
Detecting similarity patterns in OLAP
business databases

With a case study on super market sales data
Master Thesis

Arjen Huberts

Studentnumber: 279704ah
Email: a huberts@hotmail.com

supervisors: E. Caron & R. Potharst

Economic & Informatics
Erasmus University Rotterdam

The Netherlands.

Abstract

In this paper we describe and implement the detection of similarity patterns
in an OLAP cube. This functionality (semi-)automates the generic expla-
nation formalism for a cell in the cube. The explanation formalisms are
generated using a greedy algorithm or a top-down algorithm. The expla-
nation formalism is represented as an explanationt tree. The explanation
trees across a dimension level can be compared with each other to detect
a similarity tree. This similarity can be a structural similarity tree or a
weighted similarity tree that uses fractions and standard deviation. Similar-
ity patterns makes managerial decision making based on structural causes
possible. At the moment the parent cell is used to find structural similarity.
But large incidental causes can than be mistaken as structural. The func-
tionalities were implemented and tested on an artificial, but realistic, case
study involving the sales data of a food market database.

Contents

1 Introduction 3
1.1 Background . 3
1.2 Research question . 5
1.3 Methodology . 5
1.4 Relevance . 6
1.5 Thesis Outline . 6

2 Multidimensional databases 7
2.1 Introduction . 7
2.2 OLAP Terminology . 9

2.2.1 Dimensions & Dimension hierarchies 9
2.2.2 Cubes . 10
2.2.3 Navigational Operators 11
2.2.4 Aggregation lattices 13
2.2.5 Analysis path . 14
2.2.6 Measure . 15

2.3 OLAP equations . 15
2.3.1 Additive Drill-Down equation 15
2.3.2 Non-Additive Drill-Down equation 16

2.4 Conclusion . 16

3 Explanation generation 17
3.1 Introduction . 17
3.2 Explanation Formalism . 17
3.3 Influence Measure . 18
3.4 General explanation generation 20

3.4.1 The aggregated table 20
3.4.2 Selection of significant causes 21
3.4.3 Explanation tree . 21

3.5 Greedy Explanation Generation 22
3.5.1 Dimension hierarchy heuristic 22
3.5.2 User Defined heuristic 24

3.6 Top Down Explanation . 25

1

3.6.1 Specificity heuristic . 26
3.7 Conclusion . 28

4 Detecting similarity patterns 29
4.1 Introduction . 29
4.2 Graph Similarity basic notions 30
4.3 Tree Similarity . 31

4.3.1 Structural similarity 31
4.3.2 Weighted similarity . 33

4.4 Detecting similarity in OLAP 34
4.5 Conclusion . 35

5 Software Implementation 37
5.1 Use Case diagram . 37
5.2 The class diagram . 38
5.3 The software . 39

6 Case Study 42
6.1 Introduction . 42
6.2 Generate Explanation Trees 43

6.2.1 Dimension Hierarchy heuristic 43
6.2.2 User Defined heuristic 45
6.2.3 Specificity heuristic . 48

6.3 Generate Similarity Pattern 49
6.3.1 Weighted Similarity tree 52

7 Conclusions and Future work 54
7.1 Conclusion . 54
7.2 Future work . 55

A Aggregated Tables 58

2

Chapter 1

Introduction

1.1 Background

In today’s economy it is getting more and more important to have quick
access to the correct information at the right moment for managerial decision
making. However the increasing volume of data, and the data being stored at
a variety of systems, create difficulties for efficient and effective managerial
decision-making. This notion has led to companies implementing Enterprise
Information Systems (EIS). EIS is a collection of systems that collect and
process data for managerial purposes. The data warehousing part of EIS
are the Corporate Information Factory (CIF). The framework of CIF can
be seen in Figure 1.1 [Inm96] and consists out of four successive phases

• Production,

• Assembly, Logistics and Storage,

• Processing, Analysing and Consumption,

• Decision making.

The production phase is a collection of systems that collect, store and
maintain production data, for example Enterprise Resource Planning Sys-
tems (ERP Systems) and On-Line Transactional Processing Systems (OLTP
Systems) [BE08]. These different systems work independently of each other
and collect, store and maintain the data differently.

The Assembly, Logistics and Storage phase consists of two sub phases.
In the ETL Staging Area the data of the different systems are processed to
an universal format. The loading format has pre-defined rules and functions
[KH05]. In the data warehouse collects the processed data from the ETL
staging Area and stores the data. Once the data is stored the data cannot
be modified.

3

In the third phase a collection of front-end applications for data anal-
ysis that can be used by managers and business analysts for managerial
decision making. The applications can divided into statistical, data mining,
querying & reporting and multi-dimensional database applications. The
statistics and data mining applications try to detect abnormalities. The
querying & reporting applications allow the manager to select a view over
the data and generate a report. In multi-dimensional database applications
multiple queries are executed after each other. It allows the manager to get
multi-dimensional views on the data with so called data cubes. This allows
the manager to aggregate and inspect the data visually with a number of
managerial reports.

In the last phase of the framework the actual business decision making
takes place by managers and business analysts that use the results generated
by the front-end applications.

Figure 1.1: Business Intelligence framework based on [Inm96]

In the literature a number of techniques are developed to improve the
analysis of multi-dimensional databases. In this thesis we add to this body of
knowledge by proposing a technique for the detection of similarity patterns.

Suppose the analyst wants to find a similarity pattern in the monthly
profit. In a typical multi dimensional database the analyst would have to
take 5 to 7 dimension with on average three dimension levels into account
to explain every month’s profit [CD08]. The analyst would first have to
find an explanation for every month’s profit and then has to compare these
explanations with each other to find a similarity pattern. At the moment
this is a manual task that is time consuming and prone to errors, such as
overlooking interesting patterns. It’s especially time consuming and prone
to errors with large and complex databases. Therefore we semi automate the

4

detection of similarity patterns in a multi dimensional database, allowing the
analyst to consider the complete database and find the patterns of interest
for the analyst.

1.2 Research question

The main research question in this thesis is:

How can the analysis functionality of multi-dimensional databases be ex-
tended with the detection of similarity patterns?

In this thesis we first have to answer questions on what we mean with
terms such as multi-dimensional databases and similarity patterns. We
therefore break down the research questions into the following sub-questions:

1. What are multi-dimensional databases?

2. What is (greedy) explanation in the OLAP context?

3. How can the similarity operator be defined?

4. How can the similarity operator be implemented?

5. How can this operator be applied in a case study?

The answer to the sub questions are answered in separate chapters. The
first two subquestions are used to get a good understanding of the existing
theory. They are required to create a good understanding on how we attempt
to define similarity patterns in the context of multi-dimensional databases.
With the third and fourth questions a prototype is developed and built. The
last question tests the prototype and implements the prototype into a case
study.

1.3 Methodology

In the chapters of this thesis we apply various methods to answer the research
questions.

Chapters 2 and 3 are mainly a literature review. The literature review
is needed to be able to write a model for detecting similarity patterns in
an OLAP business database. In chapter 3 the multi-dimensional database
is explained using Caron’s notations [Car09].In chapter 3 the explanation
formalism is created for a cell in the database. In chapter we continue with
explaining how the most important explanations are selected.

In chapter 4 we develop a model for similarity detection. We discuss
what the model’s input is, the working of the model and output.

5

In the next chapter the prototype software is described. The prototype
is built in Visual Basics and uses Ms Excel 2003 and Ms Access 2003 to
show the results. The conceptual design is further developed and explained.
Finally the prototype is tested a database with super market sales data. We
use the different heuristics to find an explanation tree for an arbitrary cell
and a similarity tree for a given set of cells.

1.4 Relevance

The relevance on this thesis can be divided into the scientific relevance and
the economic relevance.

At the moment similarity patterns have to be found manually in multi-
dimensional databases. Because of time and cognitive limitations the analyst
is clearly restricted in finding similarity patterns. Semi-automate detection
of similarity patterns allows a more detailed similarity patterns to be found.
The semi-automation also prevents errors to be made. This makes it possible
to improve managerial decision making based on the information received.
The application is an advantage for companies because patterns in databases
such as a sales database can be detected quickly and correctly. Because
correct patterns are detected quickly they can react quickly to adjust their
policy if needed.

Detecting similarity patterns as a topic is not new in science. Many algo-
rithms and techniques are used to detect similarities for various applications.
For example, web graph similarity [PAH08] where similarity is used to check
how well a search engine performed in finding the requested search. But the
detection of similarity patterns in an OLAP database is a new application
for where there are no publications to our knowledge.

1.5 Thesis Outline

The thesis is organized as follows. In Chapter 2 a general introduction is
given to multi dimensional databases and give background information. In
Chapter 3 we describe the explanation formalism. This explanation formal-
ism, for exceptional values, is based on the model of [CD08]. We extend this
formalism using the greedy algorithm. In Chapter 4 we explain graph simi-
larity and explain how this can be used in an OLAP datacube. In Chapter
5 we briefly describe how we built the prototype with case and UML dia-
grams. We than use a food market database and implement the prototype.
We describe how this is done and explain why certain choices were made
with a case study. Finally we summarize our findings in Chapter 6, and
present our final conclusions and possible directions for further research.

6

Chapter 2

Multidimensional databases

The purpose of this chapter is to explain the basic concepts behind multi-
dimensional or OLAP databases. Because OLAP, On-Line Analytical Pro-
cessing, is used as analysis tool we review the most important OLAP termi-
nology and equations. The definitions introduced in this chapter are used
in chapter 3 and 4 to define the explanation formalism (chapter 3) and
similarity patterns (chapter 4) in an OLAP database.

2.1 Introduction

With traditional databases it takes a long time before a business report is
generated. These reports are inflexible and when another view is required it
may take a while before this other view is created. With a multi-dimensional
model the data can be accessed quickly and from different perspectives, be-
cause the data is structured in categories. Therefore a multidimensional
database has become a popular tool for data warehouse applications and
business analysis tools such as OLAP. OLAP is different than other busi-
ness tools such as OLTP, because OLTP systems are used to create snapshots
of ongoing business processes, whereas OLAP is used for decision support
based on historical data.

The first OLAP business analysis tool was Express in 1970 [Pen02], how-
ever, the term OLAP was introduced in 1993 for the first time by Codd
[CCC93]. In the late 1990’s OLAP became more and more popular, and
in 1998 OLAP became widely accepted with the introduction of Microsoft
Analysis Services. Today Microsoft is one of the largest OLAP vendors,
with IBM, Oracle and SAP as their main competitors. Their products anal-
yse why an event occurred and can detect trends, but none of the products
detect similarity patterns in the data.

OLAP can be categorized into three storage systems; MOLAP, ROLAP

7

and HOLAP. MOLAP, Multidimensional OnLine Analytical Processing, is
designed to analyse data using a multidimensional database. All calculations
are performed when the cube is created, this limits the amount of data. But
it also allows the data to be extracted quickly and complex calculations are
possible and extracted quickly. Products such as Microsoft Analysis Service
and Cognos Powerplay use MOLAP.

ROLAP systems, Relational OnLine Analytical Processing, manipulate
the data stored in the database simulating the more traditional MOLAP sys-
tem. Because it manipulates the stored data, large amount of data can be
processed, but it takes more time to extract the data. With ROLAP models
it is possible to created new database tables or remove existing database
tables. Products such as Oracle BI and Microsoft Analysis Service use RO-
LAP.

The last system is HOLAP, Hybrid OnLine Analytical Processing, and
is a combination of the two systems mentioned above. The system stores
new data in MOLAP ensuring quick data extraction and older data is stored
in the ROLAP system. Most of the products use this system.

In this thesis we use MOLAP system because we want to analyse data
in the cube and extract data quickly from the database.

OLAP uses a partially denormalized database, allowing the database
to be viewed from different angles. It typically stores data in a fact table
with multiple dimension tables associated with it. This formal structure is
known as a schema. The fact table has a column for each dimension and
for each measure. The dimension column contains a foreign key relating
to the relevant dimension table’s primary key. Dimensions and measures
are explained further on this chapter. In the following chapters we use a
simplified dataset of the food market database with dimensions Item, Time
and Location as running example to illustrate the terminology.

The most popular schema is the star schema. Here each dimension table
is directly linked to the fact table. An example of the star schema represent-
ing the running example is shown in Figure 2.1. An extension of the star
schema is the snowflake schema. It splits the dimension table further into
additional tables in order to reduce the redundancy level. Some schemas
have a multiple fact tables, but these schemas can be seen as a collection
of star schemas. That’s why these schemas are sometimes called galaxy
schemas.

Sometimes OLAP databases are compared with statistical databases.
The statistical database are similar to an OLAP database. However the
statistical database are more close to a relational database instead of multi-
dimensional database. The statistical database also use statistical analysis
techniques that go beyond SQL statements. The last major difference is
that statistical databases are mainly socio-economic oriented and a multi-

8

Figure 2.1: The star schema of the supermarket sales data example

dimensional database are business oriented.

2.2 OLAP Terminology

In this section we discuss the OLAP terminology needed in the rest of the
thesis. Here we give a summary of the most important concepts on the work
of Caron and Daniels article [CD08].

2.2.1 Dimensions & Dimension hierarchies

A multidimensional database is modelled in such a way the data can be
viewed from different perspectives allowing the end users to answer busi-
ness questions. The different perspectives are known as dimensions. The
dimensions are represented as dimension tables in the schema. Examples of
dimensions are Time, Item and Location.

The dimensions have dimension levels allowing the end users to have a
detailed view or a more general view of the data. The dimension levels are
organized in an hierarchy with the most detailed level at the lowest level.
In general

D0
k ≺ D1

k ≺ ... ≺ D
maxk
k . (2.1)

Every dimension levelDik
k has an unique categoric label Aik

k that corresponds
with a column name from the dimension table. In Figure 2.2 an example of
the Location’s dimension hierarchy is shown.

The values of the dimension levels are called instances or members. They
are denoted by dikk where dikk ∈ D

ik
k . For example, the instances of the di-

9

mension level countries are USA and Mexico. The total number of instances
in Dik

k is denoted by |Dik
k |.

Figure 2.2: Example of the Location’s dimension hierarchy

The dimension level structure is based on a parent-child relationship.
This is a 1:n relationship where the child can have only one parent, but the
parent can have multiple children. With a single roll-up operator the parent
can be found [Car09]

r+1(Dik
k) = Dik+1

k . (2.2)

Reversely with a drill-down operator the child can be found [Car09]

r−1(Dik
k) = Dik−1

k . (2.3)

The operators can also be used on a subset Xik
k ∈ D

ik
k or on instance level

dikk . For example the roll-up operator on the dimension level as r+1(DCity
L) =

DState
L , or the drill-down operator on the instance level as r−1(DV eracruz

L) =
DOrizaba

L .

Moreover, the dimension hierarchy structure can also be in a dot notation
showing the levels of the dimension e.g. the dimension Location’s structure
is Country.State.City. The notation is defined as

Dik
k = A

imaxk
k .A

imaxk
−1

kA
i0k
k . (2.4)

For the dimension level instance hierarchy the dot notation is similar, e.g.
USA.CA. It is defined as

dikk = a
imaxk
k .a

imaxk
−1

ka
i0k
k . (2.5)

2.2.2 Cubes

The data in a multidimensional database is structured as a cube. It allows
the data to be viewed from the different dimensions. Although the name
suggests a three dimensional view a typical cube has five to seven dimensions.
The cube C is the Cartesian product of all the dimension levels in the cube
[Car09]

C = Xi1
1 ×X

i1
2 × ...×X

in
n , where X

ik
k ⊆ D

ik
k . (2.6)

10

When Xin
n = Din

n the full cube is found

CF = Di1
1 ×D

i1
2 × ...×D

in
n . (2.7)

The cube can also be represented as (Xi1
1 , X

i1
2 ..., X

in
n) or [i1, i2, ..., in]. In the

running example the cube can be shown as Location3×Product2× Time3.
The combination of the different dimensions’ instances results in the

cube’s cell c
c = di11 × d

i1
2 × ...× d

in
n , where d

ik
k ∈ X

ik
k . (2.8)

There are two special cubes; the base cube where all the instances are at the
lowest level of each dimension and the top, or apex, cube with the maximum
level of each dimension. Note the apex cube exists out of only 1 cell.

2.2.3 Navigational Operators

The dimensions and their levels provide the user to view the data from
different views. These views can be generated with typical OLAP operators.
In this section we discuss the most relevant operators and illustrate them
with an example. The opertors we discuss are the drill down, roll up, slice
and unslice operators.

Figure 2.3: Example of the drill down and roll up operators

The drill-down operators de-aggregate the cube to a lower, more detailed,
level. It is possible to do this by stepping down the dimension hierarchy, or
by introducing an additional dimension level [PJ01]. The operator is defined
as

R−1q (Xi1
1 × ...×X

iq
q × ...×Xin

n) = Xi1
1 × ...× r

−1(X
iq
q)× ...×Xin

n . (2.9)

This could be seen as the cube C1 in Figure 2.3 being drilled down over the
location dimension with cube C2 being the result; R−1L (Country×Brand×
Y ear) = [State, Brand, Year]. When the cube needs to be aggregated to

11

an higher, less detailed, level the roll-up operator is used. It is the exact
opposite of the drill-down operator. The Roll-up operator is defined as

R+1
q (Xi1

1 × ...×X
iq
q × ...×Xin

n) = Xi1
1 × ...× r

+1(X
iq
q × ...×Xin

n . (2.10)

This could be seen as the cube C2 in Figure 2.3 being rolled up over the lo-
cation dimension with cube C1 being the result; R+1

L (State×Brand×Y ear)
= [Country, Brand, Year].

The slice operator performs a selection on one dimension’s level instance
creating a new sub cube.

SXq=Yq(Xi1
1 ×...×X

iq
q ×...×Xin

n) = Xi1
1 ×...×Y

iq
q)×...×Xin

n where Y
iq
q ∈ Xiq

q

(2.11)

Figure 2.4: Example of the slice and unslice operators

Using the slice operation with the criteria Location = Mexico results in
the sub cube;
SLoc=Mex(Country × Brand × Y ear) = [Mexico, Brand, Year]. In Figure
2.4 the slice operator is shown from C1 to C2

A combination of of slice operators is called a dice operator. The order
of the slice operators doesn’t matter because the operator is commutative.
Combining the slice operators Location = Mexico and Year = 1997 results
in
MSLoc=Mex,Y ear=1997(Country×Brand× Y ear) = [Mexico, Brand, 1997].

The un-slice operator performs the reverse of a slice operator, and is
given by

UXq=Dq(Xi1
1 × ...×X

iq
q × ...×Xin

n = Xi1
1 × ...×D

iq
q)× ...×Xin

n . (2.12)

Unslicing the previous example results in the initial cube;
SMex=Loc(Mexico × Product × Time) = [Location, Product, Time]. This
operator can be seen in Figure 2.4 where cube C2 is unsliced to cube C1. Per-
forming multiple unslice operators will create the context cell (di11 , ..., d

in
n).

12

If enough unslice operators are performed the top cube is the final result.

The matrix slice operator is basically the same as a normal slice operator
but then on a specific dimension level instance within a hierarchy,

SA
iq
q =a

iq
q (Xi1

1 ×...×(A
maxq
q . · · · .Aiq

q)×...×Xin
n) = Xi1

1 ×...×(A
maxq
q . · · · .aiqq)×...×Xin

n .
(2.13)

The matrix slice over the Location dimension specifies the state.
SState=V eracruz(Country.State × Product × Time) = [Country.Veracruz,
Product, Time].

The matrix unslice operator is the opposite of the matrix slice operator
and generalizes the dimension,

Ua
iq
q =A

iq
q (Xi1

1 ×...×A
maxq
qa

iq
q ×...×Xin

n) = Xi1
1 ×...×A

maxq
qA

iq
q ×...×Xin

n .
(2.14)

The matrix unslices the Location dimension of previous examples.
SV eracruz=State(Country.V eracruz×Brand×Y ear) = [Country.State, Brand,
Year].

There are many other OLAP operations such as drill-accross, drill-through
and ranking. We will briefly discuss these operations. When cubes share
dimensions a drill-across operation is done. This is the same as the join op-
erator [PJ01] The drill-through uses relational SQL facilities to drill through
the bottom level of the cube to its back-end relational-tables [HK00]. The
ranking operator only returns the cell that return at the top/bottom of a
specified order. For example, selection of the top five best sold items.

Using the operators discussed multiple dimensions can be viewed from
different perspectives and data can be grouped and selected interactively,
making it an ideal analysis tool.

2.2.4 Aggregation lattices

The aggregation lattice L is a graph that is defined by aggregating all the
dimension across their dimension levels. The aggregation lattice is also
known as a data cube lattice. The aggregation lattice is represented as an
ordered tuple. The tuple is the combination of the dimension levels. The
base aggregation lattice of a n-dimensional database is s [0, ... ,0] and the
top level is [i1max , i2max , ..., inmax] [Kam09]. The aggregation lattice level
is the sum of all the dimension levels. The maximum lattice level of the
running example is 3+2+3 = 8.

The lattice is defined by the following sequence operations applied to the
base cube [Car09]

R+n
q = R+1

q ◦R+1
q ◦ ... ◦R+1

q (2.15)

13

Figure 2.5: An aggregation lattice of 2 dimensions where each dimension
has 3 levels

The upset of a cube C = [i1, i2, ..., in] is the lattice of all ancestors of
cube C. Where the base cube of this sub lattice is C and the top cube
[i1max , i2max , ..., inmax]. The different cubes in the sub lattice can be found
using the roll up operator. An example of an aggregation lattice is shown
in Figure 2.5.

The downset of a cube C = [i1max , i2max , ..., inmax] is the lattice of all
descendants from cube C. The base cube of the sub lattice being [0, 0, ..., 0]
and the top cube being C. The cubes in the sub lattice can be found using
the drill down operator [Car09].

2.2.5 Analysis path

In Figure 2.5 there are different roll-up(drill down) operation sequences to
reach the top (base)cube from the base (top) cube. The sequence results in
an analysis path P. For example [0, 0 ,0] → [0, 1 ,0] → [0, 1 ,1] → [1, 1, 1].
The length of the analysis path is dependant of number of dimensions and
the maximum dimension’s level. The total number of paths is dependent on
the number of nodes in the lattice, and is given by

T = Π(inmax + 1). (2.16)

14

Accordingly we can calculate the number of possible lattice paths with
[Car09]

analysis paths =
(n1 + n2 + ..+ nk)!

n1!n2!...nk!
. (2.17)

The running example has 3 dimensions with respectively three, two and
three levels. The maximum length of the analysis path is 3+2+3 = 8. Which

has
(3 + 2 + 3)!

3!× 2× 3!
=

40320

72
= 5604 different paths. This example shows the

number of analysis paths rapidly increases as the number of dimensions and
dimension levels increase.

2.2.6 Measure

Measures are the measurable variables in the fact tables and are sometimes
called facts or variables. Typical business measures are sales, costs and
number of items. A measure y is defined as a function on cube C as follows

yi1,i2,...,in : Di1
1 ×D

i2
2 × ...×D

in
n . (2.18)

When a measure is related to the base cube then the dimension hierarchies
can be used for aggregating (e.g. sum, count, max, avg) the measure values
creating different views on the data.

2.3 OLAP equations

OLAP equations are formed by performing specific aggregation functions on
a single measure. The most common additive OLAP equations are the sum
and count function. The most common non-additive OLAP equation is the
average function.

2.3.1 Additive Drill-Down equation

A function is additive when the operation f(x+y) = f(x) + f(y) is valid.
For the cube C this implies the measure y can be summarized across all
dimensions. This implies y for each cube in the lattice, except for the base
cube, the following holds [CD08];

yi1...iq ...in(C) =
J∑

j=1

yi1...(iq−1),...in(Sj
q(R−1q (C))). (2.19)

In equation 2.19 the measure is the sum of the children corresponding to
the cube. For the running example we can calculate the items sold this year
using cube C = Country × Y ears×Brand and measure y = items sold

y2,2,1(C) =

4∑
j=1

y2,1,1(ST ime=Quarterj (R−1T (C))).

15

If the cube and its cells are instantiated the Equation 2.19 is rewritten
to

yi1...,iq ...in(..., A, ...) =

J∑
j=1

yi1...(iq−1)...in(..., A.aj , ...). (2.20)

Using Equation 2.20 on the running example we calculate the number of
’Faux’ Products sold in USA in the year 1997 as

y2,2,1(USA× 1997×Faux) =
4∑

j=1

y2,1,1(USA× 1997.Quarterj ×Faux).

If it is clear over which dimension(s) the measure is summarized we use
the short hand notation. In the short hand notation the summarization
over the dimension is represented with the plus sign. For example using
cube C = Country × Y ear ×Brand we get

y(Country,+, Item) =

4∑
j=1

y(Country, Y ear.Quarterj , Item).

2.3.2 Non-Additive Drill-Down equation

Non-additive equations are equations that cannot be added across multiple
dimensions. The most popular non-additive equation is the average func-
tion. The average function is non-additive because the instance average is
not equal to the sum of his children’s averages. The instance’s average is cal-
culated by the summation of its children divided by the number of children
[Car09]

yi1...iq ...in(..., A, ...) =
1

J

J∑
j=1

yi1...iq−1...in(..., A.aj ...). (2.21)

In a more general formulation that holds for each cube C

yi1...iq ...in(C) =
1

|R−1q (C)|

J∑
j=1

yi1...(iq−1)...in(Sj
q(R−1q (C))). (2.22)

2.4 Conclusion

OLAP allows data to be viewed quickly and viewed from different dimen-
sions. The views can be modified by using the operators roll up, drill down,
slice and unslice on one or more dimensions. Following a sequence of oper-
ators is known as a path. The lattice of the cube exists of all the possible
paths between the base and sub cube. Because the data can follow different
paths different views can be created allowing the analyst to make better
informed decisions.

16

Chapter 3

Explanation generation

3.1 Introduction

OLAP systems do not have standard functionality for the automated au-
tomated explanation of exceptional cells. Currently the analyst has to use
manual drill down and roll up operators to discover reasons for the exception.

In this chapter the OLAP system is extended with an automated expla-
nation formalism. The formalism finds the best explanation of unexpected
behaviour, symptoms, of a system under study. The notation is based on
the literature of [CD04].

There are two important classes of research in this. The first is from
Sarawagi [SAM98]. In Sarawagi an operator was presented that finds a
summarized reason for drops or increases observed at an aggregated level.
They introduced a model which compared the actual value with the ex-
pected, reference, value and the compact summary of the difference table
A, with for each row of A being the ration between ya and yr. The idea of
Surawagi is to find A in such a way that the reference value built up from
table A and the actual value incurs the smallest amount of errors as possible.
The second class in based on Feelders and Daniels notion. We explain this
notion in more detail in this chapter.

3.2 Explanation Formalism

Our exposition on causal explanation is based on Feelders & Daniels notion
of explanations [FD01], which is based on Hesslow’s theory of explaining
differences [Hes84] and Humpreys’ aleatory explanation notation [Hum97].
The explanation takes place from the whole to the parts. In the OLAP
context the formalism explains why the event’s actual value is different than
its reference value. The causal explanation is written as

< a, f, r > Occurred because Cb despite Ca . (3.1)

17

The formalism describes a symptom as a three-place relation between
an actual object a, a property f, and a reference object r. The reference
object is obtained from a normative model R. This model is a managerial or
statistical normative model. An example of a managerial normative model
is an historical model and an example of a statistical normative model is a
multi-way ANOVA model.

The explanation itself consists of a non-empty set of contributing causes,
Cb, and a, possibly empty, set of counteracting causes, Ca. The counteract-
ing causes do not explain the event, however they clarify the contributing
causes.

In the OLAP context property f is measure y. Now the analyst wants
to specify the difference between the actual value and reference value as a
qualitative difference. The qualitative difference δy can be { ‘high’, ‘normal’,
‘low’ } and are determined as follows

ya(c) > yr(c)→ δy = ‘high’,
ya(c) = yr(c)→ δy = ‘normal’,
ya(c) < yr(c)→ δy = ‘low’.

(3.2)

An explanation is given when δy = ‘high’ or δy = ‘low’. We can now
rewrite Equation (3.1), which is used for explanation of δy(c) in a cube C,

< ya(c), δy = {high, low}, yr(c) > occurred because CbdespiteCa.
(3.3)

3.3 Influence Measure

To quantitatively determine the contributing an counteracting causes that
explain the qualitative difference between the actual and reference value a
measure of influence is given by [FD01]

inf(xi, y) = f(xr
−i, x

a
i)− yr, (3.4)

where inf(xi, y) indicates what the difference between the actual and ref-
erence value of y would have been if only xi would have deviated from its
reference value. The influence measure should satisfy the conjunctiveness
constraint. This constraint says that the influence of a single variable can-
not turnaround when it is with the influence of multiple variables [FD01].
Furthermore, the function f is additive in the OLAP context because an
OLAP datacube is a system of additive drill down equations, see Equation
2.19. Now we can rewrite Equation 3.4 as

inf(yi1...iq ...in(c), yi1...(iq+1)...in(R+1
Dq

(c))) =

ya;i1...iq ...in(c)− yr;i1...iq ...in(c).
(3.5)

18

Equation 3.5 also holds the transitivity property. The transitivity prop-
erty implies that the influence of a variable yi1...iq ...in(c) on its parent
yi1...iq+1...in(R+1

Dq
(c)) is equal to its influence on any other ancestor in its

upset. The proof of this property can be foud in Caron’s paper [Car09].
Using the influence measure the causes can be quantified as contributing

or counteracting causes, defined by [FD01].

inf(y(c), y(R+1
Dq

(c))× δy > 0→ Cb

inf(y(c), y(R+1
Dq

(c))× δy < 0→ Ca.
(3.6)

Now we give an example where we apply the concepts introduced above.
Example 3.1 The analyst wants to explain why the profit of USA × All

Items × 1997.Q4 is higher than the profit of USA × All items × 1997.Q3,
the symptom is given by

〈profit(USA, All Items, 1997.Q4), ‘high’, profit(USA, All Items, 1997.Q3)〉.

Figure 3.1: Actual and reference objects for the cell (USA × All Items

The analyst wants the difference to be explained at the state level in the
location dimension. First the actual value and reference value for the states
are determined, as depicted in figure 3.1. With these values the analyst
calculates the influence for each state.

Dimension profit(ya(c)− yr(c)) Influence

USA.CA 27.11 - 23.72 3.39

USA.OR 20.71 - 21.61 -0.89

USA.WA 43.84 - 39.04 4.80

From the table it can be concluded that the following set of causes Cb
= {USA.CA, USA.WA} and Ca = {USA.OR} are contributing causes. The
set of counteracting causes exists of { USA.OR }

19

3.4 General explanation generation

The general approach for the explanation of an exceptional cell consists of
three main steps

1. The creation of an aggregated table with all possible causes;

2. The selection of significant causes using a greedy heurist or top-down
heuristic;

3. The creation of the explanation tree.

The general approach is described in Algorithm 3.1. In the remainder of
Section 3.4 we elaborate on each of the algorithm’s basic steps.

Algorithm 3.1 General Explanation generation

Select cell to be explained
Select heuristic for Aggregated Table
Create Aggregated Table
Select Significant causes
Create Explanation Tree

3.4.1 The aggregated table

In the previous section influence of a child on an ancestor in the upset
was explained. In the explanation generation proces all the objects in the
symptom’s downset are considered. For this purpose the aggregated table
has to be determined. The aggregated table is an overview of all possible
causes in a drill down path with their actual value, reference value and
influence. We use a standardized lay-out for the influence table. The first
columns shows the dimension levels used to explain a cause. If an object
does not use a certain dimension level, the description ‘All’ is filled in the
dimension level instance cell. Next to these columns there is a column for
the object’s actual value and for the reference’s value. The last column
shows the influence measure. In Figure 3.2 the structure of an aggregated
table is shown. It is possible multiple dimensions are used in the aggregated
table.

Figure 3.2: Example of the aggregated table structure for a single dimension
D

iq
q

20

Because it is often impossible to check all the paths in the symptom’s
downset, different heuristics are applied to determine the drill down path.
With the drill down path the aggregated table is created. These different
heuristics derermine which part of the downset are significant enough to be
considered. The heuristics are discussed in Section 3.4.2 and Section 3.4.3.

3.4.2 Selection of significant causes

The first step is to sort the influence values in the aggregated table in
descending order to find the largest contributing causes at the top of the
aggregated table and the largest counteracting causes at the bottem of the
aggregated table. Different sorting algorithms can be used for this, e.g. bub-
blesort algorithm [LC06]. After sorting the causes, the analyst can easily
select the top n largest contributing/counteracting causes from the aggre-
gated table.

The selection of significant causes can be done in several ways. The
most straightforward approach is to select the top n contributing causes
of the aggregated table. We use this approach in our thesis. But in some
cases the analyst also wants to view the top m counteracting causes of the
aggregated table. The counteracting causes can help the analyst to clarify
the set contributing causes. Another selection approach is to select the top
n % contributing causes of the total number of contributing causes in the
aggregated table, and top m % counteracting causes of the total number of
counteracting causes in the aggregated table.

3.4.3 Explanation tree

The explanation tree is a tree of causes with the explained cell as the root
of the tree. Its successor nodes are the selected causes. The explanations
are chained together from one level to the next level and a tree is formed.
Counteracting causes are denoted with a dotted line. In Figure 3.3 an ex-
ample explanation tree is given that shows how the profit is explained over
the location dimension.

Figure 3.3: An explanation tree from the running example over the location
dimension with USA as the root cell, with n=10

21

The generation of the explanation tree is shown in algorithm 3.2. The
algorithm generates an explanation tree based on the set of significant causes
and the symptom that is explained. For each instance in the set of significant
causes the algorithm finds the nearest ancestor in the set, or the symptom.
If the nearest ancestor is also the parent of the instance an edge is added
between the two instance. If the nearest ancestor is not the parent of the
instance all the instances between the nearest ancestor and instance are
added to the set. Between each child and parent an edge is added. Because
the symptom is at the top level of the explanation tree we are certain an
explanation tree is created.

Algorithm 3.2 Explanation Tree

Set of significant causes AND symptom → SetInst
for each sinificant cause do

Find nearest ancestor in SetInst
if ancestor 6= parent cell then

Add instances between significant cause and ancestor in SetInst.
Add edge for each between child and parent in path between signifi-
cant cause and nearest ancestor.

else
Add Edge beyween cause and ancestor

end if
end for

3.5 Greedy Explanation Generation

Here we discuss two heuristics applicable for explanation generation; dimen-
sion hierarchy heuristic and user defined heuristic.

3.5.1 Dimension hierarchy heuristic

The dimension hierarchy heuristic creates an aggregated table that considers
only one specific dimension hierarchy. In this heuristic a cube is drilled
down over a single dimension. For example, to generate an explanation over
the dimension Dq. Because only one dimension is selected the path in the
downset is always clear.

This is an heuristic that is useful for an analyst when he is focussed on
explaining a symptom over one specific dimension. The analyst often wants
the strongest causes in one dimension shown. For example, the analyst only
wants the measure profit to be explained over the Time dimension, and is
not interested in an explanation over the other dimensions.

The input for the algorithm is one dimension D
iq
q from the symptom’s

downset. The heuristic fills in the dimension level instance names and for

22

the columns that are used for lower dimension levels are filled in with ‘All’.
After that, it calculates the actual value, reference value and influence for
the causes in the subcube.

The heuristic drills down one dimension level. It finds all the instances
at the new dimension level and calculates the actual value, the reference
value and the influence for all the instances. The columns that are used
for the lower dimension level are filled with ‘All’. This is repeated until the
dimension level is 0. The heuristic in pseudocode is given in Algorithm 3.3

Algorithm 3.3 aggregated table based on one dimension

Define cube → C
Define drill down dimension → Dq

Define current dimension level → iq
Create Empty Aggregated Table
Number of columns in table = iq + 4
while iq ≥ 0 do

for ∀ instances ∈ Diq
q do

fill in all known dimension levels
column D

iq−1
q to column D0

q

Fill in ‘All’
calculate ya(C), yr(C)
store values in correct columns
Inf = ya(C)− yr(C)
store values in correct column
next row in aggregated table

end for
iq = iq -1
C= R−1q (C)

end while

Example 3.2 Here we present an example where we construct the aggre-
gated table for the explanation of 〈profit(USA, All, Q4), ‘high’, profit(USA,
All,Q3)〉. The Aggegrated table is created over the Location dimension path
and is shown in Figure 3.4.

23

Figure 3.4: Aggregated table for location dimension

3.5.2 User Defined heuristic

In the second heuristic the aggregated table considers multiple dimensions
from the exceptional cell’s downset. The analyst has predetermined the
analysis path. For example, such path can look like [2,1,2] → [2,1,1] →
[1,1,1] → [0,1,1]. It is possible to display the path in matrix notation. The
analysis matrix columns represent dimensions of the cubes, D1, D2, ..., Dn

and the rows represent the levels of lattice L and shows over which dimension
the heuristic drills down one level. The path in the example is given by the
list of causes


Level L T P

7 0 −1 0
6 −1 0 0
5 −1 0 0

 (3.7)

In 3.7 each column represents 1 dimension, e.q. Location, Time and Product,
and are defined in the first row. In the second row the first drill down of the
path is selected. The selected dimension is shown with -1. The second drill
down is shown in the third row and so on. This is heuristic is useful for an
analyst when he knows which dimension are important and which sequence
the dimensions should be drilled down over. For example, the analyst drills
down the Time dimension level quarter and than continue with the Location
dimension state to finish the path with the Time dimension level month.

24

Similar to the one dimensional heuristic the user defined heuristic fills
the dimension level instance names and the columns that are used for lower
dimension levels are filled in with ‘All’. It then calculates the object value,
the reference value and the influence of the selected (sub)cube. This is
repeated until the last step of the path is reached. The heuristic in pseudo
code can be seen in Algorithm 3.4.

Algorithm 3.4 User defined path aggregated table

Define subcube → C
path → [P1, P2, ..., Pn]
Create Empty aggregated table
for i = 1 to length Path do

for ∀ instances ∈ Cq do
next row in aggregated table
store in all known dimension levels column D

iq−1
q to column D0

q

Fill in ‘All’
calculate ya(C)
calculate yr(C)
calculate Influence
store values in the correct columns

end for
Determine next dimension selected in path → q
C = R−1q (C)

end for

Example 3.3 Here we present an example where the analyst wants to
construct an aggregated table for 〈profit(USA, All, Q4), ‘high’, profit(USA,
All,Q3)〉, based on the following predefined path: [2,1,2] → [2,1,1] → [1,1,1]
→ [0,1,1]. Using this path the aggregated table is shown in Figure 3.5.

3.6 Top Down Explanation

The top down algorithm is a different approach than the greedy algorithm.
The greedy algorithm calculates the influence of each cause and than selects
the top n significant causes. The top down algorithm breaks down the cal-
culation en selection of significant causes per level. The top down approach
only uses the selected significant causes to calculate the next significant
causes.

With the greedy algorithm the analyst was certain the most significant
causes were always found, but with the top down approach a significant
cause can not be shown if the parent is not a significant cause.

25

Figure 3.5: Aggregated table created with user defined heuristic

3.6.1 Specificity heuristic

In some cases the analyst wants to take multiple dimensions into account
but does not know what the best path should be. The specificity heuristic
automates the path selection. This is an heuristic that can be useful for
an analyst when the analyst has no preference and wants to determine the
most specific explanation.

The specificity heuristic works as follows. The symptom is drilled down
in each possible dimension. It than counts the possible causes in each dimen-
sion. After that, it selects the minimum possible number of causes for each
dimension to explain the symptom for a certain fraction, T+. The reduced
set of causes in a dimension is known as the set of contributing causes (Cbp)
[Car09].

inf(Cbp, y
i1 i2... in(C)

inf(Cb, yi1 i2 ... in(C)
≥ T+. (3.8)

T+ is normally between 0.7 and 1, or so. If the analyst wants to in-
crease/decrease the number of causes in the parsimonious set the analyst
can increase/decrease T+. The counteracting parsimonious set is similar to
the contributing parsimonious set. After that the heuristic calculates the
measure of specificity for the symptom. The specificity measure is defined
as

S =
]possible causes

]actual causes
. (3.9)

The number of actual causes is the number of causes that is in the
parsimonious subset. In general the explanation with the highest specificity
measure is preferred.

26

Figure 3.6: A possible built up of an explanation using the specificity heuris-
tic

Once the dimension is selected the heuristic drills down this dimension
and calculates the influence of all the instances in the parsimonious subset.
To determine the next dimension for each cause the heuristic repeats the
specificity measure. An example of how an explanation tree would be cre-
atedusing the specificity heuristic is shown in Figure 3.6. The heuristic is
shown in algorithm 3.5.

Algorithm 3.5 Specificity aggregated table

Define symptom → c
Define max depth explanation tree → maximum
CbTMP = c
while CbTMP 6= 0 AND length 6 maximum do
CbNEW = CbTMP

Cb+TOT = CbTOT + CbTMP

CbTMP = empty
length = 0
for all causes in CbNEW do

Calculate specificity for each dimension
Select dimension with highest specificity cell
Drill down cause over selected dimensions
Add parsimonious set of cause to CbTMP

length = length + 1
end for

end while
create explanation tree based on CbTOT

27

Example 3.4 The analyst wants an explanation for the profit in the USA
× 1997.Q4 × All items compared with the profit in the USA × 1997.Q3 ×
All items. The analyst does not know which path can be follow best, and
uses the specificity heuristic to generate the explanation tree. The analyst
selrcts T+ = 0.7. The heuristic first calculates the influence in USA ×
1997.Q4 × All. The influence is 7.30. The minimum parsimonious subset
should at least have explained the influence for 0.7 * 7.30 = 5.11. After
that, the specificity heuristic calculates the specificity value of the location
dimension and product dimension. The location dimension specificity was
1.5 and the product dimension specificity was 4.11. The heuristic selects
the dimension with the highest specificity value. It therefore drills down
the product dimension and calculates the influence for each instance in the
parsimonious subset. It then repeats this for each instance in the parsimo-
nious subset. The heuristic continues untill a stop condition is met. A stop
condition could be the maximum depth of the explanation tree.

One of the cause in the parsimonious set is the product ‘Dairy’. Here
time dimension specificity was 1.5 and the product dimension specificity was
1.67. For this cause the drill-down path is over the product dimension. But
this does not mean all other products also are drilled down over the product
dimension.

3.7 Conclusion

The explanation formalism introduced in section 3.2 makes it possible to
view an symptom in the OLAP datacube as a general problem. The ex-
planation formalism shows the explanation represented as an explanation
tree which makes it intuitive for inspection by the analyst. The explanation
formalism and creation of the explanation tree can be created using one of
the heuristics in 3.5 and 3.6. Although the ideas behind the heuristics are
different, both heuristics create a rooted explanation tree. These different
paths could cause three major different explanation trees for one symptom
in a datacube.

The explanation tree heuristics makes it possible to generate multiple
explanation trees for a cell its context. A set of explanation trees can be
used to detect similarity patterns.

28

Chapter 4

Detecting similarity patterns

In this chapter we discuss the basic notions of graph matching. We introduce
the basic ideas behind graph matching and give an overview on what has
been done in the literature related to this topic. We than explain two algo-
rithms that are used to detect tree similarity. Subsequently, we explain how
these algorithms can be applied in an OLAP datacube to detect similarity
patterns.

4.1 Introduction

Graphs are used in many subfields of science to represent the structure of an
object. Example of such subfields are chemistry, engineering and databases.
When patterns or graphs are compared with each other, for example com-
paring molecules with each other, this is known as graph similarity [Lev72].
There are many approaches found in the literature to solve the graph match-
ing problem.

There are subgraphs that allow a certain degree of error. Most of these
algorithms are based on the A* algorithm. These algorithms use differ-
ent heuristic lookahead techniques to calculate the similarity between two
subgraphs, in order to generate the similarity graph. These methods will
find the optimal solution but need exponentional time and space due to the
NP-completeness problem [Bun09].

Another approach is based on approximating the optimal solution to find
the similarity graph. The Hopfield network [FLD94] uses neural networks to
approximate the optimal solution. Another method uses a genetic algorithm
to find the optimal solution [CWH96]. These methods do not guarantee to
find the optimal solution but find a solution close to the optimal solution.
With this approach it is possible to get stuck in a local minima.

The last sort of approaches use eigendecomposition and linear program-
ming. This approach will find the optimal solution but can quickly get
complicated and is not intuitively.

29

4.2 Graph Similarity basic notions

In this section we discuss the topic of graph similarity in graph theory. There
are a couple of standard concepts in graph similarity that we first have to
introduce, such as graph isomorphism, subgraph isomorphism and maximum
common subgraph, before we can continue with our discussion on how graph
similarity is detected.

The graphs G1 and G2 are isomorphic if there is a one-to-one mapping
of the graph nodes that preserves the structure of the graph.

Figure 4.1: Example of isomorphism between a graph G1 and G2

More formally the graphs are isomorphic if a bijective function exists
with for every node in G1, u, there is exactly one node in G2, v, such that
f(u) = v exists. In Figure 4.1 an example of isomorphism between two
graphs is given.

Figure 4.2: Example of subgraph isomorphism

Subgraph isomorphism occurs when the graph of G1 and a subgraph of
G2 are isomorphic. A subgraph of graph G is a graph whose set of nodes
and edges are a subset of G ’s set of nodes and edges. In Figure 4.2 the
subgraph of G2 is isomorphic with graph G1.

The last notion is the maximum common subgraph. A common sub-
graph of G1 and G2 is the subgraph that is a subgraph of both graphs.

30

The maximum common subgraph, Gmcs, is the common subgraph with the
maximum number of nodes compared to all the other common subgraphs.
In figure ?? the maximum common subgraph is shown for the graphs G1

and G2.

Figure 4.3: Example of maximum common subgraph

In an OLAP datacube the explanations generated are always structured
rooted trees, see chapter 3. This means the graphs are acyclic and one node
forms the root. The edges have a natural orientation away from the root.
Therefore we can simplify the graph matching to a breadth first approach.

4.3 Tree Similarity

In this section we discuss two different sorts of tree similarity. The first
approach is based on structural similarity and the second approach is based
on weighted structural similarity. In both cases we assume a given set of
trees, (Ti|i = 1...n), where all trees are rooted trees. We also assume that
each cell in the set follow a similar drill down path.

4.3.1 Structural similarity

Because a node always has one parent we simplify the finding of the simi-
larity tree, and find the similarity tree with a breadth first approach. The
depth first approach is also possible, However, we select to adopt a breadth

31

Algorithm 4.1 Structural similarity

Input set of trees {T1...Tn}
Input minimum support threshold → δ
Intitialize similarity tree; root node of trees
Get maximum level of trees → imax

for dimension level i = 1 to imax do
Find all possible unique nodes in dimension i → set of nodes
for all nodes in set of nodes do

Calculate support
if parent node * similarity tree OR support ≤ δ then

Remove node from set of nodes
end if
Add nodes from set of nodes to similarity tree

end for
Empty set of nodes

end for
Output; show TMCS

first approach. Than all nodes at level i+1 related to the successful nodes
at level i are considered. This is repeated until the top level is reached, or
when no new nodes are detected that are suitable for the similarity tree.

More formally similarity is defined as the set of common contributing
causes, i.e. common edges between the similarity trees. Similarity between
the sets of contributing causes for expceptional cell values in the set of trees
∂y(c1), ∂y(c2), ... ∂y(cn)∩ in the context cube C = i1, i2, ..., in] is given by

Cbsim = ∩Cbp(γy(ci)) (4.1)

If we want to add an support to determine whether a node is succesfull
we calculate the support a node has in all the explanation trees. A node is
seen as a successful node if the node has a support above a certain threshold.
The support for an arbitrary node u in a set of trees, ST is given as

sup(u, ST) =
1

n

∑
σ(u, Ti), (4.2)

where σ(u, Ti) = 1 if the node u can be found in Ti, otherwise σ(u, Ti) = 0.
The support is compared with a threshold. If the support is higher than the
threshold the node is added to the similarity tree. If the threshold is set to
1 the similarity tree is equal to the maximum common subgraph.

Because the first part of the structural similarity is a special case of the
second part we give an algorithm for detecting the similarity tree with a
support in Algorithm 4.1.

The general problem of finding similar graphs is reduced to the problem
of finding similar trees. The tree is always an acyclic graph where each

32

nodes has zero or more children and at most one parent. The advantage
of this approach is that it will always find the maximal common subgraph.
But the disadvantages are the memory requirements and the execution time.
For small OLAP datacubes this is not an issue, however for large datacubes
with large explanation trees it could cause some problems.

4.3.2 Weighted similarity

In the second approach we take the weights of the nodes into account. The
weight is the relative influence compared to parent’s influence. In the OLAP
context the weight is the relative influence value a cell has on its ancestor.
This algorithm is based on Yang’s algorithm [YBV05] which is a weighted
tree algorithm for similarity matching between buyers and sellers. The ap-
proach calculates the edges’ weights. This has the advantage that cells with
different sizes can be compared. For example, it is possible to compare USA
with the Netherlands. The fraction is the influence of the child relative to
its parent influence, we also make a difference between contributing and
counteracting causes.

Algorithm 4.2 Structural weighted similarity

Input set of trees {T1...Tn}
Input minimum support threshold → δ
Input maximum spread
Run Algorithm 4.1 to create structural similarity
Calculate standard deviation for each edge in the structural similarity tree
for All edges in structural similarity tree do

if standard deviation edge > maximum spread then
Remove edge

end if
end for
Add nodes to ensure all nodes are connected with parent
Calculate Average weights of each edge
Output; Structural weighted similarity tree

If the two trees T1 and T2 are compared and T1 does not have a node
that tree T2 does have, then the fraction for that particular node in T1 is
0.If the node would be considered in the previous algorithm, the spread
of the normalized weights are calculated as the standard deviation. If the
edge’s spread is below a Maximum spread value and the corresponding node
has a support higher than the minimum threshold, the node is added to
the similarity tree. If the maximum spread value would be set to 1, the
weighted similarity tree would be the same as the structural similarity tree.
The general algorithm for the structural weighted similarity is shown in
Algorithm 4.2

33

4.4 Detecting similarity in OLAP

In the OLAP datacube we detect similarity patterns between cells that are
in each other’s context. In a sub cube of the aggregation lattice multiple
explanation trees are created for a number of cells that are in each others
context. The context can be one, or a combination of, dimensions. Detect-
ing similarities between explanation trees in OLAP might answer typical
business questions. For example finding an explanation why the first six
months performed worse structurally. In this section we discuss in detail
how similarity patterns in OLAP are discovered. The detection of similarity
patterns can be divided into four steps;

1. determine the context,

2. selection of the appropriate explanation tree heuristic for all cells in
the context,

3. construction of the maximum common subtree,

4. display similarity tree.

We now discuss the steps in more detail.
First the analyst selects an arbitrary cell in the cube and selects the

desired context. The selected context is obtained using the unslice operator,
or a combination of unslice operator (see Equation 2.12). The set of cells in
the neighbourhood of the selected cell is denoted as C’. the number of cells
in C’ is denoted as |C ′|.

For each cell in the set C’ an explanation tree is created. There are in
total |C ′| explanation trees generated, one for each cell in the context. The
explanation trees are generated by Algorithm 3.1. The generation of the ex-
planation trees is restricted to the application of the same heuristic to create
the aggregated table. This restriction is needed to guarantee the structure
of all the explanation trees in the set are the same. If the restriction would
not apply, it would be possible that different tree structures are present in
the set of explanation trees. If these explanation trees would be compared
with each other a strange, or none, pattern would be found.

This explanation tree is similar in structure as a normal tree defined in
section 4.3. The causes in the explanation trees are similar to the nodes of
a normal tree. The normalized influence values are similar to the weighted
edges of a weighted tree. Assuming this is correct, we can use Algorithm
4.1 or Algorithm 4.2 to find the (weighted) structural similarity tree. If the
minimum support is set to 1, the similarity tree is equal to the maximum
common subtree.

The similarity tree is finally shown graphically. The four steps described
are shown in pseudocode in algorithm 4.3.

34

Figure 4.4: Shows the cells of a cube with three dimensions. The yellow
lines show a possible selection the analyst can make

In Figure 4.4 the green cell is selected and is unsliced over the product
dimension resulting in the selection shown with the yellow lines. The analyst
creates an explanation tree for each cell in C’ this would result in three ex-
planation trees. In the next step the Algorithm 4.1 or Algorithm 4.2 is used
to find the similarity pattern between these three explanation trees. The
similarity pattern shows the structural similarity between the cells instead
of showing the most important causes between the three cells.

Algorithm 4.3 Create Similarity tree in OLAP

Input; minimum support threshold → δ
Input; heuristic for aggregated table
Input; Select type similarity
Set of selected cells → C ′

for i = 1 to |C ′| do
Create Explanation tree with selected heuristic using Algorithm 3.1
→ Ti

end for
if Selected similarity is structural then

Create similarity tree using Algorithm 4.1 → Tmcs

else
Create similarity tree using Algorithm 4.2 → Tmcs

end if
Output; Tmcs

4.5 Conclusion

There are many algorithms for the detection of the similarity pattern be-
tween graphs. These algorithms have to take into account that the graphs
are cyclic and the structure is unpredictable. Because in an OLAP datacube
the explanation tree structure is predictable the tree similarity is more simple
to solve. In this thesis the problem is solved using a breadth first approach.

35

The algorithm ensures that all possible nodes are considered. The children
of a node that is not in the similarity tree will not be considered. Adding
the weights of the edges to find similarity patterns can be regarded as a
restriction on the normal pattern similarity, but gives extra information to
the tree which can be valuable.

36

Chapter 5

Software Implementation

In this chapter we present the most important concepts of the prototype
software implementation in MS Excel and MS Access. We give these con-
cepts to get a better understanding of the case study in the next chapter.

5.1 Use Case diagram

The use case describes how the analyst creates the pivottable. It also shows
how the explanation trees and similarity trees are created. We assume the
data needed for the pivottable is stored in access. In the use case diagram
the anlayst is the only actor.

Figure 5.1: Use case diagram

37

The analyst can create a new pivotTable. With this pivot table he can
browse through the data. He can use the different navational operators to
browse through the pivot table. With one simple click on a button he can
reset the pivot table.

There are two extensive flows in the use diagram. The first flow is the
generation of an explanation tree. The second flow is the generation of the
similarity tree. The first flow starts with the selection of a cell. The analyst
also selects the heuristic that has to be used and determines the number
of causes (n) shown in the explanation tree. With the input an aggregated
table is created. For the selected cell the top n significant causes are selected.
With these significant causes an explantion tree is generated.

With the second flow the similarity tree is created. The analyst select
the dimension over which the similarity tree is created. For each cell in
the dimension level the significant causes are calculated. These significant
causes are compared with each other and the similarity tree is created.

5.2 The class diagram

Figure 5.2 depicts the class diagram of the software program. This diagram
shows the OLAP datacube and explains how tree similarity fits in. The
model itself is made up by measures and the dimensions are made up by
dimension hierarchies.

Figure 5.2: The dimensions and dimension levels used in the case study

The OLAP datacube is created based on the model discussed in the
previous chapters. The dimensions are predetermined and use to built up

38

the OLAP datacube. The OLAP datacube exists of multiple cells, where
every cell can be explained based on a reference object. The explanation
can be created based on contributing or counteracting causes. With a se-
lected heuristic the significant causes are selected. The significant causes are
represented as an explanation tree. For cells from a similar dimension level
different explanation trees can be explained. The different explanation trees
are compared with each other and a (weighted) similarity tree is generated.

5.3 The software

In this section we explain the software based on screenshots and discuss the
main code behind the software. In Figure 5.3 the startpage of the software
is shown.

Figure 5.3: The screenshot of the main GUI

In this screenshot the data is already loaded from the database stored
in the folder scriptie, and represented in the pivot table. The data for the
pivottable is retrieved using the SQL statement shown in Figure 5.4. Because
this is a prototype we simplified the SQL problem with the assumption the
prototype can only create a pivot table for the foodmarket database. The
query selects the time by day (time), store (location) and product (product).
Using this data and the fact table a pivot table is created.

39

Figure 5.4: The SQL string used to retrieve the data from the database

This prototype is limited to the measure sales. The user can use any
of the navigational operators discussed in Section 2.2.3 to navigate through
the pivot table to find any arbitrary cell.

The user can select which heuristic is used to generate an explanation
tree. If the user selects the one dimensional heuristic he fills in the first
letter of the dimension drilled down over. For the user defined path the user
enter the first letter of the dimension the path follows. In Figure 5.3 the
user has selected the path Location, Product, Location and Time. The user
defined path in matrix notation is

Level L T P
9 −1 0 0
8 0 0 −1
7 −1 0 0
6 0 −1 0


In the select top n causes the user selects the n biggest causes for the

aggregated table. Once this is all entered the user selects a cell in the pivot
table and hits the Explanation tree button. Using the SQL statement shown
in Figure 5.5 the data is retrieved from the database. The the Actual value
can be calculated like

= sum(if(months =′ Q1′, storesales))as
′actual′.

The most important part in the SQL statement is the WHERE part of the
SQL statement. With the PivotPositionString the position of the cell in
the pivot table is determined and added as a restriction to which the SQL
statement must satisfy. The data in the SQL statement can be grouped over
the location dimension and product dimension.

In the ’group by’ part, the data is summed over the dimensional levels.
Following the path defined earlier the SQL statement is repeated at every
path. After executing the SQL statements several times the Aggregated
table is generated.

Then the data is ordered descending for the influence value, and the top
n causes are selected by the user. The program checks if the parent of each
of these causes exists, and if not this causes is added. The causes are shown

40

Figure 5.5: The SQL string used to create the aggregated table

ordered in dimensions. This is also how the explanation tree is represented
in the prototype.

If the user wants to find the similarity pattern he selects the dimension
over which the user wants to find the similarity pattern. The similarity
pattern finds the siblings of the selected cell over the chosen dimension and
creates a explanation tree for each cell.

The minimum support is entered by the user, and the maximum spread
for the weights. If the spread is left empty the similarity is pure structural,
otherwise it is a weighted similarity tree.

At the moment the explanation trees and similarity trees are respresented
in a table and not as a tree. With some extra programming it is possible
the explanation/similarity tree is shown correctly.

41

Chapter 6

Case Study

6.1 Introduction

The case study is not a ‘real case study’, but a study on an artificial, but
representative, database. For the case study we use the foodmart 2000
dataset. The dataset’s original schema is a galaxy schema, this is a dataset
that has multiple fact tables. In our case study we simplified the dataset
and we focus on the fact table sale fact 1997 , which consist of 86,837 data
records. The schema was originally a snowflake schema, but in order to
clarify the example the schema is changed into a star schema. The modified
schema is shown in Figure 6.1. In the modified dataset the costs and sales
of the foodmart are shown over three dimensions.

Figure 6.1: The star schema of the foodmart’s sales fact table

In the case study we use the algorithms from Chapter 3 and 4 to create
explanation trees and similarity tree.

42

6.2 Generate Explanation Trees

We use the same cell to generate an explantion with the different heuristics.
We explore the cell ‘1997 × All Products × USA’ in the datacube. We
drill down over the time dimension; R−1T (1997× All Products × USA) =
(1997.Quarter × All Products × USA), and compare the quarterly sales
with the average quarterly sales in dollars.

Figure 6.2: The starting cell is drilled down over the time dimension

When comparing the 4 quarters in Figure 6.2 we notice the sales in the
fourth quarter was the only quarter that performed better than average.
The average value can be seen as a chain of reference objects because the
average is calculated for each cell. We want to generate an explanation why
this occurred. More formally the symptom that has to be explained is;

〈 Sales(1997.Q4, All, USA), ‘high’, Avg(Sales(1997.Quarter , All, USA)) 〉.

We use the three heuristics discussed in Chapter 3 to generate an explanation
for this symptom. For each heuristic we show the aggregated table, the top
10 contributing causes and the explanation tree. We finally give a business
interpertation for the explanation tree.

6.2.1 Dimension Hierarchy heuristic

The first heuristic we used is the dimension hierarchy heuristic. With this
heuristic we generate an explanation over the location dimension. The anal-
ysis path used is [1,4,2]→ [1,4,1]→ [1,4,0]. We use the heuristics introduced
in Chapter 3.4 to generate the explanation tree.

The aggregated table

In the first step of the heuristic the aggregated table is generated. This is
shown in Figure 6.3

43

Figure 6.3: The aggregated table based on the Location dimension

In the aggregated table we see all the contributing and counteracting
causes of the symptom. The order of the causes in the aggregated are
determined by the drill-down path.

Selection significant causes

In the next step the influence of the causes are ordered in descending order
and n = 10. The 10 contributing causes are shown in Figure 6.4. In order
to create the explanation tree all causes should have a symptom. Because
the cell ‘USA.Or.Portland’ does not have a parent in the top 10 contributing
causes its parent is added. The parent is the counteracting cause ‘USA.Or’.

Figure 6.4: The top 10 contributing causes from the aggregated table are
selected

44

Generate Explanation Tree

With the top 10 contributing causes and the counteracting cause we generate
the explanation tree. To make clear the the cause ‘USA.Or’ is not a top 10
contributing cause, it is coloured grey. And because it is a counteracting
cause, the edge between the counteracting cause and its parent is a dotted
line. The explanation tree is shown in Figure 6.5

Figure 6.5: The explanation tree based on the location Dimension with n=10

Conclusion

With the generated explanation tree the analyst has a clear explanation
based over the location dimension. The fourth quarter had a higher sales
compared to average mainly due to the state ‘WA’. From the 7 cities in
the state ‘WA’, there were 5 cities that performed better than the quarterly
average. In the state ‘Ca’ the city ’‘Beverly Hills’ performed good. It is
noteworthy to mention the city ‘Portland’. It performed better than average
but its parent performed worse than the average. In a top-down approach
this cause would not have been shown.

With the generated explanation tree in Figure 6.5 the analyst has no in-
formation over the products that performed better, or worse than expected.
He also does not know in which month the sales was the highest. The heuris-
tic is powerful for creating an explanation based on one dimension but is
too limited for general use.

6.2.2 User Defined heuristic

In the next explanation tree we also take the product dimension into account.
We create an user defined path to generate the explanation tree. The user
defined path in matrix notation is given by

45


Level L T P

9 0 0 −1
8 −1 0 0
7 0 0 −1
6 −1 0 0

 (6.1)

The first column exists of the drill down level and the three rows next to it
shows the dimension involved (Location, Time and Product). So in the first
row the product dimension is drilled down one level, (R−1P (USA, 1997.Q4, All)) =
(USA, 1997.Q4, product family).

The aggregated table

Figure 6.6: The aggregated table based on the Location dimension

With the drill down path an aggregated table can be generated using
Algorithm 3.3. The first 25 causes of the aggregated table are shown in
Figure 6.6. The complete aggregated table exists of more than 300 causes
and can be seen in Appendix A.

46

Selection significant causes

The causes are ordered in descending order and the top 10 contributing
causes are selected, these are shown in Figure 6.7. The explanation tree
doesn’t need any extra causes to be added.

Figure 6.7: The top 10 contributing causes

The Explanation Tree

The explanation tree is generated using Algorithm 3.3. The generated ex-
planation tree is shown in Figure 6.8.

Figure 6.8: The explanation tree based on the user defined path

Conclusion

The higher sales can be explained due to the higher sales in the product
family ‘Food’. The top 3 causes can be found in the ‘Food’ branch. The
product family Drink did also perform better than average but did not
perform exceptionally good in one of the states. We again can conclude
with the explanation tree that the states ‘Ca’ and ‘Wa’ performed better
than average which corresponds with the findings of the explanation tree
generated with the one dimension heuristic.

The advantage of this heuristic is that the analyst can manually select the
drill-down path. This allows the analyst to see the causes of the dimensions

47

that are most important for the analyst in the top of the explanation tree.
However, this advantage can also be a disadvantage when a dimension is
selected in the top that does not contain much information. To ensure
the most interesting drill-down path is selected, the analyst can use the
specificity heuristic.

6.2.3 Specificity heuristic

In this last subsection we create an explanation tree using the specificity
heuristic, see Chapter 3.4.1. This algorithm is different compared to the
greedy algorithms because it is based on a top-down algorithm. The al-
gorithm allows different dimensions te be shown in the same level of the
explanation tree.

For each new cause the heuristic calculates the specificity values for the
different dimensions and selects the dimension with the highest specificity
value. The fraction T+ is 0.9. For the symptom (1997.Q4, All, USA) the
specificity is calculated for the location (SL = 3

2) and product dimension
(SP = 3

3).
The Location has the highest specificty value. Therefore we drill down

the location dimension and select the causes in the parsimonious set. For
each of these causes the specifcity is calculated and we drill down over the
dimension with the highest specificity value.

With this approach we cannot specificy the number of causes to be shown
or the maximum level of depth. Because we are interested in the most
important causes we only drill down two levels.

Generate Explanation tree

With the top 10 contributing causes the explanation tree can be generated,
there is no need to add any other causes. The explanation tree is shown in
Figure 6.9.

Figure 6.9: The explanation tree based on the specificity heuristic

48

Aggregated Table

For the 6 causes selected with the specificity heuristic an table with the
influence of each of these causes can be generated, This table is shown in
Figure 6.10.

Figure 6.10: The explanation tree based on the specificity heuristic

Conclusion

With the explanation tree in Figure 6.10 it becomes clear that the higher
sales in the USA are mainly caused by the states ‘Wa’ and ‘Ca’. But the
way the sales are explained per state is different. In the state ‘Ca’ two
cities performed very well, this explains the higher sales in the state ‘Ca’.
But in the state ‘Wa’ the higher sales are better explained by looking at
the product families. Here the higher sales was due to the higher sales in
Food and Non-Consumable. Looking at the specificity values of the causes
(1997.Q4, Food, USA.Wa) and (1997.Q4, Non-Consumable, USA.Wa) we
can see that these are more specific explained over the product dimensions
instead of the location dimension. The analyst can therefore conclude the
cities in the state ‘Wa’ performed in general better than average and the
state ‘Ca’ performed better due to 2 specific cities.

A typical property of explanation trees generated with the specificity
heuristic is that nodes on the same level in the tree can come from different
dimensions.

6.3 Generate Similarity Pattern

In this section we take a closer look at the explanation trees created with
the user defined path and wants to know if there is a structural explanation
why the first three quarters performed worse than average. More generally
speaking;s were there in the first three quarters structural causes that per-
formed worse than average? We create the explanation trees for the Q1, Q2
and Q3 with the a user defined path. The path used is shown in Equation
6.2

49


Level L T P

7 −1 0 0
6 0 0 −1
5 −1 0 0
4 0 0 −1

 (6.2)

Explanation trees

Because we want to know why the quarters performed worse than expected
we have to take a look at the causes with the lowest influence values. The
top 10 selection are similar as shown in the previous section. Therefore we
do not show the top 10 tables here, they can be found in Appendix A. The
generated explanation trees are shown in Figure 6.11, Figure 6.12 and Fig-
ure 6.13.

Figure 6.11: The explanation tree for Q1

50

Figure 6.12: The explanation tree for Q2

Figure 6.13: The explanation tree for Q3

Interestingly we see in the third quarter that the city ‘Portland’ was the
main reason why ‘Q3’ performed worse thant average. In a normal top-down
approach this cause would never been shown in the explanation tree because
it would never drill down in the location dimension.

Similarity tree

When looking at the three different explanation trees there are little simi-
larities detected. But taking a closer look a similarity tree can be generated.
The similarity tree with support = 1 is shown in 6.14.

It is possible to relax the similarity support level. Relaxing the support
to 2/3 would add the causes (1997.Q4, Non Consumable, USA.CA) and
(1997.Q4, Food, USA.CA.Beverly Hills) to the explanation tree.

51

Figure 6.14: The similarity tree

Conclusion

The first three quarters performed worse because the states ‘CA’ and ‘WA’,
and than especially the product family ‘Food’, performed worse than aver-
age. The business analist should find underlying explanations, that can’t be
found in the dataset, why this occured.

This similarity tree confirms the idea that was previously created by the
explanation tree of ‘Q4’. In this explanation tree we saw the states CA and
WA perform better than average.

6.3.1 Weighted Similarity tree

The similarity tree created in the previous section shows only information
about structural similarity. It just shows the causes represented in all three
explanation trees. But it does not contain any information related to the
magnitude of the causes.

To detect if the weighted structure is similar between the three quarters
the fractions of the causes are compared with each other. If we compare
the fractions we can create a similarity tree based on the weighted struc-
ture. An advantage of this approach that it considers all causes, including
counteracting causes.

The first three quarters are again used to create a similarity tree. We
calculate the average influence for each cause in the first two levels. And
than calculate the spread with the standard deviation. This results in the
table shown in in Figure 6.15. The support is also based on how many times
the cause occured in the individual explanation trees.

If the standard deviation is lower than 0.25 and the support higher than
0.6 the cause will be added into the similarity tree. In the edge the average
weight is shown for the particular cause has. The similarity tree generated
with this approach is shown in 6.15.

The weighted similarity tree is shown in Figure 6.16. The states ‘Wa’
and ‘Ca’ were also structurally similar over the three quarters. The weights

52

Figure 6.15: The influence, fractions, averages and standard deviation of
the causes.

Figure 6.16: The weighted similarity tree.

confirm that the product family ‘Food’ was the most important reason to
perform worse than average in both states. When we also look at the table
with the fraction and influence values, we also see that the product family
‘Drink’ only plaid a minor role in explaining the lower profits in the first
three quarters.

Conclusion

The advantage of the weighted similarity tree is that it does not only show
the causes that were similar but also the average weight of these causes.
In Figure 6.16 it became clear that ‘Wa.Food’ and ‘Ca.Food’ are one of
the most important causes why the sales were below average in the first
three quarters. It also shows the Product Family ‘Drink’ was structurally
an cause.

53

Chapter 7

Conclusions and Future work

7.1 Conclusion

In the previous chapters we created three heuristic to (semi) automatically
generate an explanation tree. The three heuristics used were the dimension
heuristic, the user defined heuristic and the specificity heuristic. The heuris-
tics generate the explanation tree in complete different ways. But they all
generate an explanation that can be reviewed in a quick and convenient way
by the analyst. Showing the top n significant causes in the explanation tree
allows the analyst to quickly review the explanation tree and ensure there
is no information overload.

The first two heuristics are based on a greedy algorithm. With this
greedy algorithm the analyst knows for sure all important causes are pre-
sented in the explanation tree. This is useful because contributing causes
can be cancelled out by counteracting causes at lower dimension levels.

The last heuristic, the specificity heuristic, is based on a top-down ap-
proach. This approach does not guarantee all significant causes are shown,
but it gives a clear explanation for each cause individually. This is done
automatically. This is why it is a powerful explanation heuristic. For symp-
toms with a large number of dimensions, and dimension levels, this heuristic
is also the most interesting, because this is too complex for an analyst to
create the most interesting analysis path.

When different cells in a dimension level are compared with each other
we first create an explanation tree for each cell. The structural similarity
pattern found is useful for an analyst as ignores the large incidental causes
and only look at the structural causes. With the detection of a similarity
pattern a symptom can not be explained with an incidental cause anymore.
In some cases it can be convenient to allow some relaxation of the definition
similarity and use a support level. This can be interesting if a large number
of trees are compared with each other.

54

If a more detailed eplanation is needed the analyst can use the weighted
similarity. It shows the structural similarity also and it shows the general
influence a child has on its parent. If this varies to much this cause will not
be shown in the weighted similarity tree.

7.2 Future work

For the explanation generation we discussed the greedy explanation tree and
one implementation of the top-down approach. Other explantion generation
algorithm could be considered and different algorithms can be compared.

The similarity pattern created in this thesis used the assumption the drill
down path of the compared explanation trees were the same. But with the
specifcity heuristic the explanation trees can be different. It is interesting to
find out if it possible to detect a maximum sub graph for these explanation
trees although they have different drill down paths.

It might be possible to use the similarity tree to predict the structure of
a new cell in the dataset. This can be useful, for example, to deterimine the
purchase of products in a new store. This can than be compared with other
predictive models.

55

Bibliography

[BE08] Wagner B. and Monk E. Enterprise Resource Planning. Course
Technology, 2008.

[Bun09] H Bunke. Graph matching: Theoretical foundations, algorithms,
and applications. /www.ai.rug.nl, 2009.

[Car09] E.A.M. Caron. Explanation of exceptional values in multi-
dimensional business databases. Haveka, 2009.

[CCC93] E.F. Codd, S.B. Codd, and Salley C.T. Providing olap (on-line
analytical processing) to user-analysts: An it mandate. fpm, 1993.

[CD04] E.A.M. Caron and H.A.M. Daniels. Automated business diagnosis
in the olap context. ERIM Report Series, 2004.

[CD08] E.A.M. Caron and H.A.M. Daniels. Explanation of exceptional
values in multi-dimensional business databases. European Journal
of Operational Research, 188(3):884–897, August 2008.

[CWH96] A. Cross, R. Wilson, and E. Hancock. Genetic search for struc-
tural matching. Springer Verlag, (31), 1996.

[FD01] A. J. Feelders and H. A. M. Daniels. A general model for auto-
mated business diagnosis. European Journal of Operational Re-
search, 130(3):623–637, 2001.

[FLD94] J. Feng, M. Laumy, and M Dhome. Inexact matching using neural
networks. Comparative Studies and Hybrid Systems, 1994.

[Hes84] Hesslow. Explaining differences and weighting causes. Theoria,
1984.

[HK00] J. Han and M. Kamber. Data mining: Concepts and techniques
(the morgan kaufmann series in data management systems). Mor-
gan Kaufmann, September 2000.

[Hum97] P.W. Humphreys. The chances of explanation. Princeton Uni-
versity Press, 1997.

56

[Inm96] W.H. Inmon. Building the data warehouse. 1996.

[Kam09] M.J. Kamfonas. An effective aggregation methodology. kam-
fonas.com, 2009.

[KH05] A. Karakasidis and I. Hellas. Etl queues for active data warehous-
ing. In In Proc. of IQIS, 2005.

[LC06] J. Lewis and J. Chase. Java software structures. Addison Wesley,
2006.

[Lev72] G. Levi. A note on the derivation of maximal common subgraphs
of two directed or undirected graphs. Calcolo, 1972.

[PAH08] Papadimitriou P., Dasdan A., and Garcia-Molina H. Web graph
similarity for anomaly detection. Stanford, 2008.

[Pen02] N. Pendse. The origins of todaÿı¿1
2s olap products. DSSRe-

sources.COM, 2002.

[PJ01] T.B. Pedersen and C.S. Jensen. Multidimensional database tech-
nology. Computer, 34(12):40–46, 2001.

[SAM98] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven ex-
ploration of olap data cubes. In EDBT ’98: Proceedings of the
6th International Conference on Extending Database Technology,
pages 168–182. Springer-Verlag, 1998.

[YBV05] L. Yang, M. Ball, and Bhavsar V.C. Weighted partonomy-
taxonomy trees with local similarity measures for semantic buyer-
seller match-making. Business Agents and the Semantic Web
(BASeWEB) Workshop, 2005.

57

Appendix A

Aggregated Tables

Figure A.1: A more detailed view of the defined aggregated table

58

Figure A.2: The user defined aggregated tables for Q1, Q2 and Q3

59

