models, as discussed in section 3.1.
In this application, we consider the six different parametric copula specifications from section
2.3, which are divided in two groups: the Elliptical Copulas (the Gaussian, Student-t and Cauchy
copula) and the Archimedean copulas (the Clayton, Gumbel and Frank copula). Note that in the
remainder we use the survival (or rotated) Gumbel copula, because we concentrate on the left
tail, and the ordinary Gumbel copula exhibits upper tail dependence (see section 2).

The results are provided in six different tables, each representing a different country pair. Every
table exhibits four threshold values: r = 0.01, r = 0.05, r = 0.10 and r = 1, with threshold
weight function w(u, v) = I(u, v < r). For all threhold values, we display the results of fifteen
pairs of competing copula specifications in a matrix, where copula A is given in the columns, and
copula B is given in the rows. Positive (negative) values of the test statistic thus indicate better
performance of the corresponding copula in the column (row). We separately report the test
statistics based on the weighted likelihood (wl) scoring rule, conditional likelihood (cI) scoring
rule and censored likelihood (csI) scoring rule. We do not distinguish between these scoring
rules in case of r = 1, as in this case the scoring rules are equal.

As additional information we also included several useful figures in parentheses. Under every
threshold value r we include the figure m in parentheses, which corresponds to the number of
tail observations for the given threshold value. Furthermore, in every column we include the
total tail probabilities of the six copula specifications corresponding to the given threshold value
r, based on the average estimated parameter values over the entire out-of-sample period. 20

' As discussed in section 3.1 we follow the framework of Giacomini and White (2006), who define a
forecast method as the set of choices the forecaster makes at the time of prediction, including the
forecasting models, the parameter estimation, and the estimation window

?®In fact, these are “proxies” of the total tail probabilities, since they are calculated once based on the
average parameter values over the entire out-of-sample period.



Table 5.2: USA vs. Mexico: Pair-wise tests of equal predictive accuracy of copulas in tails.

r=0.01 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=11) (0.0018) (0.0025) (0.0044) (0.0050) (0.0047) (0.0004)
csl -1,97** -1,25 -1,37 -1,40 2,57**
Gaussian cl -1,21 -0,56 -1,66* -1,54 -0,48
wl -3,26%** -2,88*** -3,25%** -3,22%** 3,22%**
csl -0,75 -1,02 -1,04 2,45%*
Student-t cl -0,38 -1,55 -1,37 -0,22
wl -2,40** -3,21%** -3,14%** 3,23%**
csl -0,41 -0,40 2,12%*
Cauchy cl -0,27 -0,27 0,16
wl -1,15 -0,88 3,23***
csl 0,36 2,09**
Clayton cl 0,21 0,38
wl 2,20** 3,27%**
csl 2,11**
Gumbel cl 0,36
wl 3,26%**
r=0.05 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=63) (0.0151) (0.0171) (0.0222) (0.0253) (0.0245) (0.0089)
csl -3,89%** -1,06 -2,65%** -2,62%** 4,17%**
Gaussian cl -2,65%** 0,19 -1,74* -1,58 1,44
wl -6,63%** -3,61%** -6,80*** -6,59%** 6,54***
csl 0,00 -2,05%* -1,95* 4,15%**
Student-t cl 0,77 -1,19 -0,96 1,76*
wl -2,19%* -6,78%** -6,43%** 6,62%**
csl -2,07** -2,10%* 2,99%#*
Cauchy cl -1,86* -1,89* 0,56
wl -3,72%** -3,44%** 5,82%**
csl 1,43 3,57%**
Clayton cl 1,07 1,73*
wl 4,88*** 6,87***
csl 3,59%**
Gumbel cl 1,67*
wl 6,81%**
r=0.10 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=115) (0.0381) (0.0406) (0.0449) (0.0520) (0.0512) (0.0304)
csl -4,20%** -0,75 -2,49** -2,59%** 4,14%+*
Gaussian cl -3,89%** -0,31 -2,37** -2,45 3,32%**
wl -7,28*** -2,60%** -7 47 -7,40%** 7,15%**
csl 0,26 -1,72* -1,80* 4,25%+*
Student-t cl 0,49 -1,58 -1,65* 3,57***
wl -1,10 -7, 44** -7,30%** 7,34***
csl -1,83* -1,98** 2,66
Cauchy cl -1,87* -2,00%* 1,80*
wl -4,81*** -4,73*** 5,48***
csl 0,00 3,51%**
Clayton cl -0,03 3,14%**
wl 3,13%** 7,7 1%
csl 3,59%**
Gumbel cl 3,22%%*
wl 7,72%**
r=1.00 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=2241) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
Gaussian all -5,84%** 8,62*** 8,65%** 2,42%* 7,171%%*
Student-t all 10,84*** 10,07%** 5,64*** 8,17%+*
Cauchy all -3,40%** -8,76%** -5,17%**
Clayton all -13,04%** -3,70%**
Gumbel all 3,45%**

Note: The table represents the test statistic in (3.28) based on the csl, ¢/ and w/ scoring rules using w(u,v) = I(u,v < 1),
for r=0.01, r=0.05, r=0.10 and r=1. Positive (Negative) values indicate better performance of the corresponding copula in
the column (row). The asterisks *, ** and *** indicate significance at (two-sided) 10%, 5% and 1% significance respectively.
We consider P =2241 one-step-ahead forecasts based on a rolling in-sample window of length R=2000. The number of tail
observations m and total tail probability C(r,r) based on average parameter values of the copulas, are given in parentheses.
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Table 5.3: USA vs. Argentina: Pair-wise tests of equal predictive accuracy of copulas in tails.

r=0.01 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=8) (0.0008) (0.0018) (0.0039) (0.0031) (0.0032) (0.0003)
csl -1.81* -1.37 -1.48 -1.48 2.29%*
Gaussian cl -0.32 -0.92 -0.25 -0.59 -0.21
wl -2.63%** -2.68*** -2.72%H* 2.7 1%k 2,67+
csl -0.85 -0.67 -0.85 2.07**
Student-t cl -1.03 0.06 -1.05 0.03
wl -2.66%** -2.76%** -2.78%** 2,67+
csl 0.85 0.68 1.73*
Cauchy cl 1.15 091 0.49
wl 2.12%* 1.99** 2.71%**
csl -1.35 1.84*
Clayton cl -1.90* 0.02
wl -2.39%* 2.71%**
csl 1.82*
Gumbel cl 0.20
wl 2.70%**
r=0.05 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=38) (0.0090) (0.0123) (0.0195) (0.0170) (0.0173) (0.0062)
csl -2.58** -0.62 -1.90* -1.82* 3.14%**
Gaussian cl -1.40 0.36 -1.25 -1.12 1.60
wl -4.97%** -3.98*** -5.44%** -5.25%** 4.84***
csl 0.97 -0.58 -0.57 2.92%k*
Student-t cl 1.15 -0.62 -0.48 1.54
wl -2.53** -5.84*** -5.43%** 4.97***
csl -1.40 -1.70* 1.60
Cauchy cl -1.29 -1.56 0.29
wl 0.05 -0.14 4.60***
csl -0.21 2.45**
Clayton cl -0.21 1.44
wl -0.98 5.24%**
csl 2.40**
Gumbel cl 1.39
wl 5.16%**
r=0.10 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=78) (0.0257) (0.0303) (0.0396) (0.0374) (0.0375) (0.0222)
csl -2.76%** -0.20 -2.01** -1.95* 3.07***
Gaussian cl -2.63%** 0.19 -2.21%* -2.05** 2.46%*
wl -6.03%** -4.03%** -6.94*+* -6.63*** 5.13***
csl 1.37 -0.60 -0.67 2.99%**
Student-t cl 1.40 -0.90 -0.87 2.60%**
wl -2.05%* -7.79%** -7.09*** 5.69%**
csl -1.69* -2.05** 1.24
Cauchy cl -1.62 -1.96** 0.74
wl -0.79 -1.03 4.88***
csl -0.38 2.50%*
Clayton cl -0.37 2.37**
wl -0.60 6.31***
csl 2.47%*
Gumbel cl 2.33%*
wl 6.20%**
r=1.00 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=2241) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
Gaussian all -5.66*** 7.82%** 0.37 -3.12%%* -0.28
Student-t all 11.25%** 4.45%** 2.90%** 4.76%**
Cauchy all -7.98%** -9.61%** -7.85%**
Clayton all -6.02%** -0.52
Gumbel all 2.35**

Note: The table represents the test statistic in (3.28) based on the csl, ¢/ and w/ scoring rules using w(u,v) = I(u,v < 1),
for r=0.01, r=0.05, r=0.10 and r=1. Positive (Negative) values indicate better performance of the corresponding copula in
the column (row). The asterisks *, ** and *** indicate significance at (two-sided) 10%, 5% and 1% significance respectively.
We consider P =2241 one-step-ahead forecasts based on a rolling in-sample window of length R=2000. The number of tail
observations m and total tail probability C(r,r) based on average parameter values of the copulas, are given in parentheses.
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Table 5.4: USA vs. Brazil: Pair-wise tests of equal predictive accuracy of copulas in tails.

r=0.01 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=9) (0.0013) (0.0017) (0.0041) (0.0040) (0.0040) (0.0003)
csl -1,95* -0,40 -1,10 -1,05 2,39%*
Gaussian cl -0,07 0,80 0,21 0,24 0,42
wl -2,91 %k -2,14** -2,91%** -2,85%** 2,88***
csl 0,41 -0,48 -0,38 2,30%*
Student-t cl 0,83 0,31 0,32 0,37
wl -1,30 -2,76%** -2,58%*** 2,90%***
csl -1,09 -1,18 1,69*
Cauchy cl -0,96 -1,04 -0,61
wl -0,90 -0,95 2,86***
csl 0,52 1,89*
Clayton cl 0,28 0,23
wl 0,58 2,94%**
csl 1,88*
Gumbel cl 0,20
wl 2,94%**
r=0.05 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=50) (0.0121) (0.0135) (0.0206) (0.0212) (0.210) (0.0075)
csl -3,57%%* -0,28 -2,12%* -2,02%* 3,89%#*
Gaussian cl -2,14** 0,57 -1,31 -1,16 2,13**
wl -5,62%** -3,06%** -5,95%** -5,77%** 5,80%**
csl 0,86 -1,22 -1,05 3,87%**
Student-t cl 1,10 -0,69 -0,50 2,22%*
wl -1,77* -5,93%** -5,53%** 5,85%**
csl -2,12%* -2,23%* 2,26**
Cauchy cl -1,79* -1,92* 0,52
wl -2,26%* -2,26%* 5,09%**
csl 0,97 3,15%**
Clayton cl 0,50 1,96*
wl 1,91* 6,08***
csl 3,13%**
Gumbel cl 1,91*
wl 6,04***
r=0.10 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=100) (0.0322) (0.0416) (0.0416) (0.0448) (0.0445) (0.0263)
csl -3,80%** 0,86 -2,27** -2,03** 4,12%+*
Gaussian cl -3,03%** 1,32 -1,98** -1,56 3,48%**
wl -6,31%** -1,63 -7,21%** -6,79*** 6,59***
csl 2,02%* -1,36 -0,97 4,13%+*
Student-t cl 2,13** -1,21 -0,61 3,50%**
wl -0,17 -7, 44%** -6,68*** 6,67***
csl -3,27%** -3,40%** 1,44
Cauchy cl -3,29%** -3,4 1% 0,50
wl -4,21%** -4,32%** 4,48%+*
csl 1,80* 3,37***
Clayton cl 1,88* 3,03***
wl 2,87*** 7,21%**
csl 3,28%**
Gumbel cl 2,86%**
wl 7,09%**
r=1.00 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=2241) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
Gaussian all -6,13%*** 9,56%** 6,76%** 1,56 5,14%**
Student-t all 11,38%** 8,35%** 4,88%** 6,43%**
Cauchy all -6,28%** -9,95%x* -7,27%%*
Clayton all -10,89*** -3,17%**
Gumbel all 2,66%**

Note: The table represents the test statistic in (3.28) based on the csl, ¢/ and w/ scoring rules using w(u,v) = I(u,v < 1),
for r=0.01, r=0.05, r=0.10 and r=1. Positive (Negative) values indicate better performance of the corresponding copula in
the column (row). The asterisks *, ** and *** indicate significance at (two-sided) 10%, 5% and 1% significance respectively.
We consider P =2241 one-step-ahead forecasts based on a rolling in-sample window of length R=2000. The number of tail
observations m and total tail probability C(r,r) based on average parameter values of the copulas, are given in parentheses.
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Table 5.5: Mexico vs. Argentina: Pair-wise tests of equal predictive accuracy of copulas in tails.

r=0.01 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=6) (0.0009) (0.0019) (0.0040) (0.0034) (0.0035) (0.0003)
csl -1,10 -0,82 -0,87 -0,90 1,91*
Gaussian cl -0,68 -0,83 -0,92 -1,05 0,70
wl -2,33** -2,30** -2,40** -2,39** 2,39**
csl -0,64 -0,65 -0,74 1,62
Student-t cl -0,78 -1,20 -1,27 0,69
wl -2,21%* -2,43** -2,40** 2,37**
csl 0,48 0,30 1,27
Cauchy cl 0,60 0,44 0,87
wl 1,42 1,32 2,36%*
csl -1,15 1,35
Clayton cl -1,22 0,82
wl -1,77* 2,40**
csl 1,36
Gumbel cl 0,92
wl 2,39**
r=0.05 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=38) (0.0099) (0.0129) (0.0199) (0.0185) (0.0184) (0.0065)
csl -1,84* -1,73* -1,35 -1,59 2,38**
Gaussian cl -0,78 -1,67* -0,70 -1,25 0,11
wl -5,10%** -4,92%** -5,4 1%+ -5,36%** 4,53***
csl -1,59 -0,94 -1,38 2,21%*
Student-t cl -1,76* -0,59 -1,61 0,35
wl -4, 57%** -5,56%** -5,44%** 4,81%**
csl 1,78* 1,48 2,07**
Cauchy cl 1,87* 1,56 1,30
wl 2,78*** 2,67*** 5,10%**
csl -3,41 1,83*
Clayton cl -3,37 0,41
wl -3,28%** 5,12%**
csl 1,96*
Gumbel cl 0,73
wl 5,13***
r=0.10 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=83) (0.0276) (0.0317) (0.0403) (0.0399) (0.0396) (0.0231)
csl -2,37** -1,01 -1,60 -1,79* 2,27%*
Gaussian cl -1,93* -0,59 -1,43 -1,69* 1,25
wl -6,52%** -4,29*** -7,08*** -6,78*** 5,05%**
csl -0,50 -0,97 -1,36 2,37**
Student-t cl -0,21 -0,89 -1,45 1,53
wl -3,24%** -7,38*** -6,84*** 5,76***
csl 0,12 -0,20 1,54
Cauchy cl -0,03 -0,37 0,90
wl 0,30 0,11 5,03***
csl -2,21%* 1,94*
Clayton cl -2,22%* 1,39
wl -1,54 6,42***
csl 2,06%*
Gumbel cl 1,58
wl 6,33***
r=1.00 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=2241) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
Gaussian all -3,15%** 9,7 7*** 0,90 -1,98** 1,60
Student-t all 11,97%** 2,51 0,38 3,51%**
Cauchy all -9,74%** -11,35%** -8,92%**
Clayton all -5,05%** 0,08
Gumbel all 2,52%*

Note: The table represents the test statistic in (3.28) based on the csl, ¢/ and w/ scoring rules using w(u,v) = I(u,v < 1),
for r=0.01, r=0.05, r=0.10 and r=1. Positive (Negative) values indicate better performance of the corresponding copula in
the column (row). The asterisks *, ** and *** indicate significance at (two-sided) 10%, 5% and 1% significance respectively.
We consider P =2241 one-step-ahead forecasts based on a rolling in-sample window of length R=2000. The number of tail
observations m and total tail probability C(r,r) based on average parameter values of the copulas, are given in parentheses.
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Table 5.6: Mexico vs. Brasil: Pair-wise tests of equal predictive accuracy of copulas in tails.

r=0.01 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=10) (0.0015) (0.0025) (0.0042) (0.0044) (0.0044) (0.0004)
csl -1,56 -0,53 -1,03 -1,07 2,55%*
Gaussian cl 0,00 0,50 0,10 0,06 0,11
wl -2,87*** -2,02%* -2,82%** -2,80%** 3,09***
csl 0,25 -0,48 -0,52 2,31**
Student-t cl 0,61 0,16 0,09 0,08
wl -1,08 -2,65%** -2,61%** 3,08***
csl -0,95 -1,00 1,77*
Cauchy cl -0,87 -0,91 -0,43
wl -1,26 -1,10 2,86***
csl -0,19 1,92*
Clayton cl -0,54 -0,02
wl 2,00** 3,05%**
csl 1,95*
Gumbel cl 0,01
wl 3,05%**
r=0.05 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=53) (0.0132) (0.0162) (0.0258) (0.0235) (0.227) (0.0079)
csl -2,971%x* -0,56 -1,81* -1,89* 3,76%**
Gaussian cl -1,81%* 0,47 -0,93 -0,95 1,62
wl -5,83*** -3,31%** -6,05%** -5,92%** 5,91%**
csl 0,67 -0,87 -0,96 3,60%**
Student-t cl 1,10 -0,10 -0,16 1,78*
wl -1,53 -5,09%** -5,73%x* 6,05%**
csl -1,61 -1,77* 2,42%*
Cauchy cl -1,59 -1,71* 0,41
wl -2,80%** -2,56%* 5,35%**
csl -0,32 2,94%**
Clayton cl -0,34 1,49
wl 4,07*** 6,25%**
csl 3,01%**
Gumbel cl 1,51
wl 6,22%**
r=0.10 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=110) (0.0344) (0.0381) (0.0430) (0.0488) (0.0478) (0.0276)
csl -3,90%** -0,73 -2,51** -2,64%** 3,85%**
Gaussian cl -3,60%** -0,22 -2,30** -2,38** 2,68***
wl -7,26%** -3,10%*** -7,81%** -7,66%** 6,64***
csl 0,66 -1,40 -1,56 4,02%*+*
Student-t cl 0,84 -1,05 -1,15 3,13%**
wl -0,99 -7,92%** -7,65%** 7,10%**
csl -1,83* -2,02%* 2,48%*
Cauchy cl -1,70* -1,84* 1,45
wl -4, 25%** -4,07*** 5,58***
csl -0,57 3,37%**
Clayton cl -0,44 2,79%**
wl 3,99%*x* 7,71%**
csl 3,47***
Gumbel cl 2,86%**
wl 7,67***
r=1.00 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=2241) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
Gaussian all -6,61%** 5,94%** 6,07*** -0,63 6,86***
Student-t all 9,20%** 8,14%** 4,22%%* 8,56™**
Cauchy all -2,44** -6,73%** -2,98%**
Clayton all -11,51%*%* -1,26
Gumbel all 5,60%**

Note: The table represents the test statistic in (3.28) based on the csl, ¢/ and w/ scoring rules using w(u,v) = I(u,v < 1),
for r=0.01, r=0.05, r=0.10 and r=1. Positive (Negative) values indicate better performance of the corresponding copula in
the column (row). The asterisks *, ** and *** indicate significance at (two-sided) 10%, 5% and 1% significance respectively.
We consider P =2241 one-step-ahead forecasts based on a rolling in-sample window of length R=2000. The number of tail
observations m and total tail probability C(r,r) based on average parameter values of the copulas, are given in parentheses.
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Table 5.7: Argentina vs. Brasil: Pair-wise tests of equal predictive accuracy of copulas in tails.

r=0.01 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=7) (0.0013) (0.0025) (0.0042) (0.0043) (0.0041) (0.0003)
csl -1,30 -0,80 -0,86 -0,90 2,02%*
Gaussian cl -1,33 -0,70 -1,40 -1,32 1,09
wl -2,55** -2,37** -2,58%*** -2,56** 2,54**
csl -0,26 -0,32 -0,40 1,78*
Student-t cl -0,30 -1,37 -1,12 1,19
wl -1,94* -2,59%** -2,53** 2,55%*
csl 0,03 -0,09 1,44
Cauchy cl -0,09 -0,15 1,01
wl -0,05 0,06 2,52%*
csl -0,80 1,46
Clayton cl -0,28 1,28
wl 0,76 2,57
csl 1,49
Gumbel cl 1,27
wl 2,56%*
r=0.05 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=40) (0.0122) (0.0158) (0.0211) (0.0222) (0.216) (0.0076)
csl -1,99** -0,62 -1,07 -1,19 2,61%**
Gaussian cl -1,69* -0,26 -1,33 -1,38 1,33
wl -5,15%** -3,73%** -5,43%** -5,3 1% 4,75%**
csl 0,27 -0,13 -0,34 2,43**
Student-t cl 0,33 -0,78 -0,90 1,50
wl -2,34** -5,60%** -5,34%** 4,98***
csl -0,48 -0,71 1,64
Cauchy cl -0,73 -0,89 0,83
wl -1,23 -1,08 4,67***
csl -1,51 1,86*
Clayton cl -0,88 1,43
wl 2,20** 5,26%**
csl 1,94*
Gumbel cl 1,47
wl 5,22%**
r=0.10 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=99) (0.0323) (0.0371) (0.0426) (0.0465) (0.0456) (0.0266)
csl -2,68%** 0,04 -1,54 -1,64 2,68***
Gaussian cl -2,03** 0,70 -1,04 -1,10 1,69*
wl -6,49*** -2,52%* -7,02%** -6,78*** 5,33***
csl 1,14 -0,44 -0,63 2,79%**
Student-t cl 1,48 0,07 -0,12 1,90*
wl -0,59 -7,35%** -6,87*** 5,09%***
csl -1,63 -1,86* 1,09
Cauchy cl -1,87* -2,08%* 0,10
wl -3,12%** -3,10%** 4,18%**
csl -0,98 2,18**
Clayton cl -0,72 1,48
wl 2,44** 6,62***
csl 2,25%*
Gumbel cl 1,53
wl 6,54***
r=1.00 Gaussian Student-t Cauchy Clayton Gumbel Frank
(m=2241) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
Gaussian all -3,89%kx* 8,33%** 1,25 -2,76%** 0,72
Student-t all 12,38%** 4,00%** 1,54 4,56%***
Cauchy all -7,94%** -10,46%** -7,90%**
Clayton all -6,67*** -0,63
Gumbel all 2,89%**

Note: The table represents the test statistic in (3.28) based on the csl, ¢/ and w/ scoring rules using w(u,v) = I(u,v < 1),
for r=0.01, r=0.05, r=0.10 and r=1. Positive (Negative) values indicate better performance of the corresponding copula in
the column (row). The asterisks *, ** and *** indicate significance at (two-sided) 10%, 5% and 1% significance respectively.
We consider P =2241 one-step-ahead forecasts based on a rolling in-sample window of length R=2000. The number of tail
observations m and total tail probability C(r,r) based on average parameter values of the copulas, are given in parentheses.
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5.5 Discussion of results

In this section, we discuss the results of section 5.4. First we examine whether our results for
threshold value r =1 (i.e. considering the full copula distribution) correspond to our
expectations. Hereafter, we elaborate on the results when focusing on the left tail of the
distribution (r = 0.1, r = 0.05 and r = 0.01) and explore the differences between the test
statistics based on the weighted likelihood (wl), conditional likelihood (cI) and censored
likelihood (csl) scoring rules.

When considering the full copula distribution (i.e. setting r = 1), most test statistics in section
5.4 are significant based on the 1% significance level, indicating that the null hypothesis of equal
predictive ability is generally convincingly rejected. The results suggest superior forecast ability
of the Student-t copula. The Gumbel copula generally ranks second, closely followed by the
Gaussian copula. In fact, the Gaussian copula outperforms the Gumbel copula for two country
pairs. The Frank copula typically ranks fourth, followed by the Clayton copula. The Cauchy
copula clearly performs the worst, for all country pairs considered. The results are in line with
our expectations based on the extensive data analysis in section 5.2 and 5.3. In particular the
Chi-plot seems to be a valuable graphical tool to detect the entire dependence structure, as our
expectations regarding to the Chi-plots in section 5.3 correspond closely to the best performing
models in section 5.4. Moreover, we note that our results are in line with the results of Diks et al
(2009), who also find superior predictive accuracy of the Student-t copula and relatively bad
performance of the Clayton copula. They apply the same test on daily exchange rate returns of
several major currencies against the US dollar.2!

In the remainder of this section, we focus on the left tail of the distribution, and consider the
results for threshold values r = 0.1, r = 0.05 and r = 0.01. Most of the test statistics based on
the wl scoring rule are significant, such that a clear performance ranking can be made for the
competing models. For the test statistics based on the (proper) cl and csl scoring rules however,
such a ranking is harder to make. This is due to the fact that, in particular for r = 0.01, there
often is not enough evidence to reject the null hypothesis of equal predictive accuracy of two
competing models. In the following, we therefore separately analyze the results of the wi scoring
rule and the proper scoring rules, and compare the results hereafter.

The observation that most test statistics based on the weighted likelihood (wl) scoring rule are
significant is in line with the high power of the wi scoring rule in our Monte Carlo experiments.
Recall from section 4.2 however, that we found excess spurious power for the wi scoring rule due
to its bias towards fat-tailed models. Since the exact distribution of our data is unknown, it is
unclear whether these significant rejections of the null-hypothesis of equal performance are
reliable (i.e. in favor to the (most) correct distribution). To investigate whether the test statistics
favor the model with the highest probability mass in the left tail, it is convenient to order the six
competing models based on their total tail probabilities (displayed in parentheses in table 5.2 to
5.7). It is striking to see that these rankings correspond closely to the rankings based on the
(significant) test statistics, which indeed suggests a bias towards fat-tailed models. In both
rankings, the Clayton copula generally performs best, closely followed by the Gumbel and
Cauchy copula. The Student-t copula typically ranks fourth, the Gaussian copula fifth, and the

! Furthermore, we note that Diks et al (2009) use copula specifications of three rather than two
dimensions. Still, the results are roughly similar; the main difference is that in our results the Gumbel
copula performs slightly better than the Gaussian copula, while in Diks et al (2009) these roles are turned.
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Frank copula clearly performs the worst. To gain more insight in these specific rankings, we
analyze the performance of the three elliptical copulas in more detail. A priori, we might expect
that the Student-t copula shows the best forecasting performance among the elliptical copulas
considered, due to its flexibility in the tails of the distribution?2. As expected, the Student-t
copula significantly outperforms the Gaussian copula in all cases (based on a 5% significance
interval). Notably, the Cauchy copula is in all cases favored to the Student-t copula, although not
always to a significant extent. Despite the relative disadvantage of the Student-t copula for
estimating an additional parameter, it is very unlikely that in all cases considered the Cauchy
copula is indeed more appropriate than the Student-t copula for the purpose of forecasting left
tail events. Therefore, we conclude that the results of the wi scoring rule contain clear evidence
for a bias towards fat-tailed models. Note that in risk management applications, this bias
towards fat-tailed forecasting models generally results in an overestimation of risk, i.e. the
selected models are too conservative. This could have adverse economic consequences for risk
managers, such as sub-optimal asset allocation and “over-hedging” (Diks et al, 2010).

The conditional likelihood (cI) and censored likelihood (csI) scoring rules show less significant
results as compared to those based on the wi scoring rule.23 Both scoring rules generally point
towards the same conclusion, although the test statistics based on the csl scoring rule generally
show more powerful results, in particular for » = 0.01. These observations correspond to our
Monte Carlo power experiments in section 4.2. As noted earlier, clear copula rankings based on
significant results are often hard to make. Still, we mention two major differences in
performance between the proper scoring rules and the wl scoring rule. First, the Gumbel copula
generally perceives a better ranking for the proper scoring rules. In fact, for two country pairs
(Mexico-Brazil and Argentina-Brazil) the Gumbel copula shows the best performance for all
considered threshold values (although not to a significant extent), whereas the wl scoring rule
significantly favors the (“fatter” tailed) Clayton copula. Second, we observe that and Student-t
copula mostly performs better than the Cauchy copula, except for the case of r = 0.01.24 These
results indeed suggest that the cl and csl scoring rules are not biased towards fat-tailed models.

In the remainder we discuss two important factors that influence the power of our tests. The
first factor is the sample size, or the closely related expected number of left tail observations
(m). In our Monte Carlo simulations we demonstrated that the power of our test statistics
increases with sample size. We did not test our dataset for different sample sizes, but the
relatively weak power of our proper scoring rules could be simply due to the fact that m is too
small, in particular for r = 0.01. For larger r (and thus more left tail observations) we observe
more significant results for the proper scoring rules, which is a promising result. To what extent
this power increase is due to the larger region of interest (larger r) or due to the higher number
of left tail observations (larger m) could be identified by further research.

Secondly, we consider the estimated parameter values, because we experienced in our Monte
Carlo simulations that a different measure of association can influence the power of our test
considerably. We included figures of the estimated parameters over the entire out-of-sample

22 The Gaussian copula (v = 0) and Cauchy copula (v = c0) can be interpreted as special cases of the
Student-t copula with resp. minimum and maximum tail dependence (for a discussion see section 2.3.1).

23 Note that this is also apparent in the power plots of section 4.2: “aggregating” the spurious and true
power plots results in higher (or equal) power for the wl scoring rule than for the cl/csl scoring rules.

** Note that the country pair Mexico-Argentina (showing high tail dependence in section 5.3) is an

exception as the Cauchy copula outperforms the Student-t copula for all threshold values in the left tail.
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period in Appendix 8. The country pairs with the most extreme parameter values are depicted in
figure 5.11 and 5.12: the pair USA-Mexico has the highest average p;, of 0.59 (figure 5.11), while
the pair USA-Argentina shows the lowest average p;, of 0.38 (figure 5.12). From appendix 8,
several observations can be made. First, we observe similar upward sloping parameter patterns
for the pairs USA-Mexico, USA-Brazil and Mexico-Brazil, suggesting that since 2000 both Mexico
and Brazil are getting more associated to USA, the only developed country in the dataset. All
country pairs containing Argentina show parameter patterns similar to those in figure 5.12,
where the 2001-2002 currency crisis in Argentina seems to be of considerable. The parameter
values typically show a peak just before the burst of the crisis and experience a slight decrease in
the after-crisis period for about five to six years. Hereafter, the parameter values generally move
up again, similar to the other country pairs. Second, we clearly see that the association between
the country pairs substantially varies over time. Our rolling estimation window appears to
capture the stylized fact of time-varying dependence as discussed in section 5.2. The relatively
high correlation parameters of both the Student-t and Gaussian copula might indeed cause less
powerful test statistics in our empirical application, in line with our results in section 4.2.
However, the varying parameter values generally complicate the analysis of comparing the
power results of section 5.4 to our Monte Carlo experiments.
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Figure 5.11: Estimated parameter values of the country-pair USA-Mexico, for the six different copulas for
R=2000 and the out-of-sample period from 6-10-2000 to 26-7-2010, including the average parameter values.
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Figure 5.12: Estimated parameter values of the country-pair USA-Argentina, for the six different copulas for
R=2000 and the out-of-sample period from 6-10-2000 to 26-7-2010, including the average parameter values.
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6 Conclusion

In this thesis we developed a testing framework for evaluating and comparing the accuracy of
copula-based multivariate density models to forecast joint extreme events. We have shown that
we can use likelihood based scoring rules to evaluate multivariate density forecasts in the left
tail. Specifically, we have introduced three KLIC-based scoring rules based on weighted (full)
likelihood, conditional likelihood and censored likelihood respectively. Based on these scoring
rules, we have extensively tested the finite sample properties of our testing framework using
Monte Carlo simulation experiments. Moreover, the practical usefulness of the testing
framework is examined in an empirical application using daily MSCI Total Return Indices of USA,
Mexico, Argentina and Brazil. Our main findings are summarized below.

The weighted likelihood (W) scoring rule appears to be biased towards models with the highest
probability mass in the left tail. In our Monte Carlo simulations we found strong evidence of
excess spurious power, i.e. cases in which the wl scoring rule significantly favors the incorrect
(fat-tailed) density. Notably, this spurious power is increasing for larger sample sizes. Also in our
empirical application the wl scoring rule is biased, since the copula models with the highest total
tail probability significantly outperform the competing models in practically all cases. In fact, the
entire rankings based on the performance of our test statistic and the rankings based on the
total tail probability are (almost) identical. In financial risk management applications, favoring
fat-tailed density models could have adverse economic consequences. It leads to a bias towards
the most conservative models, resulting in suboptimal asset allocation. For the purpose of
forecasting joint extreme events, we therefore recommend not to rely on test statistics based on
wl scoring rule.

The scoring rules based on conditional likelihood (cI) and censored likelihood (csl) are proper?s
in the sense that they do not suffer from this bias towards fat-tailed densities. Both scoring rules
use the total tail probability to offset the bias of the wl scoring rule. The csl scoring rule corrects
the wl scoring rule by censoring the observations outside the region of interest, while the cl
scoring rule normalizes the wl scoring rule with the total tail probability within the region of
interest. Our Monte Carlo simulations demonstrate that the spurious power of both the cl and csl
scoring rules is limited. This (limited) spurious power virtually disappears for increasing sample
size, i.e. for spurious power is a small sample problem (in stark contrast to the wl scoring rule).
Moreover, we found that the true power increases with sample size, i.e. the scoring rules
significantly favor the correct density more often. Larger sample sizes thus considerably
strengthen the reliability of our test based on the cl and csl scoring rule.

Among the two proper scoring rules the csl scoring rule generally performs better than the cl
scoring rule, in particular in the left tail. This is due to the fact that the csl scoring rule uses more
information as it also uses the observations outside the region of interest. In our Monte Carlo
simulations we often found relatively higher true power for the csl scoring rule in the left tail. In
our practical applications we observe that the null-hypothesis of equal predictive performance is
rejected relatively more often based on the csl scoring rule, which is a sign of relatively more
powerful tests. In financial risk management applications where the left tail is of interest, the csl
scoring rule should therefore be preferred over the cl scoring rule.

% This term is adopted from Winkler and Murphy (1968), who define a scoring rule to be proper if a
correctly specified model always receives a higher average score than an incorrectly specified model.
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At last we provide several critical notes regarding to the proper cl and csl scoring rules. Although
the proper scoring rules do not suffer from excess spurious power in our Monte Carlo
simulations, their true power turned out to be somewhat disappointing for small sample sizes.
Moreover, we found in our Monte Carlo simulations that the power for differentiating between
the Gaussian and Student-t copula is decreasing with correlation. Further research should
investigate whether similar decreasing power patterns are also present for increasing
parameters of different competing copula models. Most likely, these relations had impact on the
results of our empirical application, as the proper scoring rules often could not make a clear
judgment between the competing copulas, in particular for the smallest regions of interest. At
this point, it should be emphasized however that in all cases considered the power increases
with sample size. Although our proper scoring rules need some further research on changing
parameter values and increasing dimensions, we can safely state that our flexible testing
framework provides us with a valuable tool to evaluate and compare forecasts of joint extreme
events.

63



7 Further Research

In the conclusion we pointed in the direction of two interesting topics for further research
regarding to our proper scoring rules. First, it should be examined how the power changes for
increasing parameter values in case of Archimedean copulas, by adopting similar Monte Carlo
experiments as in Appendix 5. Another possibility is to include parameter uncertainty in our
Monte Carlo experiments, such as in Diks et al (2009). They simulate from a GARCH model to
obtain the standardized residuals that can be used as inputs for Step 2 of the SCOMDY model
(see section 2.4.2). Such a setup has the advantage that a comparison with the empirical
application is easier to make. However, this procudere turns out to be very time intensive.
Second, a straightforward contribution to this thesis would be to increase the dimension of the
models, because we only considered bivariate density forecasts. The question rises whether the
power generally increases with dimension, such as in the results of Berg (2009).

Regarding to the relatively weak power results of the proper scoring rules in our empirical
applications, it would be interesting to investigate whether more significant results are obtained
when using a larger sample size, or choosing a less correlated dataset. More powerful results
may also be obtained by considering more advanced copula specifications, such as skewed
copula specifications, mixtures of elliptical copulas, or extreme value copulas.

Furthermore, we only consider statistical evaluation criteria in our empirical example.
Additional insights could be obtained by considering economic criteria, by for instance
calculating Value-at-Risk (VaR) and Expected Shortfall (ES) measures based on the results of the
test statistics (see Diks et al, 2010). Alternatively, one could set up a dynamic hedging strategy
based on the selected models, and measure the degree of “over-hedging”.

In the Monte Carlo experiments assessing the size properties of our test, we found that for
sample sizes with less than 20 observations in the region of interest, the asymptotic distribution
of our Diebold Mariano type test statistic is not a suitable approximation of the true distribution.
To solve this problem of small sample sizes, bootstrapping should be used. Another (rigorous)
solution would be to adopt a Bayesian inference approach, as it contains the main advantage that
it provides exact results even for small datasets, i.e. it does not rely on asymptotics. Moreover, it
has the advantage that it is possible to include a priori knowledge. Geweke and Amisano (2010)
propose a framework to compare different Bayesian likelihood based prediction models with
alternative predictive distributions. However, this approach is methodologically very different
from the theory present in this thesis (which is frequentist). Adopting a Bayesian inference
approach therefore corresponds to the construction of an entirely new testing framework.

At last, our test statistics could be extended to allow for more general weight functions. A
possible direction for further research is to allow for a time-varying region of interest. Moreover,
note that in this thesis we only focus on a “block” within the left tail of the copula distribution.
For application areas other than risk management, it could be useful to consider different
“shapes” and/or different locations as region of interest.
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Appendix 1 Explosive development of Copula Theory
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Figure Al1.1: Number of documents on copula theory, 1971-2005 (Source: Genest et al 2009)

Genest et al (2009) made a survey about the explosive development of copula theory the last few
decades. They clearly observed a “boom” in copula research starting the end of the nineties, see
figure A1l.1. They also found that copulas are used in numerous applications areas in diverse

disciplines ranging from health sciences, biology, hydrology, environmental science to finance,

see figure A1l.2. Not surprisingly, the latter experienced the most attention due to the booming
banking and insurance business in the last few decades. The risk management methodology
acknowledged an explosive growth, mostly driven by new regulatory guidelines and new
financial products in the eighties and nineties (Embrechts 2008). Due to their flexibility, copula
modelling was considered to be a invaluable tool for handling the presence of several

phenomena in empirical asset prices, such as the stylized facts of assets prices as discussed in

section 5.2.
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Figure Al1.2: The left figure shows the application areas of copula theory as of June 2006. The right pie-chart shows how the 41% of
finance in the left pie-chart is divided in application areas within finance. (Source: Genest et al 2009)



Appendix 2 Overview of goodness-of-fit tests for Copulas

Here we discuss the main findings two recent studies concerning tests for appropriate copula
specification performed by Berg (2009) and Genest, Rémillard, and Beaudoin (2009). Both
articles present an overview of existing goodness-of-fit tests. We categorized the tests in four
major groups. Further details can be found in the relating articles.

First, we note the Chi square tests based on discretized data by gridding the probability space.
However, this “binned approach” is not recommended because of 3 reasons. It is unfeasible for
high-dimensional data due to the curse of dimensionality. Moreover, the grouping of the data is
arbitrary so the results of the tests depend on the number of categories selected. At last, due to
dependence between ranks the distribution is not exactly the same as in the classical context.

The second group consists of copula specific tests, such as procedures for testing the
dependence structure of the Normal copula and the Clayton family.

The third group consists of general tests involving tuning parameters. These tests are applicable
to any copula family but their implementation involves a tuning parameter or kernels, weight
functions and associated smoothing parameters.

The fourth class is the largest; it consists of the dimension reduction approaches, applicable to
any copula structure and requiring no strategic choice for their use (also called ‘blanket tests’ by
Genest et al, 2009). The tests currently available are based on:

a) Empirical copula, using a rank-based version of the Cramer-von Mises or Kolmogorov-
Smirnov statistic. Approximate p-values can only be obtained by a parametric bootstrap
procedure.

b) Kendall’s transform, which is a specific probability integral transformation of the data.
Again the p-values can only be obtained via specially adapted Monte Carlo methods
(bootstrapping).

c) Rosenblatt’s transform, which is based on the Anderson-Darling test statistic together
with a parametric bootstrap procedure. Note: this Rosenblatt transform is non-unique,
and is therefore criticized as being somewhat arbitrary.

Regarding to the dimension reduction approaches, Genest et al (2009) found that in general, the
greater the sample size, the better. They further conclude that the tests relying on Rosenblatt’s
transform are at an advantage, since they require a single bootstrap to approximate the null
distribution to extract p-values (the empirical copula and Kendall's transform require double
bootstrapping). The Cramer von Mises (CvM) test statistics are almost invariable more powerful
than Kolmogorov-Smirnov functionals. They found that the CvM test statistics based on the
empirical copula and corrected Rosenblatt transform yield the best results. The CvM test
statistic based on Kendall’s transform is also recommendable, especially when the null
hypothesis is Archimedean (since K is then available in closed form).

Berg (2009) found increasing power with sample size, dimension and dependence. The best
performance is the proposed approach of Berg that averages several empirical copula
approaches. Special tests for elliptical copulas or the Clayton copula may however be preferable,
especially for high dimensions and large sample sizes.
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Appendix 3 Pitfalls of Linear correlation

If we are aware of the restrictions of these traditional models, why are they still widely used?
The main reason is that in the specific case of elliptical distributions, such as the multivariate
normal and students-t distribution, linear correlation can be used as dependence measure.
Linear correlation, or Pearson’s correlation coefficient r, between two random variables X and Y
is given by:

E(XY)-E(X)E(Y)

r(X,Y) = cor(X,Y) = var var (1)

(A3.1)
Embrechts et al (2002) recall the advantages of working with linear correlation, as it is
straightforward to work with, easy to manipulate under linear transformations and it is a
natural measure of dependence in multivariate normal distributions. Due to these reasons,
linear correlation is widely adopted in financial theory, such as CAPM and APT. However, one
should keep in mind that it can only be used when working with elliptical distributions, which
requires symmetric marginal distributions and linear dependence. One should be aware of the
pitfalls of using linear correlation (see Embrechts et al (2002) for a detailed description):

1. r only measures linear association. This implies that it is not invariant under nonlinear
strictly increasing functions, such as the log-transform.

2. X LY = r =0, but the reverse only holds in the specific case of the multivariate normal
distribution! Moreover, it holds in general that r can be close to zero even if X and Y are
strongly dependent?é, which clearly may lead to misleading results.

3. r does not always exist, e.g. the bivariate Cauchy distribution has infinite second
moments, such that the Pearson’s correlation coefficient in (A3.1) cannot be computed.

Note that these drawbacks all can lead to misleading results, which makes linear correlation an
undesirable dependence measure.

Copula models avoid these restrictions, and have therefore become an important tool to describe
dependence between random variables. The most basic copula is the independence copula,
MM(u,v) = uv, which is a straightforward consequence of Sklar’s theorem given in Theorem 2.1:

XlYec=1I with I(u, v) = uv (A3.2)

If however C # II, then X and Y are dependent. To what extent C can deviate from II can be
quantified by a certain measure of association/dependence that is based on the copula of (X,Y)
only. Such a measure always exists, because any copula is a bounded function on a bounded set
by definition. Scarsini (1984) suggested a measure of concordance based on copulas, which is
defined as follows:

®j.e.if r ~ 0, this does not necessarily mean that X and Y are close to independence.
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Definition A3.1 A measure of concordance is a function k(X,Y) satisfying the following axioms:
(i) x is defined for any random pair (X,Y) with continuous margins.

(i) k(X,Y) = k(Y, X).

(iii) If the copula C of (X,Y) and the copula D of (W, Z) satisfy C <pgp D then k(X,Y) < k(W, Z).
(iv) The range of x is [-1,1].

(v) X LY impliesk(X,Y) = 0.

(vi) k(—=X,Y) = —k(X,Y).

(vii) If (X, Y,) = (X,Y) then k(X,,,Y,) = k(X,Y) asn — oo,

For details, see Scarsini (1984). It can be shown that for a random pair (X, Y) with its copula C,
all 7 axioms are satisfied, using among others that copulas are invariant under increasing
transformations and are bounded functions on a bounded set by definition. The only drawback
of working with measures of concordance is that the reverse of axiom (v) does not hold, i.e.
k(X,Y) # X LY. Measures that satisfy §(X,Y) & X 1Y are called measures of dependence. The
definition differs slightly from the above definition by changing the last three axioms (see for
example Schweizer and Wolff, 1981), but they are more complicated to work with.

One of the most common copula-based measure of concordance is Kendall’s 7. In 1938, Kendall
introduced the following measure of concordance for the random pair (X, Y):

X, V) =P{X =X =Y >0} — P{{(X = X")(Y = Y*) < 0} (A3.3)

Where (X,Y) is a random pair and (X*,Y*) its independent copy. In other words, it substracts
the probability of that two pairs (X,X*) and (Y,Y™) are concordant (thatis: (X — X*)(Y —Y*) >
0) to the probability that the two pairs are discordant (thatis: (X — X*)(Y —Y*) > 0). It can be
shown that this notation can be rewritten as:

(X, Y) =4[, [} C(u,v)dC(w,v) — 1 (A3.4)

To obtain the relationship of Kendall’s tau with the Gaussian copula C¢® we derive the integral:

fol fol CE(u,v)dCi(u,v) = L+ {arcsin(r)}/2m (A3.5)

T4
Consequently, T(Cga) = %arcsin(r), which holds for all elliptical copulas (McNeill et al 2005,

Proposition 5.37).

Nelsen (2006) provides a proof for the following relation of Kendall's tau and Archimedean
copulas, in terms of their density generator 14 (x)

- 1%e(®)
T=1+4f) 005 d (A3.6)

To emphasize that Kendall’s tau is not the only possible measures of concordance, we note that
there also exist other measures of concordance such as Spearman’s p, Van den Waarden’s
coefficient w, Gini’s y or Blomgvuist's £.
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Appendix 4 Copula examples

Copula densities and simulation scatter plots of the six copulas of interest with T = 0.2.
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Figure A4.1 The six upper graphs show from left to right the density of the (bivariate) Gaussian copula, the
Student-t Copula, the Cauchy Copula, the Clayton Copula, the Gumbel Copula and the Frank copula
respectively. The lower scatterplots show a simulation sample of N=10,000 of the six corresponding copula
specifications. In all graphs, the parameter values are set to match Kendalls tau fixed to r = 0. 2.
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Copula densities and simulation scatter plots of the six copulas of interest with T = 0.5.
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Figure A4.2 The six upper graphs show from left to right the density of the (bivariate) Gaussian copula, the
Student-t Copula, the Cauchy Copula, the Clayton Copula, the Gumbel Copula and the Frank copula
respectively. The lower scatterplots show a simulation sample of N=10,000 of the six corresponding copula
specifications. In all graphs, the parameter values are set to match Kendalls tau fixed to T = 0. 5.
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Appendix 5 Additional Power Experiments: Increasing Correlation

Results for the Power plots with correlation fixed to p;, = 0.3:

TRUE POWER:Ha: (correct) Gaussian copula performs better (m=5, rho=0.3)
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Figure A5.1: One sided rejection rates at significance level 5% to assess the power properties of the equal
predictive ability test as defined in (3.28) when using the weighted logarithmic (wl), the conditional
likelihood (cl) and the censored likelihood (csl) scoring rules under the weight function w(u,v) =I(u,v <)
where 0 < r < 1, based on 1,000 replications and m=5 expected observations in the region of interest. For the
graphs in the left (right) columns, the DGP is the Gaussian Copula (Student-¢(5) copula) with rho=0.3. The
graphs in the top (bottom) panels show average rejection rates against superior predictive ability of the
correct (incorrect) copula specification, i.e. true (spurious) power.
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Figure A5.2: This figure is similar to Figure A5.1, but now with m=40 expected observations in the left tail.
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Results for the Power plots with correlation fixed to p;, = 0.6:

(m=5, rho=0.8)
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Figure A5.3: One sided rejection rates at significance level 5% to assess the power properties of the equal
predictive ability test as defined in (3.28) when using the weighted logarithmic (wl), the conditional
likelihood (cl) and the censored likelihood (csl) scoring rules under the weight function w(u,v) =I(u,v <)
where 0 < r < 1, based on 1,000 replications and m=5 expected observations in the region of interest. For the
graphs in the left (right) columns, the DGP is the Gaussian Copula (Student-t(5) copula) with rho=0.6. The
graphs in the top (bottom) panels show average rejection rates against superior predictive ability of the
correct (incorrect) copula specification, i.e. true (spurious) power.
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Figure A5.4: This figure is similar to Figure A5.3, but now with m=40 expected observations in the left tail.
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Results for the Power plots with correlation fixed to p;, = 0.9:

TRUE POWER Ha: (correct) Gaussian copula performs better (m=5, rho=0.9) TRUE POWER Ha: (correct) t-Copula performs better (m=5, rho=0.9)
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Figure A5.5: One sided rejection rates at significance level 5% to assess the power properties of the equal
predictive ability test as defined in (3.28) when using the weighted logarithmic (wl), the conditional
likelihood (cl) and the censored likelihood (csl) scoring rules under the weight function w(u,v) =I(u,v <r)
where 0 < r < 1, based on 1,000 replications and m=5 expected observations in the region of interest. For the
graphs in the left (right) columns, the DGP is the Gaussian Copula (Student-£(5) copula) with rho=0.9. The
graphs in the top (bottom) panels show average rejection rates against superior predictive ability of the
correct (incorrect) copula specification, i.e. true (spurious) power
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Figure A5.6: figure is similar to Figure A5.5, but now with m=40 expected observations in the left tail.
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Expected mean relative scores with Gaussian DGP: the correlation parameter is increasing from
P12 = 0.3 in the top panel to p;, = 0.6 in the middle panel and p;, = 0.9 in the lowest panel.
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Figure A5.7: Proxy of the mean relative scores for sample sizes m=5 (left graphs) and m=40 (right graphs),
when using the weighted logarithmic (wl), the conditional likelihood (cI) and the censored likelihood (csI)
scoring rules under the weight function w(u,v) =I(u,v < r) where 0 < r < 1, based on 10,000 replications.
The graphs show the results for the Gaussian copula as DGP, with the correlation parameter fixed to rho=0.3
in the upper two graphs, rho=0.6 in the middle two graphs and rho=0.9 in the lower two graphs.
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10% and 90% percentiles mean relative scores with Gaussian DGP: the correlation parameter is
increasing from p;, = 0.3 in the top panel to p;, = 0.6 in the middle panel and p;, = 0.9 in the
lowest panel.

GAUSSIAN DGP: 10% and 90% percentiles mean relative scores (rho=0.3 m=5)
0.1 T T T T T T T T T

GAUSEIAN DGP: 10% and 90% percentiles mean relative scores (tho=0.3 m=40)

01
0.08 B n.os b il
L Lol
0.06 e mrm 006 - 7
@ 004+ b @ D04t P
S 5 e
@ ooz e 1 & oozt S
= — E
5 0 e 5 e
£ . £ 0 g
oozt 1 oozt e
e e—
004+ T 004+ 7
006 L L L L L L 1 L 1 006 . . . . L L L L L
01 02 03 04 05 DB 07 0.8 0.3 ’ 01 0z 03 0.4 05 06 07 ns 038
threshold r threshold r
o1 GAUSEIAN DGP: 10% and 80% percentiles mean relative scores (rho=0.6 m=5) GAUSSIAN DGP: 10% and 90% percentiles mean relative scores (tho=0.6 m=40)
T T T T T T T T T 0.1 T T T T T T T T T
nosf e noaf g
0.06 ¢/\/f q 0.06F 4
§ 004 i g o4k .
o —_— o —_—
il 0o02r e b @ 002p = b
T // § Y-
£ U= £ O
e e
oozt = . oozt R
- F Mi -
n.n4 —=—— D04+ q
006 L L L L L 1 L L 1 006 1 I I 1 I L L L I
01 02 03 04 05 0B 07 08 08 01 02 03 0.4 05 0B o7 08 o8
threshold r threghold r
GALUSSIAN DGP: 10% and 90% percentiles mean relative scores (tho=0.9 rm=0) GAUSSIAM DGF: 10% and 90% percentiles mean relative scores {tho=0.9 m=40)
0.1 T T T T T T T T T 0.1 T T T T T T T T T
005 b
0.06 b
] @ 0.04F =
5 g [
@ 5 oozt .
5 5 P
£ § IEE=ee——
omf R
004+ q 0041 1
006 1 1 1 1 1 L 1 L i 00E | L L 1 L L L L L
01 0z 03 0.4 05 06 07 0s 0s 0.1 0z 03 0.4 045 0.6 o7 0.4 k=]
threshald r threshald r

Figure A5.8: 10% and 90% percentiles for the upper two graphs of figure 4.5, i.e. the mean expected relative
scores of comparing an Gaussian Copula with the Student-t(5) Copula, with the Gaussian Copula as DGP. The
two graphs in the left (right) panel correspond to the m=5 (m=40) expected observations in the region of
interest. The graphs show the results for the Gaussian copula as DGP, with the correlation parameter fixed to
rho=0.3 in the upper two graphs, rho=0.6 in the middle two graphs and rho=0.9 in the lower two graphs. The
graphs show the results for the full range of r, thatis r € [0.01, 1].
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10% and 90% percentiles mean relative scores with Gaussian DGP.

This figure is zooming in on the left tail, with the three graphs at the left (right) hand side
correspond to the small (large) sample size with m=5 (m=40) expected observations in the
region of interest, here the left tail. The correlation parameter is increasing from p;, = 0.3 in the
top panel to p;, = 0.6 in the middle panel and p;, = 0.9 in the lowest panel.
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Figure A5.9: 10% and 90% percentiles for the upper two graphs of figure 4.5, i.e. the mean expected relative
scores of comparing an Gaussian Copula with the Student-t(5) Copula, with the Gaussian Copula as DGP. The
two graphs in the left (right) panel correspond to the m=5 (m=40) expected observations in the region of
interest. The graphs show the results for the Gaussian copula as DGP, with the correlation parameter fixed to
rho=0.3 in the upper two graphs, rho=0.6 in the middle two graphs and rho=0.9 in the lower two graphs. The
graphs “zoom” in the left tail of the copula withr € [0.01,0.1].
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Expected mean relative scores with Student-¢(5) copula as DGP: the correlation parameter is

increasing from p;, = 0.3 in the top panel to p;; = 0.6 in the middle panel and p;; = 0.9 in the

lowest panel.
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Figure A5.10: Proxy of the mean relative scores for sample sizes m=5 (left graphs) and m=40 (right graphs),
when using the weighted logarithmic (wl), the conditional likelihood (cI) and the censored likelihood (csI)
scoring rules under the weight function w(u,v) =I(u,v < r) where 0 < r < 1, based on 10,000 replications.
The graphs show the results for the Student-t Copula as DGP, with the correlation parameter fixed to rho=0.3
in the upper two graphs, rho=0.6 in the middle two graphs and rho=0.9 in the lower two graphs
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10% and 90% percentiles mean relative scores with Student-t(5) copula as DGP.

Expected mean relative scores with Student-t copula as DGP: the correlation parameter is
increasing from p;, = 0.3 in the top panel to p;, = 0.6 in the middle panel and p;, = 0.9 in the
lowest panel.
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Figure A5.11:: 10% and 90% percentiles for the upper two graphs of figure 4.5, i.e. the mean expected relative
scores of comparing an Gaussian Copula with the Student-t(5) Copula, with the Student-t(5) Copula as DGP.
The two graphs in the left (right) panel correspond to the m=5 (m=40) expected observations in the region of
interest. The graphs show the results for the Gaussian copula as DGP, with the correlation parameter fixed to
rho=0.3 in the upper two graphs, rho=0.6 in the middle two graphs and rho=0.9 in the lower two graphs. The
graphs show the results for the full range of r, thatisr € [0.01, 1].
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10% and 90% percentiles mean relative scores with Student-t(5) copula as DGP.

This figure is zooming in on the left tail, with the three graphs at the left (right) hand side
correspond to the small (large) sample size with m=5 (m=40) expected observations in the
region of interest, here the left tail. The correlation parameter is increasing from p;, = 0.3 in the
top panel to p;, = 0.6 in the middle panel and p;, = 0.9 in the lowest panel.
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Figure A5.12: 10% and 90% percentiles for the upper two graphs of figure 4.5, i.e. the mean expected relative
scores of comparing an Gaussian Copula with the independent Student-£(5) copula, with the Student-¢(5)
copula as DGP. The two graphs in the left (right) panel correspond to the m=5 (m=40) expected observations
in the region of interest. The graphs show the results for the Student-¢(5) copula as DGP, with the correlation
parameter fixed to rho=0.3 in the upper two graphs, rho=0.6 in the middle two graphs and rho=0.9 in the
lower two graphs. The graphs “zoom” in the left tail of the copula with r € [0.01,0.1].
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Appendix 6 Comparison Stylized Facts first in-sample period

First we provide the plots of (squared) autocorrelations to examine the univariate stylized facts
(1) and (ii) for the first in-sample period from 2-1-1992 to 6-10-2000. Figure A6.3 shows the
(squared) autocorrelations for the total returns, figure A6.4 shows the plots for the
corresponding standardized residuals obtained by model (5.3).
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Figure A6.1: The upper panel exhibits the sample autocorrelation of the total returns of the first in-sample
period, i.e. the first 2,000 observations from 2-1-1992 to 6-10-2000. The lower panel shows the sample
autocorrelation of the corresponding squared total returns. The horizontal blue lines display the 5%
significance levels.
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Figure A6.2: The upper panel exhibits the sample autocorrelation of the standardized residuals of the first in-
sample period, i.e. the first 2,000 observations from 2-1-1992 to 6-10-2000. The lower panel shows the
sample autocorrelation of the corresponding squared standardized residuals. The horizontal blue lines
display the 5% significance levels.
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Second, we compare several of the multivariate stylized facts. We start off with examining the
rank scatterplots and corresponding Chi-plots for the period from 2-1-1992 to 6-10-2000 for all
six country pairs. Figure A6.3 shows the scatterplots and corresponding Chi-plots for the total
returns, figure A6.4 shows the plots for the corresponding standardized residuals obtained by

model (5.3).

RANK SCATTERPLOTS AND CORRESPONDING CHI-PLOTS TOTAL RETURNS
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Figure A6.3 Rank scatterplots and corresponding chi-plots of all country pairs using the returns of the first in-
sample period, i.e. the first 2,000 observations from 2-1-1992 to 6-10-2000. The horizontal red dotted lines

in the chi-plots display the 5% significance control limits.
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RANK SCATTERPLOTS AND CORRESPONDING CHI-PLOTS STAND. RESIDUALS
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Figure A6.4 Rank scatterplots and corresponding chi-plots of all country pairs using the standardized
residuals of the first in-sample period, i.e. the first 2,000 observations from 2-1-1992 to 6-10-2000. The

horizontal red dotted lines in the chi-plots display the 5% significance control limits.
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The quantile dependence plots for the period from 2-1-1992 to 6-10-2000 for all six country
pairs. Figure A6.5 shows the quantile dependence plots for the total returns, figure A6.6 shows
the plots for the corresponding standardized residuals obtained by model (5.3).
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Figure A6.5: Quantile dependence of all country pairs using the returns of the first in-sample period, i.e. the
first 2,000 observations from 2-1-1992 to 6-10-2000. The blue (red) curve displays the empirical (normally
distributed) data.
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Figure A6.6: Quantile dependence of all country pairs using standardized residuals of the first in-sample
period, i.e. the first 2,000 observations from 2-1-1992 to 6-10-2000. The blue (red) curve displays the
empirical (normally distributed) data.
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The exceedance correlations plots for the period from 2-1-1992 to 6-10-2000 for all six country
pairs. Figure A6.7 shows the exceedance correlations plots for the total returns, figure A6.8
shows the plots for the corresponding standardized residuals obtained by model (5.3).
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Figure A6.7: Exceedance correlations of all country pairs using the first in-sample period, i.e. the first 2,000
observations from 2-1-1992 to 6-10-2000. The blue (red) curves display the empirical (normally distributed)
data.

USA-Mexico USA-Argentina USA-Brasil
1 T T T T 1 T T T T 1 T T T T
0.8 —=— empirical | | 0.8 —=— empirical || 0.5 —=— empirical ||
i —— normal ’ —— normal ’ —— normal
0.6
0.4
0.2
0
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Cuantile g Quantile g Cuantile g
Mexico-Argentina Mexico-Brasil Argentina-Brasil
1 1 1
0.8 —&— empirical | 0.8 —=— gmpirical | 08 —=&— pmpirical |
) —*— normal : —+— normal i —*— normal
0.6
0.4
0.2
0
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

Cuantile g Quantile g Cuantile g
Figure A6.8: Exceedance correlations of all country pairs using the standardized residuals of the first in-

sample period, i.e. the first 2,000 observations from 2-1-1992 to 6-10-2000. The blue (red) curves display the
empirical (normally distributed) data.
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Appendix 7 Chi Plots

Examples of Chi-plots as in Fisher and Switzer (1985) for 2,000 random samples from the six
different copula specifications introduced in section 2.3. Columns 1 to 4 correspond to values of
T of 0,0.2,.35 and 0.5 respectively.
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Figure A7.1: Examples of chi-plots for 2,000 simulated random pairs of different copula specifications.
Columns 1 to 4 correspond to values of Kendall’s 7 0f 0, 0.2, .35 and 0.5 respectively.The horizontal red dotted
lines in the chi-plots display the 5% significance control limits.
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Appendix 8 Estimated Parameters Empirical Application
This appendix shows the estimated paramters over the out-of-sample period of the country
pairs USA-Brazil, Mexico-Brazil, Argentina-Mexico and Argentina-Brazil.

GAUSSIAN COPULA p,,=0.5 STUDENT-T COPULA p,,=0.5 v=1559 CAUCHY COPULA p,,=03
0.7 40

correlation p
f==] f==] f==]
=N (5] o
Correlation
e = e
=N [y o
e @
[ =] [ =] [ =]
Degrees of Freedom y
correlation p
N~
[§%] [} E=

=

03 . . 0.3 . . . .
Jan00 Jan05 Jan10 Jan00 Jan(05 Jan10 Jan00 Jan05 Jan10

CLAYTON COPULA 6=0.75 GUMBEL COPULA 6=147 FRANK COPULA 6=3.38

theta g
L= L] f==]
=y o [==] —
theta g
5
theta g
(3% [} =

L L 12 L L L
Jan00 Jan05 Jan10 Jan00 Jan05 Jan10 Jan00 Jan05 Jan10

Figure A8.1: Data of the country-pair USA-Brazil: Estimated parameter values for the six different copula
specifications from the rolling in-sample window of 2000 observations over the entire out-of-sample period
from 6-10-2000 to 26-7-2010.
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Figure A8.2: Data of the country-pair Mexico Brazil: Estimated parameter values for the six different copula
specifications from the rolling in-sample window of 2000 observations over the entire out-of-sample period
from 6-10-2000 to 26-7-2010.
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Figure A8.3: Data of the country-pair Mexico Argentina: Estimated parameter values for the six different
copula specifications from the rolling in-sample window of 2000 observations over the entire out-of-sample

period from 6-10-2000 to 26-7-2010.
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Figure A8.4: Data of the country-pair Argentina Brazil: Estimated parameter values for the six different copula
specifications from the rolling in-sample window of 2000 observations over the entire out-of-sample period
from 6-10-2000 to 26-7-2010.



