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Abstract

The continuous growth in international container traffic volumes makes it ever more

important for carriers to optimize their service network. In this thesis, we present a

multi-start local search algorithm for solving the routing and scheduling problem in

liner shipping. The objective is to find a service network of routes, given the demand

between ports, that maximizes profit.

The algorithm consists of a randomized initialization phase that generates initial net-

works, and a local search phase that tries to improve the solution using local search oper-

ators. For each phase we present different implementations, such that several algorithm

configurations are obtained, representing different multi-start local search heuristics. For

the first phase, we propose the quantity sort insertion heuristic, and the profit-driven

sort insertion heuristic. For the second phase, we propose three local search operators.

The route-length operator removes ports from round trips that incur more costs than

revenue, and tries to allocate unassigned cargoes by adding ports to round trips. The

port-exchange operator relocates ports within a route or between routes in an attempt

to improve solutions. The transhipment operator introduces the use of hubs and tran-

shipment to save costs and allocate the remaining cargoes.

The different configurations are subjected to an extensive benchmark study in order

to analyze their performance. To that end, we also propose a data set that is based

on the actual Asia-Europe network of Maersk Line. Results indicate that running the

route-length operator, followed by the port-exchange operator, on average yields the best

networks. The sorting method turns out to have negligible influence on the final result.

We achieve a gap to the upper bound of less than 5.5%. When we use a heterogeneous

fleet, the gap is less than 2.6%.
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Chapter 1

Introduction

1.1 Background

Despite the global economic downturn of the last years, international seaborne trade

continues to grow. According to the United Nations Conference on Trade and Develop-

ment (UNCTAD 2009), the volume of international seaborne trade increased with 3.6

percent to 8.17 billion tons in 2008. The world merchant fleet expanded by 6.7 percent

to 1.19 billion dead-weight tons.

In maritime transportation we differentiate between three types of shipping, indus-

trial shipping, tramp shipping, and liner shipping (Lawrence 1972). Industrial shipping

is characterized by the cargo owner controlling the ship, and shipping takes place only

for the company itself. Tramp ships have no fixed schedule and trade on the spot market,

following the available cargo and making deals for shipments. Liner shipping companies

provide services according to a regular repetitive schedule, similar to a bus line. These

three types are not mutually exclusive, since shipping companies may operate ships for

different types of operations (Christiansen et al. 2004). In this work we focus on liner

shipping and consider standardized containers as cargo.

Container ships operate on scheduled routes, visiting several ports in a closed cycle,

i.e., returning to the starting port. The sequence of ports visited in the cycle is referred

to as the string of ports. Other words for cycle are loop, pendulum, and service. Routes

in liner shipping are main-line routes, connecting the largest ports (i.e., hubs) using

big container ships. In contrast, feeder lines provide regional services on feeder routes,

feeding and distributing containers to and from the hub using smaller-sized ships like

barges. A liner shipping carrier usually has a global service network, consisting of several

main-line loops between multiple continents. The schedule of each service is fixed for
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longer time periods, and consists of regular port calls. That is, container ships depart

at least once a week from each port, on a given day of the week. The number of

departures from a port for a specific cycle is called the service frequency, which is seen

as an important criterion for customer satisfaction and provides for competition among

carriers.

Liner shipping companies face decision problems at three different planning levels,

the long term strategic planning level, the medium term tactical planning level, and the

short term operational planning level (Agarwal & Ergun 2008). Strategic planning deals

with determining the optimal fleet size and composition. Tactical planning covers the

design of the service network, i.e. determining the set of routes that maximizes revenue.

Operational planning considers choosing which cargo to transport, and assigning the

cargo to the routes. These planning levels are highly related, making the decision prob-

lems very complex. The routes designed in the tactical planning level should be based on

the demand in ports, and the fleet composition should be able to provide customers with

a regular repetitive schedule on these routes. On the other hand, the fleet composition

puts restrictions on which routes to service and the amount of cargo to be handled.

1.2 Research goal

The problem considered in this work is the routing and scheduling problem in liner

shipping. Routing refers to the sequence of ports that ships visit, whereas scheduling is

routing with time windows in which the delivery must take place (Ronen 1983). Regard-

ing the planning levels, we focus on the tactical planning and the operational planning

level, also known as the simultaneous ship-scheduling and cargo-routing problem when

following (Agarwal & Ergun 2008). Given the yearly demand between ports, our objec-

tive is to find a weekly schedule and a set of routes for a fleet of vessels that maximizes

profit. Routing and scheduling are most often considered together because the regular

visit of a port already implies a schedule.

Designing a service network consists of creating routes and allocating demand over

these routes. The number of candidate service networks grows exponentially with the

number of ports considered. Ideally, calculating the objective function for all feasible

service networks would reveal the optimal solution. However, the problem is NP-hard,

making it extremely time-consuming to find the optimal solution.

To address this problem, one can impose constraints that limit the solution space.

For example, one could generate all possible routes, and select only the most profitable

ones to compose a service network. Another solution can be found in randomized initial-
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ization. This can reduce computation time dramatically, while the solution can approach

optimality if the method is used properly. Randomized initialization is often repeated

many times to create a diverse starting set, at which point the method is usually called

multi-start. Local search methods can then be used to search neighbouring solutions,

and find the best solution for each initialization. The multi-start characteristic must

prevent ending up in a local optimum. Until now, this type of algorithm has only been

applied in industrial and tramp shipping.

The relevance of good solutions to the routing and scheduling problem in liner ship-

ping is evident. Carriers are always optimizing their service network and schedules to

maximize profit. Service network design has transformed to a customer-oriented differ-

entiation exercise among carriers, and the companies are in the process of reviewing their

network strategy (Notteboom 2004). Even today, many carriers still have planners that

perform routing and scheduling manually based on their professional knowledge and ex-

perience (Lam 2009). However, tools exist to support the routing and scheduling in sea

shipping. One of the heuristic-based systems actually used by planners in the industry

is TurboRouter, albeit for industrial and tramp shipping operations. TurboRouter uses

the multi-start local search heuristic described in (Fagerholt & Lindstand 2007).

In this work we will transform and apply the multi-start local search heuristic that

is used in TurboRouter to liner shipping operations. The nature of the algorithm allows

for variation among its two main phases, where phase 1 is an insertion heuristic and

phase 2 is a local search heuristic. We will design different implementations for each

phase. The implementations of the insertion heuristic are referred to as sorts, and the

implementations of the local search heuristic are referred to as operators. For the first

phase we will implement the quantity sort insertion heuristic from (Brønmo et al. 2007),

and a profit-driven sort insertion heuristic. For the second phase we propose three new

local search operators, the route-length operator, the port-exchange operator, and the

transhipment operator. By combining the implementations of each phase we obtain

different algorithms that will be used in a benchmark simulation. The goal is to find the

most effective algorithm, i.e., the combination of implementations that performs best.

The quality of a benchmark depends for a large part on the data set and input

parameters that are used. Since there is no de facto standard data set available in the

field, a considerable part of this work will focus on creating such a data set. Besides

creating a data set and performing a benchmark study, we provide an extensive analysis

of the results, and discuss the resulting service networks based on their characteristics.

In addition, we perform additional experiments that justify the experimental design of

the benchmark study.
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1.3 Research questions and objectives

In this research we will implement multi-start local search algorithms for solving the

routing and scheduling problem in liner shipping. The motivation for choosing the multi-

start local search approach lies in its previous successful application in the industrial and

tramp shipping industry. The main research question can be formulated as follows.

• What is the performance of multi-start local search heuristics for solving routing

and scheduling problems in liner shipping?

In order to answer the main research question, we decompose it into subquestions. Each

subquestion contributes to the knowledge neccessary to answer the main research ques-

tion. The subquestions that are related directly to the main research question are the

following.

1. What are the specifics of liner shipping and what are its typical routing and schedul-

ing problems?

2. What are multi-start and local search techniques, and why do they work?

3. Can we transform the multi-start local search algorithm from tramp shipping studies

to the case of liner shipping?

The main research question cannot be tackled without answering the above subquestions.

In addition, the following subquestions emerge from preliminary research on routing and

scheduling and multi-start local search heuristics.

4. What is an adequate data set to assess the effectiveness of solutions to the problem?

5. Does the more advanced profit-driven sort insertion heuristic contribute more to

the quality of the solutions in the multi-start heuristic than the simple quantity sort

insertion heuristic?

6. What local search operators contribute the most to the objective function?

7. What is the most effective and/or efficient multi-start local search configuration to

solve routing and scheduling problems in liner shipping?

8. Under what circumstances is the use of transhipment hubs effective?

Together, these subquestions represent the general outline of the thesis.
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1.3.1 Hypotheses

To our knowledge, the multi-start local search approach has not been applied to liner

shipping operations before. We believe that with the right adjustments, it can prove to

be successful in liner shipping operations as well. Overall, we expect the profit-driven

sort insertion heuristic to yield the highest quality of initial solutions, since an early

focus on profits should help in the process of maximizing revenue. The local search

operator we expect to contribute to the objective function the most is the transhipment

operator. The rationale behind this expectation is the use of transhipment hubs in

reality. Transhipment makes the model much more complex, but should increase the

total cost-effectiveness of a service network.

1.3.2 Objectives

In short, the objectives and contributions of this research are: (1) to propose multi-start

local search heuristics for the routing and scheduling problem in liner shipping, (2) to

add an analysis of the effectiveness of different implementations of these heuristics, (3) to

propose a data set that combines general applicability and reality, and (4) to investigate

under what circumstances the use of transhipment hubs is effective. This research will

also uncover possible future work directions in this field.

1.4 Methodology

In order to answer the research questions, we use the following methodology. First,

we introduce the reader to the world of liner shipping, and present an extensive litera-

ture review on the routing and scheduling problem, as well as related problems. More

specifically, we perform an analysis of successful planning concepts from related work.

Then, by programming, we form a synthesis of different multi-start local search concepts.

These heuristics serve as an input to a computer experimentation, that benchmarks their

performance with respect to effectiveness and efficiency. When referring to effectiveness

we mean the profit that a service network yields, and when referring to efficiency we

target the execution times of the algorithms. Naturally, we want to maximize profit,

and minimize the execution times.

In order to perform the experiment, we need a data set that will provide us with

realistic cases. To come up with a decent data set we collect data from multiple secondary

sources, mainly originating from previous work on the problem. We will analyse these

sources, and discuss the contents of a good data set for the routing and scheduling
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problem in liner shipping. Using the available data, we construct a data set that serves

a general purpose, i.e. the data set should fit our problem, but will be usable to other

researchers as well.

During the experiment, a large number of simulations will be run in order to draw

reliable conclusions. To obtain unbiased results, several configurations are simulated,

where every configuration consists of a different combination of insertion and local search

heuristics. After the experiment, we perform an analysis of the results, the variables,

and their influence on the performance of the algorithms. In addition, the best network

from the experiment is presented and subjected to further investigation.

To support the results following from the main experiment, we perform various addi-

tional experiments. In order to place the performance of our approach into perspective,

we will benchmark the multi-start local search algorithm against algorithms from pre-

vious work. Furthermore, we investigate different approaches to model transhipment

hubs. We also provide additional experiments with varying model variables and param-

eter settings, in order to get more insight into their influence on the final performance.

The implementation of the algorithms, as well as the benchmark simulation and the

additional experiments will be performed in Matlab.

1.5 Structure

The remainder of this thesis is organized as follows.

In Chapter 2, we present an overview of the literature that relates to our research

problem. The goal is to answer the first two research subquestions, what are the specifics

of liner shipping and what are its typical routing and scheduling problems?, and what are

multi-start and local search techniques, and why do they work? First, we give a general

introduction to liner shipping. Then, we discuss the routing and scheduling problem and

existing solution approaches. Furthermore, we present other problems related to routing

and scheduling as well as liner shipping in general.

In Chapter 3, we give the problem formulation that is used in this research. The

routing and scheduling problem occurs in many different forms, since variables can be

considered as either in or out of scope. Therefore, we state the assumptions of our

problem variant, and give the precise problem description. Furthermore, we discuss

important problem variables as part of the problem description.

Chapter 4 presents the heuristic multi-start local search algorithms. The objective is

to answer research subquestion 3, can we transform the multi-start local search algorithm

from tramp shipping studies to the case of liner shipping? The multi-start local search
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algorithms consist of two phases. In the first phase, initial solutions are generated, and

in the second phase these solutions are improved using local search. We give a detailed

description of the different implementations for both phases.

In Chapter 5, we investigate data sets from related work and discuss their usability

for our problem. The goal is to answer research subquestion 4, i.e., to find out what is

an adequate data set to assess the effectiveness of solutions to the problem? Apart from

reviewing existing data sets, we present a new data set that perfectly fits our objective

of combining reality and general applicability.

In Chapter 6, we present the experimental design and results of our benchmark

study. The goal is to answer research subquestions 5, 6, 7, and 8. Does the profit-

driven sort insertion heuristic contribute to the quality of the solutions in the multi-start

heuristic? What local search operators contribute the most to the objective function?

What is the most effective and/or efficient multi-start local search configuration to solve

routing and scheduling problems in liner shipping? Under what circumstances is the use

of transhipment hubs effective? We start with a general introduction to the benchmark

study, and present its design and parameter configuration. Subsequently, we report on

the results of the experiments. We analyze and give an interpretation of the results, and

compare our best network with the actual network that was used to create the data set.

Chapter 7 provides more in-depth coverage of the performance of the multi-start local

search algorithm using several additional experiments. To assess the performance of our

algorithm, we present an experiment that benchmarks the algorithm with heuristics from

previous studies. Furthermore, we present an additional experiment that justifies the

choice for a specific implementation of the transhipment operator. In addition, we discuss

the influence of ship size, the initialization of multi-start parameters, and re-applying

local search operators.

In Chapter 8, we present the conclusions of this research. We will shortly review

the research subquestions that are answered in the previous chapters, and answer the

main research question, what is the performance of multi-start local search heuristics

for solving routing and scheduling problems in liner shipping? Furthermore, we propose

suggestions for future research.

Finally, in Chapter 9, we provide some additional discussion on the experimental

design and findings of this research.
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Chapter 2

Liner shipping

In this chapter we will explore the problem domain and existing solutions. More specif-

ically, we try to answer the first two research subquestions:

1. What are the specifics of liner shipping and what are its typical problems?

2. What are multi-start and local search techniques, and why do they work?

Section 2.1 gives a general introduction to liner shipping and sea transport. We discuss

the history of liner shipping and containerization, present a typical service network, and

elaborate on liner shipping economics and trends in the field. The problem we focus

on, the routing and scheduling problem, is explained into more detail in section 2.2.

The section also provides an overview of related research and existing solutions, such

as multi-start and local search techniques. Finally, in section 2.3 we cover some of the

problems that relate to either the routing and scheduling problem, or liner shipping in

general, and are important to the sea shipping industry. A review on similar work from

different sectors of transport is also part of the section’s focus.

2.1 Introduction to liner shipping

As previously stated in the Introduction, the characteristic of liner shipping is that

services are provided according to a regular repetitive schedule, similar to a bus line.

Liner shipping carriers have a service network, consisting of all the services they provide.

An example of a single service is illustrated in Figure 2.1, that shows Mitsui O.S.K. Lines’

AEX Service between Asia and Europe. In Table 2.1, the corresponding travel times and

port rotation are given. The complete cycle is usually divided into two parts, describing

the direction of the trip. For the Asia-Europe trade lane these are the westbound trip
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Figure 2.1: Mitsui O.S.K. Lines (MOL) - AEX Service.

Westbound Ports of discharge

Ports of loading Rotterdam Hamburg Thamesport

Singapore 17 20 23
Yantian 21 24 27
Hong Kong 22 25 28
Kaohsiung 24 27 30
Shanghai 26 29 32
Busan 28 31 34
Kwangyang 29 32 35
Hakata 30 33 36

Eastbound Ports of loading

Ports of discharge Thamesport Hamburg Rotterdam

Singapore 20 23 26
Hong Kong 25 28 31
Kaohsiung 26 29 32
Hakata 31 34 37
Kwangyang 32 35 38
Busan 33 36 39
Shanghai 35 38 41

Port ETA ETD

Hakata Sat Sun
Kwangyang Sun Mon
Busan Mon Tue
Shanghai Wed Thu
Kaohsiung Fri Sat
Hong Kong Sun Mon
Yantian Mon Mon
Singapore Thu Sat
Rotterdam Tue Thu
Hamburg Thu Sat
Thamesport Sun Tue
Singapore Tue Wed
Hong Kong Sun Mon
Kaohsiung Mon Thu
Hakata Sat Sun

Table 2.1: The left table shows the travel time between loading and discharging ports
in days, for both the westbound and eastbound trip. The westbound trip is the blue
line in Figure 2.1 that goes from Asia to Europe. The eastbound trip is the red line in
Figure 2.1 that goes from Europe to Asia. The right table shows the port rotation with
the estimated time of arrival (ETA) and estimated time of departure (ETD) for every
port, specified as a day of the week. The AEX Service is a combined service of The New
World Alliance partners. Source: Mitsui O.S.K. Lines (2010)
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and the eastbound trip. On the westbound trip, cargo is loaded in Asia and delivered

in Europe, whereas on the eastbound trip, cargo is loaded in Europe and delivered in

Asia. The port rotation shows the string of ports, i.e., the sequence in which ports are

visited to complete the cycle. Because ships usually sail along the coastlines, they will

pass the ports that are situated on continents’ edges in a specific order. We call this

the natural order. Usually, ports in a string appear in their natural order. Sometimes,

when two ports are close, a ship might deviate from the natural order. We can see this

happening in Figure 2.1, where the ports Yantian and Hong Kong are exchanged. The

same goes for the ports Kwangyang, Busan and Hakata, that are not visited in their

natural order. In such cases, where ports are located near each other, minor advantages

like slot allocation or terminal planning may compensate the extra sailing time.

Most services are provided on a weekly basis, that is, a ship visits the port of call

each week on the same day. If a cycle takes n weeks to complete, this means there are

n ships needed to provide the service.

Starting in the 1950s, maritime transport changed greatly with the adoption of steel

containers, as a replacement of wooden boxes. However, it was until the late 1960s

before the dimensions of containers were standardized, making an end to all incompat-

ible container sizes. Liner shipping vessels carry only intermodal containers, of which

the number of containers is measured in twenty-foot equivalent units (TEU), where one

TEU refers to a 20-feet long container. Apart from the 20-feet container, the 40-feet and

45-feet containers are common sizes. Global container traffic has shown a substantial

growth over the last decades, with world container port throughput increasing by 4 per-

cent to 506 million TEUs in 2008 (UNCTAD 2009). The trend of increasing transport

by containers is called containerization, and is a driving force of the globalization of

international trade (Notteboom & Rodrigue 2008, De Souza Junior et al. 2003). The

use of standardized containers provides for easy, cost efficient handling and storage in

ports and on ships.

Over the last decades, liner shipping companies have significantly underperformed

financially in comparison with other industries, due to its high capital intensity and

the risk associated with the revenues (Notteboom 2004). Liner shipping involves higher

fixed costs than, for example, tramp shipping since liner ships depart according to their

schedule, regardless of whether the ship is fully loaded. Moreover, carriers have wit-

nessed their profit margins decrease over time. The demand curves in liner shipping are

rather inelastic (Notteboom 2004), leaving carriers with no choice than to accept low

freight rates in order to increase capacity utilization and reduce their cost per TEU. To

21



increase profitability, the companies focused on cost reduction and gaining economies of

scale.

Since the mid-90s, we have seen large scale increases in vessel size in order to in-

crease the capacity. This reduces costs since larger ships have lower cost per TEU-mile

than ships with less capacity, albeit when the capacity is fully used. Todays largest ves-

sels can hold over 10.000 TEU, the largest being the ships from Maersk’s E-class (Emma

Maersk, Estelle Maersk, Eugen Maersk, among others), that can hold over 11.000 TEU1.

Cullinane et al. (1999) showed that economies of scale are gained starting from 8.000

TEU, at least for the Europe-Asia and trans-Pacific routes. Using larger ships does

reduce variable cost in the long term, but the short-term capital investment is sky high.

Moreover, the weekly departures of a liner service requires similar-sized ships. Upgrading

a fleet involves high investment and takes several years.

The development of larger ship sizes does put restrictions on the service network the

carrier plans to provide. These ships may not be able to use certain routes and visit every

port. Ships larger than the maximum depth of canals or straits (e.g. Panamax, Suezmax

and Malaccamax) are forced to use longer alternate routes. A similar constraint applies

to ports, that have their own maximum draught. Liner ships load and offload their cargo

in container terminals, which at the same time provide transhipment to other modes of

transport to serve the hinterland. The handling of larger ships also has implications for

container terminals storage space and the inland transportation system.

Another way to gain economies of scale is to co-operate with other carriers. Three

forms of co-operation exist in liner shipping, namely, operating agreements, trade agree-

ments, and mergers and acquisitions (Notteboom 2004). Operating agreements can be

carriers sharing vessels or container slots, or forming a consortium or strategic alliance.

A type of trade agreement is the conference, in which carriers control tariff rates in the

market to prevent price wars. In mergers and acquisitions two carriers transform into

one organisation.

The formation of global alliances in liner shipping started in 1996, in order to survive

the severe competition the companies were in. This form of co-operation comes with

several advantages, regarding to both planning and financial aspects. Carriers in an

alliance maintain services together, such that each carrier needs less vessels to provide a

1Official number of TEU as specified by A.P. Möller - Maersk Group. However, when calculating the
number of TEU to be carried independent of the weight of the containers, one would obtain a capacity
of 15.200 TEU. Maersk assumes a weight of 14 tons per container for their calculations.
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service. These extra vessels can be deployed on new lines, entering new markets. Another

option is to keep the ships assigned to the line, and provide clients with more frequent

shipping. In any way, the alliance extends the service network for both carriers, providing

a wider geographical scope, assuming a different initial service network (Ferrari et al.

2008). Furthermore, alliances allow for sharing terminals. The financial advantages

of alliances concern risk and investment sharing, and having more financial resources

available to maintain and upgrade the fleet. Overall, the main advantage of global

alliances can be specified as economies of scale. Despite the numerous advantages, the

organizational complexity involved with alliances undermines trust among the partners,

for example due to possible intra-alliance competition (Midoro & Pitto 2000). These

difficulties are even greater with mergers and acquisitions (Fusillo 2009).

Today’s most important alliances are the Grand Alliance (Hapag-Lloyd, NYK Line

and OOCL), The New World Alliance (APL, Hyundai, MOL), and CKHY Alliance

(Cosco, K-Line, Hanjin, Yang Ming). In 2006, the two biggest alliances, Grand Alliance

and The New World Alliance, joined forces to withstand the giant Maersk Line after its

acquisition of P&O Nedlloyd. The two alliances now provide several services together.

The formation of alliances among carriers is a case of horizontal integration in the mar-

ket. However, at the same time, the maritime industry experiences vertical integration

with companies extending their control of the logistics chain by the same type of co-

operations (Heaver et al. 2000). A good example is Maersk, that has developed almost

door-to-door services by handling containers at their own terminals, and managing in-

land transportation.

Another important aspect of reducing costs nowadays is bunkering fuel oil, since

the cost of fuel accounts for half of the total operating costs of a container ship (Ro-

nen 2011). Bunker prices fluctuate constantly, such that the carriers want to bunker

in the ports with the lowest price. The fiscal policies of the countries also influence

this decision. Carriers have introduced surcharges to be able to pass increased bunker

prices on to the customer, for example the Bunker Adjustment Factor (BAF). The BAF

charges were determined for each route for a certain time period. These charges used

to be set by carrier conferences, but in 2008 the European Commission banned these

conferences, and now carriers set their rates individually. To reduce overall bunker costs,

carriers focus on using cheaper grades of fuel, changing the vessel design, and travelling

at slower speeds (Notteboom & Vernimmen 2009). The latter two aspects try to in-

crease the fuel efficiency of the ship. Examples of changing vessel design are the use of

newly shaped propellers, more efficient engines, and improved aerodynamics. Lowering
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the sailing speed reduces fuel consumption, but increases transit times and may put the

carrier in a competitive disadvantage (Ronen 2011). An extra ship needs to be added

to the service loop in order to maintain the shipping frequency. However, the savings

achieved with lower speeds are considered to be marginal (Notteboom 2006). In that

respect, carriers have to make a tradeoff between cost savings and schedule frequency.

Over the last years, it turned out that most carriers decided to reduce service speed and

add extra tonnage (Notteboom & Vernimmen 2009). This trend of slow steaming was

realizable since the carriers faced overcapacity due to plumetting demand.

The global trend of increased environmental awareness has its impact on shipping

as well. Although shipping is by far the most efficient way of transport when it comes

to energy consumption per unit transported, and considerable cuts in CO2 emissions

have been made, reduction continues to be an important objective. In 1970, ships used

0.200 kg of fuel to transport one container one nautical mile on the trip from Asia to

Europe, whereas in 2007 this figure has decreased to 0.025 kg of fuel (Christiansen et al.

2009). Shipping companies address the issue by explicitly stating objectives regard-

ing the CO2/TEU emission per nautical mile. Moreover, some local regulations oblige

carriers to travel at slow speed in order to cut emissions (Morton 2007).

2.2 Routing and scheduling problem

Transport by sea is a widely discussed topic in literature. Although each type of sea

shipping has its specific problems, the scheduling and routing of a fleet is a common issue.

Attempts to find good solutions have resulted in numerous approaches. Roughly, we can

distinguish between mathematical programming approaches and heuristic approaches.

2.2.1 Mathematical programming approaches

Mathematical programming approaches include (mixed) integer programming, dynamic

programming, and Lagrangian relaxation. These approaches focus on formulating the

problem, or several sub-problems, in a formal mathematical way after which the problem

can be solved to optimality using optimization software.

In sea shipping problems, a well-known representation is the multi-commodity flow

problem (MCFP). The MCFP is a special case of linear programming which considers

the flow of different goods with various origin and destination nodes in an underlying

network. Alvarez (2009) solves a mixed integer programming (MIP) formulation by

formulating a MCFP, which is then solved using Simplex or an IP engine. Agarwal &
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Ergun (2008) use a reversed approach. First, the MCFP is formulated using a directed,

weighted graph. Then a MIP is formulated and solved using three different heuristic

algorithms: a simple greedy algorithm, a column generation-based algorithm, and a

Benders decomposition-based algorithm. Fagerholt (2004) considers a sub-problem of

liner shipping: feeder lines. Here, the routing problem is deduced to a multi-trip vehicle

routing problem (VRP). The feasible routes are used as input to an integer programming

model. This IP model is solved using GAMS/CPLEX.

An alternative technique is proposed by Yan et al. (2009). To deal with the complex-

ity of real-world applications, one of the constraints of the original IP model is relaxed

with the corresponding non-negative Lagrangian multipliers and is added to the objec-

tive function. The relaxation of constraints allows the problem to be divided into several

independent sub-problems, which are relatively easily solved. The adjusted IP model

is then divided into a ship-flow network and a container-flow network. Finally, these

two sub-problems are solved using CPLEX. Ting & Tzeng (2003) use dynamic program-

ming (DP) to deal with the mathematical complexity. Each stage of the DP represents

a candidate port of the planned route, and has some factors associated with the next

stage, including crane productivity and cruising speed. The solving algorithm searches

the optimal schedule by moving through the stages.

2.2.2 Heuristic approaches

Due to the high complexity involved with optimization problems, mathematical pro-

gramming approaches may have difficulties finding the optimal solution in a reasonable

amount of time. Most often, they can only solve small-sized data instances to optimal-

ity. Although relaxation techniques can transform optimization problems into related,

but more easily solvable problems, the solution is only an approximation of the original

problem’s solution.

Heuristics potentially can provide near-optimal solutions in less amount of time. In

the context of liner shipping, heuristic-based approaches include heuristic algorithms

and metaheuristics like genetic algorithms.

Man (2007) proposes a variant of the set covering problem. The problem is adjusted

to be applicable to liner shipping. First, the traveling salesman problem is applied to

all possible port combinations. Then, a starting set of routes that covers all demand

is selected by solving the adjusted set covering problem. In the final stage, demands

are allocated to routes, taking into account the vessels’ capacity constraints. The same

approach is used by Van de Weerd (2009), who applies the adjusted set covering problem
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only to regions without mutual trade. The regions with mutual trade are handled by

means of an approximative method.

Van der Meer (2009) proposes randomized optimization. In an iterative approach,

all possible routes that (partially) satisfy demand between ports are generated and a

profitable route is selected. This route is then added to the solution set only if it

increases total profit, after which the demand matrix is updated and the loop restarts.

This process repeats until the last 50 iterations yield no improvement in terms of total

profit.

The complexity of the liner shipping industry relates primarily to the design of a

service network. This service network constitutes of several routes, but simply joining

the most profitable routes into a network will not yield the best combination, nor the

optimal solution. After all, picking routes is a cascading activity, which means that

choosing one route will change the type and order of the routes that follow. Such hard

combinatorial optimization problems tend to get stuck in a local optimum. To find

global optimal solutions, some kind of diversification is required. One way to achieve

this is to restart the procedure from a new solution once a region has been explored

(Marti 2003). Restart mechanisms have also successfully been applied to simulation

optimization problems (Nicolai & Dekker 2009).

In sea shipping, the restart (or multi-start) heuristic has shown to generate viable

solutions. Ronen (1986) compares three algorithms to solve relatively simple industrial

shipping problems. The first algorithm is based on a generalized transportation problem

and is mathematically solved. Although this procedure assures an optimal solution, the

authors acknowledge that efficiency is a problem for larger-sized problems. The second

algorithm is the ‘biased random generator algorithm’ and works by choosing ships at

random, and assigning unloading ports at random, until the ship is full or the maximum

number of unloading ports for the ship has been reached. The process is repeated to

obtain many solution candidates. The algorithm is not 100% random, but biased because

a shortest route calculation is performed for each ship. Finally, the third algorithm tries

to minimize the cost per ton-mile of cargo. Although the approach worked quite well,

in general it was the biased random algorithm that outperformed, and even found the

optimal solution in 5 out of 8 small-sized problems.

In TurboRouter, a decision-support system, restart heuristics have been used in com-

bination with local optimization techniques to solve the routing and scheduling problem

in industrial and tramp shipping (Fagerholt & Lindstand 2007). The multi-start local

search heuristic is more extensively discussed by Brønmo et al. (2007). Its approach

is two-fold. In the first phase, a multi-start insertion heuristic is applied. This heuris-
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tic assigns a random percentage of the list of unassigned cargoes to randomly chosen

ships of the (existing) fleet, after which these cargoes are removed from the list. The

remainder of the list is sorted increasingly by the start of the pickup time window (time

sort) or decreasingly by the cargo quantity (quantity sort). Next, all unassigned cargoes

are iteratively assigned to the available ship that gives the highest contribution to the

selected objective function. The complete process is repeated many times to generate

a large number of different initial solutions (e.g., 1,000 times). One half is generated

using time sort, while the other half is generated using quantity sort. From these initial

solutions, a randomly chosen fraction of the best solutions is selected and passed on to

the local search heuristic. In this second phase, local search operators are used in an

attempt to improve the solutions. Intra-route operators try to improve the allocation of

demand over a single ship, while inter-route operators look for improvements by moving

cargoes between multiple shipping routes.

An extension of the TurboRouter algorithm is proposed by Brønmo & Løkketangen

(2007). This study introduces an extra stage in the middle. The set of all the generated

routes is first passed to a set partitioning algorithm. The general approach is to define a

set of candidate routes, initially equal to the set of all routes. Then a single solution is

selected by evaluating all candidates. To improve the quality of the solutions, the route

evaluation is based on an adaptive, learning method. By selecting one route, all other

routes for the given ship, and all routes that contain at least one of the cargoes in the

chosen routes, are not feasible anymore and are removed from the candidate list. This

process is repeated until the candidate set is empty, and a subset of routes is selected.

The selection is then passed on to the local search heuristic. Results indicate that the

extended algorithm does not outperform the normal algorithm in most of the cases, and

considering the increased computational time this is not very convincing.

2.2.3 Routing and scheduling in reality

The previous two subsections covered scientific approaches for solving the routing and

scheduling problem in liner shipping. However, in reality, carriers do not always use

the scientific knowledge. Every liner shipping company has a planning department, with

route managers responsible for one or several services. Most route managers perform ship

routing and scheduling manually based on their professional knowledge and experience

(Lam 2009).

In liner shipping, and other sectors like aviation, the carriers assign profits to single

services. Carriers determine the profit of a particular service by decomposing the total
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profit gained with transportations that used the service. Note that it is necessary to

compensate for the feedering services that move cargo from its origin to a port along

the service route, and from a port along the service route to its final destination. After

decomposition, only the profits belonging to the liner service are considered.

The profit is one of the performance indicators that route managers have in their

toolbox. Another important measure is the utilization of capacity along the service.

With these indicators, a route manager can adjust the service, for example by deciding

to enlarge or reduce capacity on the route, and add or remove a port visit from the

route. However, since carriers have route managers optimizing single routes, it is not

clear what happens when focusing on a whole service network. It is very likely that a full

optimization approach, i.e., considering a whole service network instead of single routes,

as we propose in this work, would yield a service network that is more cost-effective.

Furthermore, a big advantage of a full optimization approach is that it is more robust to

changes. With the occurrence of events that influence liner operations, like plummeting

demand or piracy, a full optimization approach allows for an easier revision of services,

making the carrier’s service network more resilient.

2.3 Related problems

In the following subsections we will discuss problems that are related to the routing and

scheduling problem and to liner shipping in general. Although we do not provide an

exhaustive overview, some problems will be briefly covered because they are important

to the industry.

2.3.1 Other routing problems

The routing and scheduling problem is not only preserved to liner shipping, but occurs

in other sectors as well. Apart from transportation by ship, these problems are common

in transportation by truck, train (Cordeau et al. 1998), and airplane (Desaulniers et al.

1997). Most work has been focusing on the vehicle routing problem, in which a fleet

of vehicles (trucks) delivers items to customers. The vehicle routing problem, proposed

by Dantzig & Ramser (1959), is considered as one of the most important problems in

logistics and transportation. The vehicle routing problem itself is a generalization of the

traveling salesman problem (Potvin 2009), that focuses on finding the shortest tour for

visiting a given set of cities. The traveling salesman problem is often considered as a

subproblem in ship routing and scheduling.
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As for many problems, the vehicle routing problem comes in several forms. The

characteristics of the problem determine the specific variant considered. Examples of

characteristics are the size and type of fleet, location of demands, the type of opera-

tion (pickup, delivery, or both), and possible time restrictions (Bodin et al. 1983). In

addition, several objectives can be defined, ranging from minimizing costs and maximiz-

ing profit, to minimizing the number of vehicles required, and maximizing utility. Three

common variants are the standard Vehicle Routing Problem (VRP), the Vehicle Routing

Problem with Time Windows (VRPTW), and the Pickup and Delivery Problem with

Time Windows (PDPTW).

In the standard VRP, a fleet of vehicles is located at a depot from which several

customers have to be served. Each customer has a given demand and each vehicle has a

given capacity. The objective is to minimize the distance traveled. The VRPTW differs

from the VRP in the sense that the customers have to be served within a specified time

frame. In the pickup and delivery problem, customers have transportation requests to be

carried out by the vehicles. Each item to be transported has a particular size, which lays

restrictions on the number of items that can be transported at once. Here, the objective

is to find the optimal routes to fulfill all requests. In the PDPTW, the requests have

to be fulfilled within a specified time frame. Several solution approaches exist for these

problems, ranging from mathematical programming approaches (Toth & Vigo 2001), to

metaheuristics (Bräysy & Gendreau 2005), and heuristics (Laporte et al. 2000).

Sometimes vehicle routing is considered in conjunction with other problems along

the supply chain, like planning and scheduling. In most cases, the specific application

requires such an integrated approach. A nice example in this perspective is the work

presented in Naso et al. (2007). Here, the authors consider the production and just-in-

time delivery of ready-mixed concrete. A metaheuristic solution approach is presented,

combining a genetic algorithm with constructive heuristics. Naturally, the transportation

of ready-mixed concrete is constrained to strict time limits, making the problem even

more complex than standard delivery problems.

The field of shipping has received relatively little attention. The most important

reason is that ship routing and scheduling problems exist in a much larger variety with

respect to the problem structure and operating environments (Ronen 1983). This is

already illustrated by the fact that we distinguish three types of operation, namely

industrial shipping, tramp shipping, and liner shipping. Ship routing and scheduling

differs from the vehicle routing problem in the sense that ships operate under different

conditions (Christiansen et al. 2004). For example, in shipping, a fleet consists out of

heterogeneous vessels with different capacities, speeds, and cost structure (Ronen 1983).
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Furthermore, ships do not have to return to their origin, and since multiple crews are on

board, they can be operated around the clock. In addition, the voyage of a ship takes

days or weeks to complete, and ships may face port operation time windows. For a more

extensive comparison of operational characteristics among freight transportation modes

we refer to Christiansen et al. (2004).

2.3.2 Fleet sizing problem

Shipping lines operate a number of vessels that are deployed on specific shipping routes.

To ensure a weekly service, carriers need a lot of vessels, usually around five to ten

vessels for intercontinental routes. Fleet sizing involves controlling the number and size

of the vessels used (Dong & Song 2009). Obviously there is a tradeoff involved: a smaller

fleet size saves capital costs but may increase risk of loosing customer demands due to

unavailability.

A three-phase solution method is proposed by Fagerholt (1999). In phase 1, all

feasible single routes are generated for the largest vessel available. A ship’s capacity

utilization is used when calculating the cost of each route. In phase 2, single routes are

combined into subsequent series, first into double routes, then into triple routes, and

so on, each time determining the minimum ship size required to perform the combined

routes. Because routes are subsequently considered, the minimum ship size of a combined

route can easily be determined by selecting the largest minimum ship size across all single

routes. In stage 3, a set partitioning problem is solved to find the optimal fleet.

We have seen the size of container ships grow steadily. While ship capacity was

limited to 5,000 TEU in the early 90s, an increasing portion of todays ships have ca-

pacities over 10,000 TEU (‘mega-ships’) or even 12,500 TEU (‘Ultra Large Container

Ship’, ULCS) (Imai et al. 2006). Larger ships typically have a lower cost per TEU-mile

than smaller vessels with the same load factor, primarily because they are more fuel-

economic. However, the economies of scale are limited. Larger capacity will generally

lead to poorer capacity utilization, and the need to buy more cargo at lower rates. There

are strong indications that the range of 5,500 to 6,500 TEU will reveal to be the most

competitive vessel size (Notteboom 2004).

2.3.3 Master bay planning problem

The time a ship spends in a terminal consists mainly of loading/unloading activities and

waiting time before and afterwards. Container loading is the most complex task and also

the key variable determining terminal efficiency. Its complexity has to do with the num-
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ber of constraints. There should be equal weight distribution in all directions (left/right

and front/rear), heavy containers should be lower than light-weight containers, contain-

ers with an earlier destination should be easily reachable and grouped, (loading) crane

utilization should be optimised, etc.

The stowage layout of a ship is called the Master Bay Plan. Such plans are usually

designed on a daily basis by terminal management. Ambrosino et al. (2009) propose a

heuristic approach to solve the Master Bay Plan Problem. In the first phase, bays are

assigned to containers according to their destinations. Next, a trial solution is generated

by solving the individual single-destination stowage problems, disregarding part of the

constraints. Finally, in phase 3 a tabu-search meta-heuristic is used to determine a

feasible solution, i.e., with respect to all constraints. The study also presents a software

application using the heuristic that can serve as decision support system.

2.3.4 Empty container repositioning

Empty containers are usually stored in ports or repositioned to other ports to meet

demands there. Repositioning empty containers from one port to another is also an es-

sential mechanism to overcome the trade imbalance arising from most of the geographical

locations (Dong & Song 2009). It was reported that empty containers have accounted

for at least 20% of global port handling activity ever since 1998 (Drewry Shipping Con-

sultants 2007). The drawback, of course, is that transporting empty containers occupies

container slots on a vessel, resulting in lost opportunities to yield freight revenues for

those slots.

Shintani et al. (2007) recognize the problem of empty container repositioning and

propose a service network design with incorporated spare space on ships to enable repo-

sitioning. Furthermore, containers are leased when empty containers do not arrive at

the demand points in time. Genetic algorithms are used to determine a solution.

Feng & Chang (2008) formulate empty container repositioning as a transportation

problem. The objective is to minimize the costs of empty container repositioning. The

first step identifies ports that have a surplus of empty containers, and ports that have

a shortage. The second step exploits Liner Programming to solve the transportation

problem.

2.3.5 Transhipment hub locations

Ever since the early days of containerization the shipping industry is searching for hub

locations to limit the number of port calls in one route. In the airline business, it is
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very common that large airplanes only call some of the main airports of a country,

and that smaller airplanes (feeder services) provide onward connections. However, the

transhipment of sea containers is relatively more costly, resulting in intercontinental

container carriers that still call multiple ports at each end of a route. Furthermore, the

choice of a transhipment hub is less obvious.

Although some transhipment hubs are used naturally because of their geographi-

cal position, carriers tend to have different ideas as to which is the best hub port to

concentrate transhipment flows for a given region.

Baird (2006) explores the costs of current major hub locations in Northern Europe

compared to alternative, new locations in that region. With the help of an extensive

cost model, they conclude that, by average, cost savings up to 10% could be obtained

when choosing a new hub location.

Aversa et al. (2005) introduce a mixed integer programming model to determine

optimal hub port locations. The model considers 11 feeder ports at the East Coast

of South America as hub candidates. The study reveals that port costs are a major

decision variable, which subsequently explains the development of carriers’ dedicated

terminal facilities.

2.4 Conclusion

In this chapter, we have introduced liner shipping and identified its main problem. At

this stage, we are able to answer the first two subquestions.

1. What are the specifics of liner shipping and what are its typical routing and schedul-

ing problems?

Liner shipping is characterized by carriers providing a regular repetitive schedule of

services, i.e., ports are visited weekly. Since the routes are fixed for longer time periods,

liner shipping is less flexible than other types of shipping. The services a carrier provides

together form the carrier’s service network. An important problem in liner shipping is

determining a service network of routes and frequencies that, for more or less given

demand between ports and a fleet’s capacity, maximizes profit. We refer to this problem

as the routing and scheduling problem in liner shipping. The solution approaches in ship

routing and scheduling research that we distinguish are mathematical programming and

the use of heuristics. Mathematical programming approaches yield the optimal solution,

but require substantial computation time. Heuristic approaches do not guarantee to find

the optimal solution, but at least provide a near-optimal solution in a short amount of

32



time. In practice, these scientific approaches are not very common. Instead, carriers

have route managers that are responsible for single services, who can alter the routes or

capacities based on performance indicators like utilization and profit. Although such an

approach works, we focus on the optimization of a full service network since it is likely

to be more cost-effective than altering single routes.

2. What are multi-start and local search techniques, and why do they work?

Creating a service network is a very complex task since picking routes is a cascading

activity. This means that choosing one route will change the type and order of the routes

that follow. Such hard combinatorial optimization problems tend to get stuck in a local

optimum. In order to find the global optimum, some kind of diversification is required.

This can be achieved using multi-start techniques. Multi-start refers to restarting an

algorithm with different parameters, such that several regions of the solution space are

explored. Local search is a heuristic optimization technique that tries to improve initial

solutions by moving through the solution space and searching for neighboring solutions

that maximize a given objective. The multi-start technique is very suitable for usage

with local search, since it decreases the chance of ending up in a local optimum.
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Chapter 3

Formulation of the routing and

scheduling problem in liner

shipping

In this chapter we define the precise variant of the problem we consider. As stated in

the previous chapter, the routing and scheduling problem comes in different forms, even

within the field of liner shipping. Problem variables can be considered or left out, and

those considered can be assigned different values. The resulting set of problem variables

and their values specify the precise variant of the problem. First, in section 3.1, we define

the assumptions underlying the problem we consider. These assumptions help narrowing

the scope of the problem, and contribute to the feasibility of the research. Then, in

section 3.2, we give a more extensive problem description based on the assumptions. In

addition, we discuss important problem variables like revenue and costs.

3.1 Assumptions

Numerous studies are dedicated to the routing and scheduling problem, each with their

own scope and slightly different assumptions. A detailed definition of the assumptions

helps scoping the research, and puts this research in perspective with the existing litera-

ture in the field. Furthermore, it provides a concise overview of the variables and issues

that relate to the routing and scheduling problem. Overall, we distinguish between

three types of assumptions, either representing reality, extending reality, or delimiting

the scope of the study.
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Assumptions representing reality

In order to apply the problem to liner shipping we need assumptions representing reality.

It is important to state these assumptions to put this research into perspective, since

today’s reality may change over the years. The assumptions corresponding to this type

are the following.

1. We consider liner shipping of TEU containers with multiple origins and routes, and

multiple loading and discharging ports. The pick-up and delivery of containers is

interwoven. We focus on a problem size consisting of around 50 ports.

2. For every route, there is a call once a week, at a fixed day. This assumption implies

that if the duration of a trip is n days, max(n7 ) vessels are needed on that route.

3. The demands between ports do not necessarily have to be satisfied. To enable

profit maximization, we allow partial satisfaction.

4. Routes do not have to be symmetric, some ports may be visited only once on a

route, while others may be visited twice, i.e., both on the westbound and eastbound

trip.

5. Distances between ports are given.

6. The total costs involving sea transport can be divided into fixed costs and variable

costs. Each vessel incurs capital and operating costs (e.g. the cost of leasing,

insurance, maintenance and wages), which are fixed costs for one year of operation.

Fuel costs depend on the distance travelled. Port costs include fees for entering,

exiting, pilotage, and the accompanying towage, and are considered fixed for every

port. In addition, the ports charge a fee per TEU loaded or offloaded.

7. The revenue per TEU is considered to be dependent of the direct distance between

origin and destination of the cargo, as well as the direction traveled, and will be

defined later.

Assumptions extending reality

Sometimes we need to extend reality in order to simplify the problem. The following

assumptions belong to this type.

8. The fleet has an unrestricted size, and consists of vessels of similar size and capacity.

As a consequence, the vessels have the same operating costs.
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9. Each port is capable of receiving and handling a vessel of any size.

Assumptions delimiting the scope of the study

Assumptions delimiting the scope of the study prevent the problem from growing too

complex. This is necessary to ensure the solvability of the problem, especially in the

case of routing and scheduling in liner shipping, which relates to many sub-problems.

The assumptions that belong to this type are the following.

10. The cruising speed of the vessels is considered constant and the same for all vessels

in the fleet.

11. The demand between ports is deterministic and constant over time. The demand

between ports is measured in annual TEU and is given.

12. Only interregional demand is served by liner shipping, intra-regional demand is

fulfilled by means of local transport. This also means that feeder lines are beyond

the scope of this research.

13. The time spent in a port is considered to be constant and independent of the

number of TEU to be loaded or offloaded.

14. Ports are visited in the natural order of the string of ports. In Chapter 5, we

provide an example based on our data set. Since ports lay along coastlines, and

the continents have a convex structure, the ports occur in a natural order. This

assumption avoids the complex Travelling Salesman Problem, which is normally

considered in ship routing problems.

15. There are no time windows specified for the delivery of containers.

16. The slack of a route is considered for a whole round trip only, and should be

between a minimum and a maximum. The slack of a route is defined as the time

between the duration of a round trip and the next integer number of weeks. This

means a minimum number of days is specified as additional buffer for one round

trip. The maximum slack depends on the days left until the next cycle, and needs

not to be specified.
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3.2 Problem description

Given the yearly demand (in TEUs) between ports, the objective is to design a service

network that maximizes profit. Let P denote the set of ports in the aforementioned re-

gions. Demand is assumed to be deterministic, and is represented by a origin-destination

demand matrix Q, where each of its elements q is associated with a specific origin port

o and destination port d. Hence, q = Q(o,d). Obviously, o, d ∈ P .

A service network is defined as a set of active routes, where each route contains a

sequence of ports calls. This sequence is called a string, also known as the string of

ports. A string of ports can be described in the following format: 1-2-4-5-6-5-3. Since

strings in liner shipping represent cycles, we do not allow the starting and end point to

appear twice in the string. In this case, port 1 is the starting and end port, and port

6 is a turning point (i.e., referring to a change in direction). Strings do not have to be

symmetric, and may contain ports that appear twice. We provide more details on the

appearance of strings in Section 4.2. Designing a service network consists of creating

routes and allocating the demand over these routes. Ships depart weekly from each port

along the route to provide customers with a regular schedule.

The objective is to maximize the profit of a single carrier. We do not consider a

competitive market with multiple carriers. We define profit as the total revenue minus

total costs. A container generates revenue during transport, so the total revenue in one

year equals the sum of all containers’ revenues.

3.2.1 Costs

Deploying a service network incurs costs. We distinguish between different types of costs,

based on the cost structure in Man (2007).

Capital costs

First, there are capital costs involved with the ownership or leasing contracts of the

fleet. These costs mainly depend on the capacity of a vessel. In case of full ownership,

capital costs consist of finance costs, such as interest and depreciation. When a fleet is

insufficient, additional vessels might be leased, either for short-term or long-term. In

that case, the capital costs are equal to the leasing price. We express capital costs as an

annual sum, fixed for each type of vessel.

Each service network has some associated routes. For every route, there is a call

once a week. This implies that if the duration of a trip is n days, max(n7 ) vessels are
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needed on that route. So, there is a direct relationship between capital costs and the

total number of sailing days in a service network. If a route is added to a network, or

a route is extended, the impact on capital costs can be substantial when an additional

vessel has to be used.

Operational costs

Operating a ship involves maintenance, insurance, wages, etc. We call this operational

costs, which is a fixed amount.

Fuel costs

A large portion of the budget, however, is spent on fuel costs. Fuel costs depend mainly

on the distance traveled, but other factors affect fuel costs as well. Fuel consumption

for example is based on cruising speed, vessel draught, and ocean streams. Reducing

the cruising speed can have great influence on the fuel cost per nautical mile. Fuel

price is another cost driver, although in practice the fluctuations are somewhat leveled

by surcharges to the customer, also known as the bunker adjustment factor (BAF). We

choose to set a fixed cost per nautical mile, disregarding any other variable. This also

simplifies the behavior of our algorithm. For example, extending a route with one port

will increase the traveling distance, and therefore the fuel costs.

Port costs

Ports charge a fee for entering, exiting, towage, etc. These port costs are independent

of the number of containers and are considered to be fixed in this study, although in

practice port costs depend on vessel capacity, length, draft, etc. Normally, port costs

also vary per port, since these costs are often used as as competitive instrument. In this

study, we assume the fixed terminal costs are included in the port costs.

Handling costs

Finally, loading and offloading containers incurs handling costs, a fixed sum per TEU,

charged by the terminal. This is a crucial variable when considering transhipment,

because of the high extra costs involved with (off)loading containers.
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3.2.2 Revenue

The revenue originates from containers transferred from their origin to their destination.

Although some studies, for the sake of simplicity, assume fixed revenues per container,

real life examples like public data from Maersk show that the price of a container service

actually depends on the distance it travels. So, the further a container has to travel, the

more revenue it generates. This seems sensible, because the costs per mile of a container

mainly consist out of fuel consumption. The height of the price also tends to depend on

the direction of the transport. For example, on the Asia-Europe trade lane, eastbound

transport is less expensive than westbound transport. In practice, the freight rates on

the two directions are also rather asymmetric.

It is common practice to express the price, and therefore the revenue of a container

service, in dollars per nautical mile or, in some cases, per sailing day. We will adopt

this approach and assume a fixed revenue per TEU per nautical mile. This actually

creates a pitfall that we have to be careful about. Assuming that revenue increases with

the distance traveled, this also means that we can make more money by keeping the

cargo on board for a longer period. However, that is not realistic. Strong competition

places prices under huge pressure, leaving carriers with no other option than to offer

competitive prices and transit times. In other words, a carrier cannot artificially boost

prices. To account for this problem, we use a distance norm in our revenue calculations.

Suppose we call port A, B and C, and we have to take a container from A to C. In this

example, we use the direct distance between A and C to calculate the revenue from that

container, in stead of using the distance between A and B plus the distance between B

and C.

The result is a fair method to calculate revenue. Also, it forces the carrier to choose

cost-efficient routes. For example, if more round trips call the origin and destination

port of a demand, the carrier is forced to choose the route that has the shortest path

between origin and destination to reduce his costs. While this reasoning might seem

obvious, we have to account for it in our algorithms. In Chapter 4 we will provide more

details on the algorithmic consequences.

3.2.3 Consequences of chosen cost-revenue structure

The chosen cost structure, and to some extent also the revenue structure, influences the

composition of a service network. Each cost parameter has its own effect on the network.

For example, by defining port costs to be independent of the number of containers, or

ship size, we enlarge the ‘economies of scale’ effect, i.e., the savings that can be obtained
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by using larger ships. Hence, we expect that a network will try to use large ships rather

than small ships. Similar remarks can be made when reviewing fuel costs. In practice,

fuel consumption depends on the sailing speed. When fuel prices are rising, carriers tend

to decrease sailing speed to save fuel costs. But that will increase a cycle’s duration,

urging for larger fleets.

Besides the structure, the values we choose to assign to these variables are also very

important. For example, higher handling costs will certainly diminish the ‘value added’

of the transhipment operator, since the use of hubs becomes more expensive.

Given particular settings for cost and revenue parameters, we can identify a simple

rule. A carrier needs a minimum volume before it becomes profitable to service a new

port. Suppose we have an existing service between East Asia and Western Europe, and

we would like to add Jebel Ali because we have some demand from that port. Although

Jebel Ali appears to be ‘on the route’, we would still have to sail additional miles on

each round trip to call that port. For example, the direct distance from Singapore to

Rotterdam is 8,255 nm. However, the distance Singapore - Jebel Ali - Rotterdam totals

9,532 nm. So, each round trip we face 1,277 additional miles. This incurs additional port

costs and fuel costs. Each container will generate revenue, but also incur handling costs.

We can now estimate the minimum required volume, based on the cost and revenue

surpluses. We assume port costs to be $25,000 per entry and fuel costs to be $150 per

nautical mile. Furthermore, we assume that the average revenue per TEU from and to

Jebel Ali is equal to $475, while the handling costs are $175 per TEU. The rationale of

these values are outlined in Section 6.2.1. The calculation is shown below in Example 3.1.

Let d denote the distance, p port costs, f the fuel costs, c the number of TEU.

d = 52 · 1, 277 = 66, 404 nm

p = 52 · $25, 000 = $1, 300, 000

f = $150 · d = $150 · 66, 404 = $9, 960, 600

revenue = (475− 175) · c = 300c

We find the minimum number of TEU when total costs equal total revenue:

300c = p+ f = $11, 260, 600

c ≈ 37, 535 TEU

(3.1)
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The previous example shows that the cost structure forces the carrier to evaluate the

network composition carefully. Because of the costs involved with a weekly service, a

minimum volume from and to each port is necessary to ensure profitability. The rough

calculation above shows that at least 37,535 TEU are required to cover for the additional

costs involved with a weekly service to Jebel Ali. The impact on both the ship capacity

and the cycle duration can also have financial drawbacks. This however, entirely depends

on the structure of a network, and is beyond the scope of this example.

More generally, if a carrier wants to include a port in its weekly service, he should

make sure that at least the port costs are covered by the revenue. The revenue depends

on the distance between origin and destination of a cargo, so that we cannot use a generic

rule to indicate the minimum number of containers to compensate for the ports costs.

However, following the parameters mentioned above, if we use an average revenue rate

of $475 per TEU we can calculate the required volume. From Example 3.2, it follows

that any volume below 4,333 TEU implies that a port will be unprofitable. Again, this

figure can be totally different when a container generates a lower or higher revenue due

to the origin-destination distance.

p = 52 · $25, 000 = $1, 300, 000

300c = p = $1, 300, 000

c ≈ 4, 333 TEU

(3.2)

3.2.4 Concluding remarks

We can draw the following conclusions from the chosen cost structure. Naturally, the

carrier wants to maximize revenue and minimize costs. Capital costs can be regarded

as sunk costs, since these are expressed as an annual sum. Once this sum is paid, the

objective becomes to maximize the revenue per nautical mile. The carrier can do that

by maximizing the utility rate of its fleet, and by entering long-distance cargo contracts.

Obviously, the carrier tries to minimize the costs per mile as well, but the majority

of those costs are incurred by fuel consumption. Since we consider sailing speed to be

constant, the carrier has only little influence on the costs per mile. Port costs depend

on the number of port visits, but these costs appear to be rather marginal compared to

the fuel costs. Therefore, the carrier would like to make sure it can transport enough

containers to and from a certain port to cover for the fuel, port, and handling costs.
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Chapter 4

Multi-start local search heuristics

In this chapter we present a multi-start local search algorithm for the routing and

scheduling problem in liner shipping. In multi-start local search heuristics, different

initial solutions are generated in the first phase, and improved by local search in the

second phase. The research subquestion we try to answer is:

3. Can we transform the multi-start local search algorithm from tramp shipping studies

to the case of liner shipping?

We start with a general overview of the two-phased model, followed by a detailed de-

scription of the individual steps.

4.1 Introduction

The complexity of designing a service network can be traced back to the difficulty of pick-

ing the routes that together form the most profitable network. Choosing one route will

change the type and order of the routes that follow. Therefore, the profitability of the

optimal network can never be calculated up front, without trying all route combinations

first. Since this ‘enumeration approach’ is practically infeasible for real-life examples,

alternative approaches have been designed recently. One of the most successful heuristic

approaches to overcome the hard combinatorial optimization problem is the multi-start

heuristic (Marti 2003, Nicolai & Dekker 2009). Applied to liner shipping problems, we

often find multi-start heuristics combined with local search optimization (see Fagerholt

& Lindstand 2007, Brønmo et al. 2007, Brønmo & Løkketangen 2007). The basic idea

is to construct many initial solutions throughout the solution space, after which each

solution can be subjected to a local optimization process. This approach provides an
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effective way to explore the solution space, without the requirement to iterate through

each and every possible route-combination. Although optimality is not always reached,

with carefully chosen parameters this heuristic approach can approximate optimal solu-

tions.

The multi-start local search algorithm that we propose is two-fold. The first phase is

the insertion heuristic, which generates a large number of different solution candidates.

This phase works by randomly creating routes and assigning partial demand to them,

similar to the technique used by Ronen (1986). The rest of the demand is then sorted

and allocated to the routes, which together form one service network. This process is

repeated to generate multiple, diverse solutions. In the second phase, local search oper-

ators are applied to improve each solution. Figure 4.1 shows the individual steps of the

algorithm.

In the following sections we will comment on the details of the insertion and local

search heuristic. In Section 4.2 we will introduce the insertion heuristic. Sections 4.2.1

and 4.2.2 describe the sorting methods we apply to obtain qualitative initial solutions.

The second phase, local search optimization, is described in Section 4.3.

4.2 Phase 1: Generating initial solutions

The diversity of the initial solutions is very important for the performance of the multi-

start local search algorithm. The local search heuristic will be used to explore the local

neighborhood of each initial solution in an attempt to find its local optimum. Only when

the set of initial solutions is spread throughout the solution space, we will have a good

chance that one of the local optima equals the global optimum.

We use the biased random algorithm from Ronen (1986) to generate part of the

initial solutions. The prefix biased refers to the prespecified order in which ports must

appear. Initial solutions therefore are not perfectly random. We use only a small fraction

of the cargoes to be randomly assigned. Then, we improve the quality by sorting the

remainder of the cargoes and assigning them to routes in a way that it contributes to a

specific objective function the most. We will focus more on the sorting functions in the

next subsections. The biased random algorithm works by randomly generating routes

and assigning randomly chosen cargoes to them. Each route consists of a series of ports

that is cyclically called by a ship.
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Figure 4.1: Outline of multi-start local search algorithm
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String generation

In the first step we identify all the ports that have demand, and randomly select a sub-

set. Because we have a round trip, we allow duplicate ports in a subset. The subset is

then ordered to match its natural sequence. All ports are identified by integers, such

that ports which are geographically succeeding, also have subsequent integers attached

to them. This ordering procedure prevents the use of applying the Traveling Salesman

Problem (TSP) to series of ports. Also, the lowest integers should resemble ports on

one side of the trade lane, while the highest integers are the ports on the other side.

For example, in case of an Asia-Europe service network, the lowest integers would rep-

resent ports in Asia, while the highest integers represent ports in Europe. The other

way around would actually work just as well, as long as we make sure that ports in the

middle of the trade lane (e.g., the Middle East) are identified by the integers in between.

Since the first and last port in a cycle are turning points, we prevent duplicates

of those ports to be in the subset. The size of the subset is unconstrained, that is,

within rational bounds: the minimum size of a subset is 2 because a round trip of only 1

port makes no sense, and a subset can never be larger than twice the number of existing

ports minus 2, because we prevent the first and last port (turning points) to appear

twice.

Ordering the string

Now we have to order the string in a sensible way. We numbered ports according to

their natural sequence, so ordering should not be very difficult. We start with two

positions that are already known: the first position and the middle position (the two

turning points) are the lowest and highest integer respectively. In order to improve the

understanding of string construction, we introduce terms to differentiate between the di-

rections of the trip. Following our previous example, the part between the first position

and middle position is called the westbound part of the string, and the part after the

middle position is called the eastbound part of the string. Naturally, these directional

terms are solely used in the text, and do not influence the applicability of the algorithm.

Out of the remaining integers, we pick the duplicates and divide each duplicate

pair between the eastbound and westbound part. The remaining integers are the ones

that can be assigned to either the eastbound or westbound part. This assignment is

done randomly to avoid bias. Both eastbound and westbound parts are then sorted
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ascending and descending, respectively, to match the natural sequence. The final string

now contains a perfectly ordered round trip.

Let us provide a small example. Suppose we have 10 ports numbered 1, 2....10,

and suppose we have randomly chosen the following subset: 2-3-4-4-5-5-6-8 (here it is

represented ordered for visualisation purposes only). In the first step, we pick the start-

ing point and middle point, obtaining: 2....8.... (the dots have no meaning other than

spacing). Next we pick the duplicates and divide each pair to the eastbound and west-

bound part: 2-4-5-8-4-5. The only remaining integers now are the singles ones: 3 and

6. Suppose that 3 is randomly assigned to the eastbound part, while 6 is assigned to

the westbound part. The string then becomes: 2-4-5-3-8-4-5-6. After ordering, the final

string is 2-3-4-5-8-6-5-4.

Partial cargo allocation

Now that we have a round trip we can start assigning cargo (demand) to it. The demand

matrix we have is an origin-destination matrix with aggregated, yearly demand between

ports. Other than spot cargoes in tramp shipping, we assume that individual demand

at ports is aggregated and can be partially fulfilled in order to maximize profit.

As a first step, we will choose an origin and destination port arbitrarily and allocate

a percentage of the demand between those ports to the round trip we just created. As-

signing random cargoes ensures diverse starting points in the solution space. Imagine

that we generate many strings in the previous steps. It is likely that some of them

will be equal, although they can be in different networks. An ordered allocation phase,

as we will introduce in the following steps, will allocate the same demands to similar

routes. With the partial cargo allocation step, we ensure that all solutions will start in

a different part of the solution space.

We purposely assign a small fraction (uniformly distributed between 5% and 15%)

of the demand, because we would like to add quality to the solutions in a later stage by

sorting the demands. This procedure has shown to improve solution quality in Brønmo

et al. (2007).

After we selected the origin and destination port, and determined the fraction of

the according demand, we check if the route has enough remaining capacity between

those ports. If so, we allocate the demand fraction to the route and update both the de-
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mand matrix, and the remaining capacity of the route. If there is not enough remaining

capacity, we pass this round. The procedure is repeated three times to insert random

demands in each route.

At this point, we have a round trip that has some cargo between different pairs

of ports allocated to it. For the moment, the round trip is ready. We can start adding

new round trips, until we reach an predefined number of rounds.

Up to this point, we performed steps 1 to 11 of Algorithm 2. We now have a set

of routes with some allocated cargo. In the following steps, we will sort the remain-

ing demand. We choose one of the two possible sorting options, either quantity based,

or profit-driven. One part of the solution candidates (service networks) will be sorted

by quantity, the other part is sorted using a profit-driven criterion. By allocating the

remaining cargoes in a sensible fashion to the routes, we already add quality to these ini-

tial solutions. The underlying idea is to improve solutions and speed up the local search

process. In Sections 4.2.1 and 4.2.2 we provide more details on the sorting methods.

4.2.1 Quantity Sort

In the preceding steps we randomly allocated a small part of the demand to the routes

in every service network. This ensured diverse starting points in the solution space.

We now have to add further demand to the routes to allow viability of the networks.

Although we could use random allocation for the rest of the demand, previous studies

show that ordering methods improve solutions (Fagerholt & Lindstand 2007, Brønmo

et al. 2007).

We start with a simple quantity based ordering method. In this approach, we start

allocating the largest demands first. The underlying idea is that larger demands typi-

cally are more cost-effective, because port costs per TEU decrease with larger quantities.

By assigning higher priority to larger demands, we make sure that we don’t run out of

ship capacity before the larger demands have taken care of.

The idea originates from a taxi-like scheduling problem in Madsen et al. (1995)

and has been applied to the tramp shipping problem by Brønmo et al. (2007). Tramp

shipping is characterized by long term cargo contracts and spot cargoes. As such, cargo

demands can be individually distinguished and considered. Although we normally can

identify individual cargo demands in liner shipping as well, our data set lacks this level
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of detail. We can only identify aggregated demand at each port, which means we will

not be able to sort on cargo size at an individual level.

Instead, we will focus on the aggregated demand at ports. Since each port has a

certain demand associated with it, we can use this information to assign a higher prior-

ity to the larger ports. We execute the following steps to allocate demand to the routes

within a service network.

First, we sort the list of demands decreasingly by quantity. Then we start iter-

ating through this ordered list. In each round, we find the routes that call the origin and

destination port of a demand, which is obviously a rigid requirement. We then sort the

list of feasible routes decreasingly by remaining capacity, because we want to allocate as

much of the demand to one route as possible. Next, we walk through this ordered list of

routes, each time allocating (part of) the demand until it has been completely allocated,

or no more routes are available. Of course we update the list of demands as well as the

remaining capacities of the routes throughout the process.

After this procedure, all demands have been allocated, unless some of them could

(partially) not be allocated due to capacity constraints, or a lack of routes that call both

the origin and destination ports. This Quantity Sort technique will be applied to the

initial solutions with a probability p = 0.5. The other part is covered by PDA sort,

which we will explain next.

4.2.2 PDA Sort

We use the term PDA as an abbreviation of ‘profit-driven allocation’, which refers to

one of the many possible methods to allocate cargo to ships. This method works by

allocating profitable cargoes first, before the remaining capacity of a ship is filled with

less profitable cargoes. The underlying idea is that profitable routes together will also

form a profitable service network. Although we explained earlier that the best service

network is often not a composition of the best single routes, it seems intuitive that a

service network will benefit from choosing profitable routes.

In our problem we face initial solutions that are improved by local search tech-

niques. The best service network will then be the overall winner. It makes sense that

the local search phase is more likely to find good, or even the best solution, when the

initial solutions are already good.
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We introduce a sorting method that is indirectly based on profitability. We sort

the routes according to a three-attribute based scoring system that relates to profitabil-

ity.

The first attribute is the length of a path, which is defined by the number of ports

between the origin and destination. A shorter path will reduce the costs, because the

distance is shorter. Although ports are ordered in their natural sequence, the direct

distance from port A to port C is still shorter than the summed distances from A to B

and from B to C. Tests have indicated that the average distance saved is between 5-10%.

The second attribute considers whether the origin and destination port of a certain

demand are already active ports in a route, i.e., ports in which a ship already loads or

offloads cargo. A port charges fixed costs per entry, so if it is active, the marginal port

costs are zero. Inactive ports can be removed from a string in a later stage.

The last attribute considers the utilization of a ship between ports. Each time

demand is allocated to a ship, the utilization rate of that ship between the origin and

destination port of the specific demand increases. Ideally, we would like 100% utilization

between all ports. This attribute considers the relative increase of the utilization rate

of the entire route when cargo from the cargolist would be allocated. As most costs

are independent of the number of containers carried, a higher utilization rate implies

higher profitability. The use of relative increase serves other purposes as well. Routes

with a lower utilization rate will be preferred over routes with a higher utilization rate.

This causes a leveling effect on the utilization rates between routes. Also, routes that

are already full will not immediately be filled to the maximum. The rationale is that

more routes will stay candidate for assigning new demand, and local search operators

will have more opportunities to move cargoes or ports, because of the higher remaining

capacity.

The three attributes together are used to assign a score to each route. Obviously,

the score differs for each cargo.

More formally, the individual steps of PDA Sort are as follows. For each demand

we search for feasible routes (i.e., strings that contain the origin and destination port of

the demand). Then we determine the value for each of the three attributes described

above, where we assign the following values. For the pathlength, we find the shortest path

between origin and destination and assign the number of ports in that path. After nor-

malization, we take the inverse value because shorter paths should be assigned a higher

score. The activeness is assigned value 2 if both origin and destination ports are active
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(i.e., existing (off)loading activities at a port), value 0 if both ports are inactive, and

value 1 if only one of both ports is active. Finally, the utilization attribute is assigned

a value between 0 and 1, equal to the potential relative increase in utilization rate by

allocating the new demand to the route.

After we determined the attribute values for all routes, we normalize the three at-

tributes using max-min normalization, to obtain values between zero and one, that easily

can be compared with each other. The pathlength attribute values are now inversed, re-

placing each value by 1−value, because shorter paths should be assigned a higher score.

In the next step, we assign a score to each route by adding up the values of its

three attributes. We then sort the list of feasible routes decreasingly by its scores, and

start allocating demand to it. Similar to the Quantity Sort procedure, we allocate (part

of) the demand until it has been completely allocated, or no more routes are available,

each time updating the list of demands as well as the remaining capacities of the routes.

The above procedure is repeated for each demand (cargo) in the cargo list. Steps 12

to 30 of Algorithm 2 describe the procedure of the sorting methods.
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4.3 Phase 2: Local search optimization

In this phase, local search optimization techniques are applied to improve each solution.

Local search works by exploring neighboring solutions in the solution space, trying to

discover a local optimum for each solution. To limit computational time, local search

is usually subjected to a stopping criteron, forcing the algorithm to stop searching for

better solutions when the criterion is reached. Stopping criteria are generally associated

with a certain execution time, number of alternatives evaluated, or the relative improve-

ment in the last N steps.

There are two methods to design local search operators. The first alternative is

to explore all neighboring solutions, either randomly or by enumeration, constantly re-

evaluating the objective function. This design is straightforward and effective, but very

time-consuming. The urge for stopping criteria is typically rather strong.

The second alternative is to introduce semi-intelligent operators, which search in a

specific direction where you would expect the largest gain. This approach involves some

sort of knowledge or reasoning to be inserted during design. For example, one operator

might consider adding another port to a cycle. While an operator of the first, simple

type actually adds the port and evaluates the objective functions, the second, more intel-

ligent type, ‘knows’ that it makes sense to add a port only if the corresponding demand

is above a certain threshold. Hence, the search for a local optimum is more directed.

We introduce three operators that try to improve initial solutions, each in their

own way but all three searching in specific directions. The route-length operator re-

moves ports from round trips that incur more costs than revenue, and tries to allocate

unassigned cargoes by adding ports to round trips. The port-exchange operator relocates

ports within a route or between routes in an attempt to improve solutions. Finally, the

transhipment operator introduces the use of hubs and transhipment to save costs and

allocate the remaining cargoes.

Remove inactive ports

The procedure of phase 1, where round trips are generated randomly, can cause round

trips to contain inactive ports. Such ports are called, but without any (off)loading

activities. In other words, a ship calls a port, pays for the port’s charges, and then leaves

without anything happened. That is, obviously, insensible and beyond reality. Therefore

we have to remove these ports, which only incur additional costs but no revenue.
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Iterating over the set of networks, we carefully analyze the routeset that is associated

with each network. If there are any routes in the routeset that contain inactive ports,

we remove those ports.

4.3.1 Sample service network

We introduce a small sample network that we will use throughout this section to illus-

trate the operation of each local search operator. The use of a small example enables

the reader to better understand the rationale behind each process, while it also allows

for easy comparison between individual operations.

We consider five ports, spread over three continents: Rotterdam (RO), Jebel Ali

(JA), Singapore (SI), Shanghai (SH), and Tokyo (TO). These ports are represented on

the map in figure 4.2. Our sample network consists of two services, A and B. The

specifics of services A and B are outlined in Table 4.1. Note that these services are

cyclic, after the last port in the string a ship sails to the first port of the string again.

The remaining capacity between each pair of ports is based on an assumed ship capac-

ity of 50,000 TEU per year. The cycle duration is based on the assumption that the

average sailing speed is 20 knots, that ships spend by average half a day in each port

for their (off)loading activities, and that the slack time is exactly one day per round trip.

In our examples, we will use the following cost and revenue parameters. Capital

costs and operational costs together are assumed to be USD 2 mln per annum. Fuel

costs are USD 100 per nautical mile travelled. The fixed port costs are USD 25,000,

while the terminal charges USD 100 per TEU to cover handling costs. Finally, each

container generates a revenue of USD 75 per day, for the sake of simplicity we do not

distinguish between westbound and eastbound shipping rates.

4.3.2 Route-length operator

The route-length operator tries to add and remove ports from round trips. Both opera-

tions appear simple but require in fact a thorough methodology. In Subsection 3.2.1, we

introduced different types of costs and the way in which they affect service networks. For

example, removing a port from a cycle not only saves port costs, but also saves handling

costs, and influences the duration of a trip and might therefore lead to the reduction

of the fleet by one vessel, saving capital costs and operating costs. Obviously, similar

considerations apply to the operation of adding ports to cycles.
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Figure 4.2: Map of sample ports

Table 4.1: Services of the sample service network (cargo in yearly TEU x 1,000)

Service A Service B
Cycle: SH - SI - RO - JA - SI Cycle: TO - SI - JA - RO - SI - SH
Total cycle mileage: 22,173 nm Total cycle mileage: 23,788 nm
Total cycle duration: 7.1 weeks Total cycle duration: 7.7 weeks

Allocated cargo Remaining Capacity Allocated cargo Remaining Capacity

SI - RO: 25 SH - SI: 35 TO - RO: 30 TO - SI: 5
SH - RO: 15 SI - RO: 5 SH - JA: 15 SI - JA: 0
RO - SH: 10 RO - JA: 35 SI - RO: 5 JA - RO: 15
SI - JA: 5 JA - SI: 40 RO - SI: 15 RO - SI: 10

SI - SH: 40 RO - SH: 25 SI - SH: 25
SH - TO: 50

We start by evaluating each route to find ports that can be removed. This enu-

meration method considers every port of a route and calculates the total revenue that

comes from allocated demand pairs which have this port either as their origin, or as

their destination. Then we work out the cost side of the port. When we remove a port,

we save on several cost components: port costs, handling costs for all containers that

are shipped from or to that port, and fuel costs because we save some miles (the dis-

tance from A to C is shorter than the distance from A to B plus B to C, even if B lies

along the route). The total costs incurred by a port are then compared to the revenue

that the port generates for the carrier. If the costs are higher than the revenues, the

port is removed from the cycle. Accordingly, the associated demand pairs are removed

54



from the route and restored in the origin-destination demand matrix as unassigned cargo.

Consider Service A of our sample service network. When we remove port Jebel

Ali, we save its port costs (USD 25,000 x 52 weeks), and the handling costs of 5,000

TEU (USD 0.5 mln). We also save 1.463 nautical miles (nm) by sailing directly from

Rotterdam back to Singapore, instead of calling Jebel Ali on the eastbound trip. There-

fore, fuel costs are saved (USD 100 x 1.463 nm x 52 weeks). Together, we save USD 9.4

mln. Now we take a look at the revenue side. The direct distance from Singapore to

Jebel Ali is 3449 nm, or 7.2 sailing days. So, the generated revenue is USD 75 x 7.2 x

5,000 TEU, which totals USD 2.7 mln. Clearly, we are better off by removing Jebel Ali.

Now, in some cases, extra savings can be realized on capital and operational costs,

because the fleet can be reduced by one or more vessels. This happens when the duration

of a cycle is reduced such that the (rounded) duration is one or more weeks less than

before. In the example above, the cycle mileage is reduced by 1.463 nm. Hence, the

cycle duration is reduced by 3.5 days (3 days for the distance, and 0.5 day for time in

the port). The new cycle duration is 6.6 weeks. Instead of 8 vessels, we now need only

7 vessels to maintain the weekly service, which gains us another USD 2 mln.

The second part of the route-length operator is dedicated to expanding routes, adding

ports to round trips. This is possible only when there are unassigned cargoes, which can

remain either from the first phase, the construction of initial solutions, or can be the

result from the first step of this operator, the removal of cost-inefficient ports. In the

latter case, it might seem strange to allocate these cargoes again when we previously

removed them due to cost-inefficiency, but we can easily explain this. The port-removal

part of this operator may have removed multiple demand pairs, with the same origin and

destination port, from different routes and restored them in the origin-destination de-

mand matrix. This means we might find profitable origin-destination port combinations

again.

For example, suppose we find three routes that each carry a demand of 100 from port

A to port B, and suppose we previously concluded that in all three of the cases we were

better off by removing port B from the route (port A was profitable because of other

demands). By removing port B, the three cargoes that were assigned to the routes were

restored in the OD demand matrix. So now we have a demand of 300, to be transported

from port A to port B. A demand of 300 might generate enough revenue to justify the

costs involved with adding port B to a route. Hence, we have to consider all unassigned

cargoes again to find profitable ones.
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The process of adding ports starts with populating a list of unassigned cargoes.

Next, for each cargo we walk through the set of routes and calculate how much profit

we can earn if we would assign the cargo to a route (taking into account the restriction

of the remaining capacities on that specific route). Some routes might already include

the origin and destination of the cargo, while others may need to be extended first. If

we find a port on the route twice, then we have a choice which occurrence we choose for

the allocation of a demand pair. In such a case, we choose the one that will yield the

smallest pathlength, so that the cargo will travel the shortest possible distance. Next,

for each cargo we evaluate all routes, calculating the absolute gain in profit we could

obtain when allocating a cargo. The cargo is allocated to the route that has the highest

potential. The procedure of the route-length operator is summarized in Algorithm 8.

Figure 4.3 depicts an example operation of the route-length operator. It shows a

sample route A with 4 ports, in which the operator both removes a port as well as adds

a new port. Port 6 is removed, because the route-length operator calculated that this

port incurs more costs than it generates revenue. Port 3 is added to the route, because

there is enough demand from and to this port to make it profitable.

Figure 4.3: Example operations of the route-length operator

4.3.3 Port-exchange operator

The port-exchange operator tries to improve routes by moving ports. We consider both

intra-route and inter-route optimization. Intra-route optimization targets individual

routes, while inter-route optimization is based on a procedure that exchanges ports
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between pairs of routes.

Intra-route port exchange

Intra-route optimization evaluates the port sequence of individual routes. From Section

4.2 we recall that strings are generated according to a certain pattern. The ordering of

a string follows the natural port sequence, but ports that appear only once in a string,

apart from the two turning points which have fixed positions, can be assigned to ei-

ther the eastbound part of the cycle or the westbound part. The assignment was done

randomly, but now that we have more mature solutions, we can re-evaluate these assign-

ments. Before providing the details of this procedure, we will first explain the benefits.

Let us summarize the characteristics of a cycle first. We have a sequence of ports

that are called once a week, in which we load or offload cargo. Between each port we

have a remaining capacity, which is defined as the ship’s capacity minus the cargo we

have onboard between the two ports. The cargo generates revenue, which is a fixed

amount of dollars per TEU per nautical mile. To calculate the distance we use the

direct distance between the origin and destination of the cargo. Costs are incurred by

the distance traveled, port entrances, fleet ownership, and (off)loading activities.

Now, what happens when we move a port in the string sequence? Most parame-

ters remain the same. In fact, all revenues and costs stay unchanged because the total

distance, the number of ports, and the cycle duration do not change. Also, revenues

are the same because we use the direct distance between the origin and destination of

cargo, regardless of the distance the cargo really travels. The only aspect that changes

is the remaining capacity between ports. There is no direct benefit from that, but in

some cases the remaining capacities between other ports increase such, that new cargoes

can be allocated. Hence, the most important question is, when will remaining capacities

between other ports increase?

If we move a port from eastbound to westbound, or vice versa, we first have to

check if this move is feasible. Often, remaining capacities in the part we are moving the

port to are insufficient to allow such transitions. For example, consider Service B from

our sample network. We could try to move Shanghai from the eastbound to the west-

bound part of the cycle. However, by doing so, the cargo from Rotterdam to Shanghai

has to remain in the vessel during the port calls in Singapore and Tokyo. But in Tokyo,

30,000 TEU with destination Rotterdam have to be loaded onto the ship, so that there
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is insufficient capacity to carry both cargoes.

The movement of the port is only possible if all remaining capacities allow that.

But even if we pass this check, we should only move the port if, in general, other re-

maining capacities benefit from the movement. Otherwise, there is not much use in

moving the port. To check if they do, we follow a simple procedure. We compute the

total pathlength of all allocated cargoes. Then we do the same, but with the port moved

to its new position in the cycle. If the total pathlength decreases, we assume that, by

average, the remaining capacities on the cycle increase. This provides an opportunity to

allocate new cargoes.

If we look at Service B again, we might consider moving Shanghai from the east-

bound to the westbound part of the cycle, because the cargo that is loaded in Shanghai

with destination Jebel Ali will have a shorter travel. Previously, we showed that there

is not enough remaining capacity on the other legs to move the port, but suppose the

movement is actually feasible and we want to check if we gain anything from that. The

pathlength from Tokyo to Rotterdam (the first allocated cargo) is 3. If we compute the

pathlengths for the other cargoes as well, we get a total of 11. Similarly, we can compute

the total pathlength when we move Shanghai to the westbound part, in which case we

would obtain 12. So, although it appears to be beneficial to move Shanghai, the impact

on the other cargoes is such that the overall improvement is negative. Hence, moving

Shanghai is not only infeasible, it would also be insensible.

Now that we explained in which situations it is sensible to move a port, we can

provide more details on the procedure itself. We evaluate each route successively. First,

we determine which ports appear only once in a cycle apart from the turning points,

which we obviously don’t want to move. Then, for each single port we check the condi-

tion of the remaining capacities as describe above. Hence, we first check if the remaining

capacities allow the port to be moved, and secondly, if the total pathlength benefits

from the movement. If that is the case, we move the port to the opposite part of the

string, so either from eastbound to westbound or vice versa. Subsequently, we update

the remaining capacities. After the movement is complete, we iterate through the list

of unassigned cargoes and try to allocate them to the updated route if possible. The

detailed steps are provided in Algorithm 9.
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Inter-route port exchange

The focus on inter-route optimization is based on the rationale that ports can sometimes

be serviced by one route more efficiently than the other. Benefits can be achieved at

three different levels.

First, we try to merge ports between routes. Or, more specifically, we try to al-

locate the demand that is handled at a certain port to fewer routes. We are particularly

interested in situations where we can successfully reassign the cargo that involves a port

to one route, so that we can remove that port call from another route entirely. This

saves the ports costs on one route. By merging port calls, we can save port costs while

the revenue remains unchanged.

Suppose we have two specific routes that each service the same port. When a route

services a port, it means that the port has one or more ‘counterparts’, ports that are

either the origin or the destination of the cargo that is handled at the specific port.

Consider Service A and B again. Both services call Jebel Ali. In Service A, the coun-

terpart port is Singapore, while in Service B it is Shanghai. But to merge both port

calls, and to successfully remove Jebel Ali from one of the services, two conditions have

to be satisfied. First, one of the services need to share all the counterpart ports of Jebel

Ali, i.e. one of both services need to call not only Jebel Ali, but also Singapore and

Shanghai. Second, the remaining capacities should allow that cargo from one service is

reassigned to the other. If both conditions are satisfied we can successfully merge ports

between routes. In this particular example, the first condition is not met, so that the

second condition is not relevant.

The second benefit relates to the required fleet size. Recall that, because of the

weekly service, we need a vessel for each week of duration. For example, if the total

cycle duration is 4.5 weeks, we need 5 vessels to maintain that cycle. The key question

is, how can we reduce the fleet size, and maintain the same amount of allocated cargo

at the same time?

Well, suppose we have two routes with a cycle duration of 4.2 weeks each. For these

two routes, we will need a fleet of 10 vessels in total. Now suppose that these two routes

satisfy two conditions similar as defined in the previous paragraph, only the port we are

targeting (port X) is called in only one of the route. Hence, both routes share a set of

ports such that we can move port X from one route to the other, while that other route

already contains the counterpart ports of port X, and the remaining capacities on the
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route allow for such a transition. Obviously, the duration of both routes will change. The

route that ‘looses’ port X saves time that is otherwise spent in the port or on travelling

the extra miles. Also, the slack time of a route can be reduced a little. Together, these

savings can add up to several days easily. On the other hand, the duration of the route

that is extended with port X will increase proportionally.

Let us assume that the first route will save 0.3 weeks (approximately two days) by

removing port X. The duration of this route will then become 4.2 − 0.3 = 3.9 weeks.

Similarly, the duration of the other route becomes 4.2+0.3 = 4.5 weeks. Now we require

a fleet of only 9 vessels for both routes. Hence, we save capital and operational costs of

one vessel. The key issue is to find pairs of routes where port movements are feasible

and fleet reductions can be achieved.

Finally, the third improvement is to be found in optimizing turning points. Turning

points are defined as the ‘extreme’ port of a cycle, i.e., the smallest and highest port

number in a string of ports. Previously we mentioned that the direct distance from port

A to port C is smaller than the individual distances from port A to port B, plus the dis-

tance from port B to port C, providing these ports are situated in a natural order. But

the extra distance is relatively small, usually between 5-10% of the distance between A

to C. For example, the distance from A to C could be 500 miles, while the total distance

from A to C via port B could be 550 miles (with the distance from A to B being 220

miles, and from B to C being 230 miles). So, by removing port B we could save 50 miles.

However, true savings can be achieved when we leave out an extreme point, such

as port C in our previous example. Naturally, we need to reassign the cargoes that are

(off)loading at port C to another route. This is only sensible when port C is not an

turning point in the other route. In such a case, we could save 230 miles in the first

route, while we only have to sail an additional 50 miles or so in the other. Bottomline,

we would save around 180 miles. Not only do we save fuel costs, we could also save a

vessel if the duration decreases substantially. Depending on the sailing speed, sailing

180 nautical miles takes around 10 hours. Together with the time spent in a port, total

cycle duration benefits approximately one day. In some cases, that might be just enough

to save a vessel that would otherwise be required to service the extra port.

Obviously, we need to carefully calculate the impact on both routes and evaluate the

profitability gain or loss, before we can decide to move a turning point to another route.

Another condition that needs to be satisfied, is that the counterpart ports of port C also

need to be present in the other candidate route.
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In this subsection we specified three different levels where we can save costs, simply

by redistributing ports and demand over different routes. The three techniques show

lot of similarities, that is, most of the mentioned requirements are the same across the

solutions. Therefore, our algorithmic approach will be more parallel. We first construct

an unordered list of route-pairs. Then for each pair we evaluate the conditions of both

routes and assess the appropriate operation, based on their contributions to the objec-

tion function. More specifics of the inter-route port exchange operator are outlined in

Algorithm 10.

Figure 4.4: Example operations of the port-exchange operator

Figure 4.4 depicts example operations of both the intra-route as well as the inter-

route optimization phases of the port-exchange operator. We see two routes, route A and

route B, of which some ports are mutual and some are not. The intra-route optimization

is shown on the left side, in route A. Here, port 3 is moved from an eastbound position

to the westbound part of the cycle. This may happen for example because there is a lot

of demand from port 4 going to port 3. In this case, the movement of port 3 will increase

the free ship capacity on the remaining part of the route, which allows the allocation of

other cargo.

The inter-route optimization is shown by means of the arrow between route A and

route B. The arrow represents the movement of port 4, from route A to route B. Because

the port is removed from route A, this route will become shorter and therefore cheaper.

On the other hand, route B already calls at port 3 and port 6, and because of the natural

sequencing of ports, the geographical position of route 4 is between those ports. In other

words, route B already passes port 4 on its way, so that the total cycle distance will

increase only a little. Such a movement is not always possible, because the ‘counterpart’
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ports must be in both routes and there must be enough remaining capacity in the ships.

However, when the movement is feasible, it can be cost-efficient.

4.3.4 Transhipment operator

The transhipment operator tries to improve the demand allocation by introducing tran-

shipment of containers. Transhipment is defined as transferring cargo from one ship to

another, with the ships operating on different services, in order to continue the journey

to its final destination. The services are connected by a so-called hub, a port where

transhipment takes place. Transhipment can take place between a feeder-line and a

main-line, as well as between two main-lines. We focus on transhipment of one main-

line to another main-line.

A typical transhipment move works as follows. First, ship A arrives after which the

specific containers are offloaded. Then, the containers are temporarily stored at the con-

tainer terminal, waiting for the arrival of ship B. When ship B is ready, the containers are

loaded and proceed their journey. Naturally, every transhipment move incurs handling

cost and possibly some container storage cost. In this work, we only consider handling

costs, for both offloading and loading movements. As a result, one transhipment move

incurs two times the handling cost per container.

Introducing transhipment can improve the allocation of demand in three ways. First,

transhipment can reduce the path length from origin to destination. Consider our sample

service network from Section 4.3.1, and suppose service B is extended on the westbound

with 5 ports between Jebel Ali and Rotterdam. Now, consider the allocated demand of

OD pair Tokyo-Rotterdam on service B. With the extension of service B, the path that

the containers of this OD pair follow has become relatively long, i.e., making many stops.

Introducing transhipment from service B to service A in Singapore yields a non-stop path

between Singapore and Rotterdam. This reduces the sailing time of the containers, and

most important, less remaining capacities are consumed. In the end, this will save ca-

pacity for service B at the path Jebel Ali - the 5 additional ports - Rotterdam, while

only using capacity at the path Singapore - Rotterdam in service A.

Second, transhipment can prevent unnecessary movements of cargo along the turning

point. Consider our sample service network, and suppose we want to allocate a cargo

with origin Jebel Ali and destination Tokyo. Service B contains a direct path between

Jebel Ali and Tokyo, but it first travels westbound to Rotterdam, before proceeding
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eastbound to Tokyo. Allocating to this service would yield an unnecessary move from

Jebel Ali to Rotterdam and back to the Middle East, while consuming the ships capacity.

Transhipment can prevent this kind of movements by connecting services. It would be

much more efficient for the cargo to leave Jebel Ali in eastbound direction straightaway,

as is the case in service A. Then, the cargo can be transhipped to service B in either

Singapore or Shanghai, to proceed to destination Tokyo.

Third, transhipment enables unallocated demand to be allocated. Before tranship-

ment is introduced, demand pairs are only allocated on direct paths, i.e., single routes

that contain both the origin and destination. This means that demand pairs with-

out a direct path are not allocated, yielding a demand matrix with remaining cargoes.

This remaining demand can only be fulfilled by transhipment from one service to an-

other. Consider our sample service network, and suppose service A is extended on the

westbound with the port of Colombo (CO). The new string of service A becomes SH-SI-

CO-RO-JA-SI. Now, suppose we want to satisfy demand between Tokyo and Colombo.

There is no direct path between the origin Tokyo and destination Colombo. Therefore,

we use transhipment to connect service B and A in Singapore. Without transhipment,

this demand could not have been allocated.

An important decision that has to be made regarding transhipment is the choice

which port(s) will be used as transhipment hub. Choosing the hub is a problem on its

own, as we have seen in Section 2.3.5. We can choose one or multiple ports to fulfil the

hub function.

With one hub, we could choose a port somewhere in the middle of the considered

trade lane. When choosing two hubs, having a hub on either side of the trade lane

would make most sense. For the Asia-Europe trade lane, for example, one hub could

be located in Asia (e.g., Singapore), and the other one in Europe (e.g., Rotterdam).

There are several approaches possible for choosing which port will be the hub, the most

obvious ones are either based on the geographical location of the port, based on the

current service network, or, based on the origin-destination demand matrix.

From reality perspective, the geographical location of a port determines its success as

a transhipment port. A good example is Singapore that, due to its location, is the main

passage to the far east, and the world’s busiest transhipment port. In this approach, one

could use the distance matrix to determine which port is at a central position. Perhaps

the most straightforward approach is to use the current service network, and choose

the port that occurs most often. The rationale behind this approach is that a high
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occurrence means the hub is visited by many services, which increases the number of

possible transhipment moves. Another approach is to use the origin-destination demand

matrix. Since the demand reflects a tangle of the port’s throughput, this approach

combines reality and simplicity.

However, multiple hubs seem to be the better alternative. In reality, every port can

be a transhipment hub. Furthermore, the use of a single hub makes the operator less

effective when the number of ports increases.

Following from the previous discussion, we distinguish three main approaches to

model transhipment, corresponding to the number of ports fulfilling the hub function,

and the number of transhipment moves allowed. With single-hub single-move tran-

shipment, we consider only one transhipment hub, and only one transhipment move is

possible. With multi-hub single-move transhipment, all ports are transhipment hubs,

but we only allow one transhipment move. Finally, with multi-hub multi-move tranship-

ment, all ports are transhipment hubs, and we allow multiple transhipment moves.

Initially, we used the single-hub single-move transhipment approach, but the im-

provement of the effectiveness was not satisfactory for large networks. Subsequently,

we used the multi-hub multi-move approach, but this required too much computation

time for large networks, i.e., the approach was not efficient. Therefore, we end up in the

middle, using the multi-hub single-move approach, in order to satisfy both our effective-

ness and efficiency needs. For this operator, and the experiments, we will use multi-hub

single-move transhipment. A more detailed specification of the performance of the other

approaches will be given as an additional experiment in Chapter 7.

The operator consists of two steps, each corresponding to a different function in

the algorithm that is presented in Algorithm 11. We will discuss the precise working of

each step separately.

Reroute allocated demand

The first step of the transhipment operator focuses on preventing unnecessary move-

ments of cargo along the turning point. We only tranship demand pairs of which the

current direct path unnecessary travels via the turning point. By rerouting these de-

mand pairs to shorter transhipment paths, we prevent consuming capacities on the legs

to and from the turning point. Eventually, this will yield extra space on the ships for a
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better allocation of demand in the second step.

The re-routing of allocated demands works as follows. For each route in our net-

work, we iterate trough all demand allocations. The demand allocations that are not

already part of a transhipment allocation, and currently have a path that unnecessarily

visits a turning port are considered for further investigation. For these demand pairs, we

search candidate transhipment paths according to the the multi-hub single-move tran-

shipment characteristics. This means we consider all ports within the interval [origin,

destination] to be the hub port, one at a time.

For each of these possible hubs, we iterate through the routes that contain the hub,

searching for the origin and destination port. We search for both origins and destinations,

to obtain origin-hub paths as well as hub-destination paths. After we have iterated

through the routes we merge the origin-hub and hub-destination paths, obtaining all

possible transhipment paths for a specific hub port. Subsequently, we continue our

search for the next hub port.

At this point we have one list with all possible transhipment path candidates, via

different hub ports. We sort this list according to an ascending path length, i.e., the

number of stops of the considered candidate. Then, we can start our reallocation process.

Recall that the list of candidate paths corresponds to a single demand pair we wanted

to reroute. We first try to reallocate the demand to the shortest path. However, the

maximum demand we can re-route to this path is equal to the smallest of the remaining

capacities (RC) of the origin-hub part and hub-destination part of the candidate. This

is visualized in Figure 4.5, where the maximum demand to reroute is min(RC1,RC2).

We try to re-route as many demand as the remaining capacities of the candidate allow.

When we fail to allocate the full demand to the first candidate, we continue with the

next candidate, and repeat this process until we have run out of demand or candidates.

The pseudo code for this step of the transhipment operator is given in Algorithm 12.

Allocate demand matrix leftovers

The second step of the transhipment operator tries to allocate demand pairs from the

demand matrix, that we could not satisfy with direct paths. The introduction of tran-

shipment allows these pairs to be allocated as well. Just like in the previous step, the

amount of demand we can allocate depends on the remaining capacities of the tranship-

ment paths. This step is processed after we rerouted existing demand pairs, in order

to have enough space to reroute. When we would first allocate the demand matrix left-
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(a) Normal situation (b) Situation with transhipment

Figure 4.5: Direct path versus transhipment path

overs, we would consume remaining capacities, making it more difficult to reroute the

already allocated demand pairs. Moreover, the rerouting of existing demand yields more

transhipment possibilities for the allocation of demand matrix leftovers.

The allocation of demand matrix leftovers works as follows. It is analogous to the

rerouting of allocated demand, except now we iterate through the demand matrix in-

stead of the allocated demands of each route. For each row of the demand matrix, we

iterate trough all columns. Whenever there is demand left for the considered origin-

destination pair, we search for candidate transhipment paths. Again, we obtain a list

with all possible transhipment path candidates, via different hub ports that lay within

the interval [origin, destination]. We sort the list by ascending path length, and start

allocating the demand to the first candidate, and proceeding similarly as the previous

step of the operator. The pseudo code for this step of the transhipment operator is given

in Algorithm 13.

4.4 Conclusion

In this chapter, we presented the multi-start local search algorithm for the routing and

scheduling problem in liner shipping. We are now able to answer the third research

subquestion:

3. Can we transform the multi-start local search algorithm from tramp shipping studies

to the case of liner shipping?

Multi-start local search is a heuristic that combines two techniques, i.e., the multi-

start technique and a local search heuristic. These two techniques represent separate
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phases in the multi-start local search algorithm. The first phase can be seen as an inser-

tion heuristic that generates multiple initial solutions. The second phase tries to improve

these solutions using a local search heuristic. The advantage of a multi-start approach

is that the solutions are spread throughout the solution space, thereby decreasing the

chance of getting stuck in a local optimum.

The multi-start local search approach is a general technique, and not restricted to a

specific problem. The implementation of the two phases determines the applicability of

the algorithm for a specific problem. In our case, the starting point was research that

used multi-start local search for solving the routing and scheduling problem in tramp

shipping. Recall that liner shipping companies provide services according to a fixed

network of routes and a regular repetitive schedule, whereas tramp ships have no fixed

network and schedule, and mainly trade on the spot market. As a result, the assumptions

underlying the problems differ, yielding a different implementation.

We were able to transform the multi-start local search algorithm from tramp shipping

to liner shipping by creating such a different implementation. Since liner ships operate

on a route that is fixed for a long time, it is essential to find proper routes that can satisfy

future demand. Whenever a network comes into place that does not yield a reasonable

utilization, the carrier loses money. Therefore, the process of deciding on the network

to service needs to be very accurate. The most important difference between the tramp

shipping and the liner shipping implementation is that tramp shipping moves with spot

cargoes to find the optimal routes, whereas liner shipping mainly moves with ports to

find the optimal network. This is also expressed in the route-length and port-exchange

operator, that move with ports to find a better network. The transhipment operator

does not change the network but rather the allocation of demand. Still, the operator

is not applicable to tramp shipping since transhipment is not an issue when there is no

fixed network of routes. Furthermore, the sort methods used in the first phase of the

heuristic differ as a result of the approach. The time sort method used in the tramp

shipping implementation is only applicable to tramp shipping, instead we introduced

the profit-driven sort. The quantity sort method had to be changed to cover for the

difference between single spot cargoes from tramp shipping and the aggregated yearly

demand between ports from liner shipping.

In summary, we can state that we have transformed the algorithm from tramp ship-

ping to the case of liner shipping, by providing a different implementation, that follows

from the different assumptions that liner shipping is based on.
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Chapter 5

The Maersk Asia-Europe data set

This chapter deals with finding a data set that combines reality and general applicability.

The research subquestion we try to answer is:

4. What is an adequate data set to assess the effectiveness of solutions to the problem?

Section 5.1 gives a general introduction to the characteristics of data sets for the routing

and scheduling problem in liner shipping. Furthermore, we discuss existing data from

literature and elaborate on their usability. Section 5.2 presents a new data set and gives

an explanation on how it was constructed.

5.1 Introduction

Benchmark studies add more value when standard data sets are used, that allow for

good comparison between the performance of different solution approaches. However,

due to the numerous variants of the problem, there is no de facto standard data set

available in the field. This leaves researchers with no other choice than to collect or

generate some data themselves, and create their own case study. In this section we will

discuss some existing secondary data sets and their fit to our problem, but first we focus

on the characteristics of a suitable data set.

The objective for a standard data set would be to combine general applicability and

reality. General applicability means that the data set is usable in different variants of

the problem. This can be addressed in two ways, either by providing a broad data set

covering all variants (i.e., a data set that has all possible variables, also with data not

necessary for some variants), or by providing a compact data set with basic variables

that are needed in any problem variant. In the latter case, researchers have to generate
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additional data to fit their variant of the problem. From the description of the routing

and scheduling problem it is clear what variables are necessary to incorporate in a data

set. The most important variables are the demand, fleet, the distances between ports,

revenue, and costs. These variables need to be specified for any variant of the problem.

A problem we face when pursuing general applicability is the format of the variables.

For example, we have seen data sets with a list of origin-destination demand pairs,

whereas others use origin-destination matrices. Naturally, this does not influence the

contents of the data and is therefore considered to be unimportant. However, the unit of

measurement is important. As an example, it is common to measure distance between

ports in nautical miles, but some studies do not consider distances in length, but rather

use time units to indicate the time needed to make the travel. Furthermore, demands

can be measured in TEU or FEU (i.e., forty-foot equivalent units), or even in tons.

Apart from general applicability, a data set should incorporate reality. Realistic data

sets provide more appealing examples, and allow the results to be placed into perspective

with the real world. It is very difficult to obtain real-world data, since carriers treat their

operating data as confidential. Nevertheless, carriers do provide some data through their

annual reports and their websites, that contain useful information about the operations

of the company. General sector data (e.g., port throughput, price levels) are available

from several online resources ranging from specific websites to magazine databases.

Still there exist some problems with respect to obtaining the data. For example,

there is no information available on the exact demand between ports, but rather on

the major trade lanes Europe-Asia (Song & Carter 2009), Trans-Pacific (Song & Carter

2009, Fusillo 2004), and Trans-Atlantic (Song & Carter 2009, Fusillo 2004). Carriers

also provide only the total demand on trade lane level. Even when the demand between

ports would be known, the question remains whether the data represent the underlying

values, since supply creates demand. Furthermore, demand between ports is measured

per year, while in reality seasonal demands occur. Another danger concerns the level of

revenues and costs. Since these variables are constantly fluctuating, old data (e.g., from

related work) might not reflect todays reality.

In liner shipping literature, a few related studies have used data to present results of

their solution approach. Some used real-world data, others generated random data, and

some used both.

Alvarez (2009) presents a case study using realistic data, albeit not related to any

carrier in particular. The top 120 worldwide ports by throughput were chosen to use in
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the data set. Distances were computed based on data from the U.S. National Imagery

and Mapping Agency. However, accuracy tests using several online distance calculators

show substantial differences in the reported distances, with the conclusion that the pre-

sented distances are unreliable. Based on an average total annual demand of 5 million

TEU, countries of considered ports were assigned demand based on the countries gross

domestic product (GDP). One can argue whether the GDP is a good criterion to dis-

tribute the total demand, since it leads to totally different container streams as seen

in reality. Next, based on ports throughput ranking, the country demand was assigned

over the ports. Then, port demand was distributed over other ports using a logit model,

based on hinterland demand and sailing distance, to obtain origin-destination pairs. To

model the fleet, 100 vessels were generated based on 5 different vessel classes, based on

their size (1000-8400 TEU). The operating costs of these vessels were related to their

specific class, i.e., different speeds for each class leads to different fuel costs.

Agarwal & Ergun (2008) consider two regions and randomly assign ports to either

region. The distances were randomly generated based on average sailing times on Trans-

Pacific routes. Demand pairs were randomly drawn from the set of ports, and assigned

a demand between 0.1 and 1.0 times the capacity of the largest vessel. The fixed fleet

is based on 3 vessel sizes (2000, 4000, 8000 TEU), and the vessels are randomly chosen.

Revenues are considered proportional to the distance between ports, but a proportion-

ality constant is randomly drawn from [100,200] to prevent always taking the longest

routes. Here, the authors do not consider capital costs, since these are fixed during

the planning period. Operational costs used are port costs, proportional to the vessel

size, holding costs for storing containers, and genuine operation costs (e.g., fuel costs),

depending on the vessel size and distance travelled. The rather large random aspect of

this data set means that it does not represent reality, and is therefore not an optimal case.

Yan et al. (2009) obtained data from an unspecified major Taiwanese liner ship-

ping company. This study focuses purely on scheduling, and therefore the case example

already consists of two services, based on real intra-Asia services. Their goal is to find

a time schedule that minimizes costs. The demand between ports was known from the

company. The fixed fleet consists of vessels of 2 sizes (870 and 2500 TEU). Furthermore,

actual cost parameters of both ship sizes were used, for example the operating costs were

$833.75/day and $2,395.83/day. Port costs range from $5,000 to $15,000. The container

handling costs at the ports range from $80 to $220 per TEU. As in the previous example,

container holding costs are considered, ranging from $2 to $5.5 per TEU per day. The
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data used in this example give some reasonable cost ranges, although the prices fluctuate

and differ among ports.

5.2 Data set description

In the previous section we have seen the difficulties with the current data that is used in

routing and scheduling for liner shipping. Our goal is to find a data set that combines

reality and general applicability. Next, we present a new data set that strives to meet

those requirements.

In order to address the reality constraint, we use real data from various sources,

and base our data set on an existing service network. The main rationale for choosing

an existing service network is that it provides for a highly-relevant comparison. That

is, comparing the best service network we obtain using our algorithms, with the service

network as it is actually implemented by the carrier. Assuming the carrier did its utmost

best to compose its service network, the comparison places our solution into perspective,

and when the results are good, justifies the use of our algorithms. We have chosen the

service network of Maersk on the Asia-Europe trade lane. This is one of the three major

trade lanes, besides Trans-Pacific and Trans-Atlantic. Focusing on one trade lane seems

the best option, since many data is decomposed to this level, and it keeps the data set

from growing too big, as would be the case when considering worldwide services.

To address the general applicability, it is necessary to consider several problem vari-

ables. Based on the small literature review with respect to data usage, we choose the

variables that are necessary to make the data set applicable to most of the related work.

Naturally, this includes an origin-destination demand matrix between considered ports.

Often, this is used together with a matrix of distances between ports. Another common

variable is the fleet of vessels available to perform the services. Furthermore, revenues

and costs should be specified, corresponding to the actual values seen on the Asia-Europe

trade lane.

5.2.1 Original service network

The data set we present is based on the original service network of Maersk for the

Asia-Europe trade lane during spring 2010. At the time, its service network consisted

of the services AE1, AE2, AE3, AE6, AE7, AE9, AE10, AE11, and AE12. Originally,

additional services AE21 and AE23 existed, which were slot chartering services on CMA

CGM France-Asia Line (FAL). However, these services were terminated and replaced by
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a new joint service with CMA CGM named AE8 in the summer. Other joint services

with CMA CGM are AE3, AE11, and AE12. In the appendix, Tables B.1 and B.2

present the string of ports for the beforementioned services, as well as the vessels that

operate on these services. This data was publicly available from the Maersk Line web

site. In the next subsections we discuss the specific problem variables included in the

new data set.

5.2.2 Ports

We aggregated all services to obtain one list of ports, shown in Table B.3. Note that

we removed Los Angeles (AE6) from the list, since it is not on the Asia-Europe trade

lane. In total, this amounts to 58 ports. Using the Container Traffic World Ranking

2009 of Containerisation International, and port web sites, we looked up port specific

information like it’s code, country, continent and container throughput.

5.2.3 Fleet

We obtained the fleet by aggregating the vessels of all services. We looked up their

capacity using a list with the world’s fleet from Containerisation International. Since we

removed Los Angeles from the list of ports, we also removed 2 vessels (Maren Maersk &

Marchen Maersk) to compensate for the decreased sailing time of the AE6 cycle. The

fleet also consists of 11 CMA CGM vessels that operate in joint services AE3, AE11,

and AE12. The total fleet amounts to 91 vessels, and is shown in Appendix Table B.4.

The vessel size ranges from 6,251 to 14,770 TEU. Figure 5.1 illustrates this difference.

Naturally, the information in this variable only applies to problem variants that consider

a restricted fleet.

(a) Maersk Kuantan (b) Emma Maersk

Figure 5.1: Difference in vessel size: (a) 6,500 TEU versus (b) 14,770 TEU
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5.2.4 Demand

The demand between ports is determined in the following way. First, we determine the

total demand to be allocated on the Asia-Europe trade lane. According to the annual

report 2009 of A.P. Moller - Maersk Group, the total container demand fulfilled by

Maersk Line was 13.8 million TEU. The 2010 interim report indicates a 11% growth in

volume for the first half of 2010 with respect to the same period in 2009. Based on this

information, we also expect the total yearly demand to be 11% higher, yielding 15.318

million TEU. From the 2009 annual report we know that the share of the Asia-Europe

trade lane is 40%, which we expect to remain the same, yielding a total demand of 6.13

million TEU.

Additionally, we want to correct for the CMA CGM vessels in joint services AE3,

AE11, and AE12. On these services, CMA CGM and Maersk both are responsible for

a part of the total capacity. Since we consider the latter services as part of the Maersk

service network, and the demand handled by CMA CGM is not included in the previous

estimations, we have to add more volume. Since the distribution and capacity of Maersk

and CMA vessels on the services is not equal, the amount to be added is based on the

share of the total demand for one TEU capacity unit.

We first divide the total demand (6.13m TEU) by the total capacity of the Maersk

ships (695,126 TEU1) to obtain the share of demand volume for 1 TEU capacity unit.

This yields 8.8145 TEU per TEU capacity unit per year, i.e., on average, 1 TEU capac-

ity unit on a vessel (1 slot) is used by 8.8145 different containers in one year. Then we

determine the share of the CMA vessels on these services by multiplying their capacity

(73,433 TEU1) with the demand volume per TEU capacity unit. As a result, the consid-

ered CMA CGM vessels are expected to handle 647,280 TEU and the final total yearly

demand becomes 6.78 million TEU.

Now that we have determined the total demand to allocate on the trade lane, we can

start distributing the demand over port-port combinations. The port-port combinations

are all possible origin-destination pairs based on the list of ports. Since we want the dis-

tribution to reflect reality, we cannot just randomly assign demand to origin-destination

pairs. Instead, we base our distribution on the throughput of the ports. Since an origin-

destination pair consists of two ports, and the demand assigned to pair A-B differs from

the amount assigned to B-A, we distribute the demand in two steps.

First, we distribute the total trade lane demand over the 58 ports from the list of

1based on Table B.4
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ports, based on the port’s throughput. Now, each port has a different fraction of the

total demand assigned to it. One can think of this ‘port demand’ as one-sided demand,

only representing the origin in an origin-destination pair.

Second, for each port, we distribute its ‘port demand’ over candidate destinations to

obtain full origin-destination pairs. These candidate destinations have to be ports that

satisfy one constraint, the port should lay in another region than the origin port. Note

that this constraint ensures we only serve interregional demand. Technically speaking,

this step comes down to creating a subset of destination ports that satisfies the con-

straint, after which the ‘port demand’ is distributed over the destination candidates in

the subset based on the destination’s port throughput. The result is one of the 58 rows

of the demand matrix. This second step is performed for all 58 ports, to obtain the full

demand matrix.

Whether the port’s throughput yields a correct prediction of the origin-destination

demand can be point of discussion. For example, the throughput of a port also includes

empty container handling. However, as long as the percentage of empty containers as

part of the total throughput is the same at all ports, this is no problem. Another factor

included in port throughput is transhipment moves. One port can have a larger percent-

age of transhipment moves than another, thereby falsely assigning more demand to the

port. Demand between port A and C, that is transhipped in port B, is now also assigned

to port B. As a result, in our distribution of demand, port B would have a greater share

than it deserves. In this way, transhipment moves are integrated in our demand data.

What originally was demand between A-C, will become demand between A-B and B-C.

Nevertheless, we believe the port throughput is the best approximation of reality among

the statistics available.

Page 190 in Appendix B shows the demand between ports for our data set. Aggre-

gating the demand of OD pairs with westbound direction yields 4.88m TEU, equal to

71.97%, and the eastbound direction is responsible for 1.90m TEU, equal to 28.03%.

This indicates a substantial trade imbalance on the Asia-Europe trade lane.

The demand matrix, as well as the distance matrix, is displayed in alphabetical

order. However, we assume that the ports lay in a natural order, such that the complex

traveling salesman problem is avoided. In the digital matrices, the order is shifted to fit

the natural order. The natural order of the list of ports is presented in Table B.7.
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Algorithm 1: Obtaining distances from PortWorld Distance Calculcator

Input: MySQL database thesis with table reqports, consisting of one column portname,
containing the required ports.

Output: Table distances with three columns, from, to, and distance.

1 <?php;
// Set up the MySQL database connection

2 mysql connect(“localhost”, “root”, “”);
3 mysql select db(thesis);

// Create array of ports

4 var $ports = array();
5 var $result = mysql query(“SELECT portname FROM reqports ORDER BY portname ASC”);
6 while $row = mysql fetch object($result) do
7 array push($ports, $row → portname);
8 end

// Generate array with all port-port combinations

9 var $comb = array();
10 for i← 0 to count($arr)-1 do
11 for j ← i + 1 to count($arr) do
12 $comb[count($comb)] = array($arr[i], $arr[j]);
13 end

14 end

15 foreach $comb as $c do
// Generate url to fetch

16 var $a = “?fromport=” . $c[0] .“&port=” . $c[1] .
“&lat=NaN&lng=NaN&bos=true&suez=true&pana=true”;

17 $a = str replace(array(“ ”, “(“, ”)”), array(“%20”, “%28”, “%29”), $a);
18 var $url = “http://www.portworld.com/map/map-route.php” . $a;

// Set up PHP Curl environment for fetching websites

19 $ch = curl init();
20 curl setopt($ch, CURLOPT URL,$url) ; // set url to post to

21 curl setopt($ch, CURLOPT FOLLOWLOCATION, 1) ; // allow redirects

22 curl setopt($ch, CURLOPT RETURNTRANSFER, 1) ; // return in variable

23 curl setopt($ch, CURLOPT HEADER, 0) ; // return no http header

// Fetch url and store distance in database

24 $result = curl exec($ch) ; // execute fetch

25 curl close($ch);
26 $b = json decode($result) ; // convert to PHP variable

27 echo $c[0] . “ −→ ” . $c[1] . “: ” . $b→ totalmiles . “ nautical miles<br/ >”;
28 $result = mysql query(“INSERT INTO distances(‘from’,‘to’,‘distance’) VALUES (‘ “ . $c[0]

. ”’, ‘ “ . $c[1] . ”’, ‘ “ . $b→totalmiles . ”’)”) or die(mysql error());
29 flush();

30 end
31 ?>
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5.2.5 Distances

Finding the distance between ports turned out to be a major challenge. On the inter-

net, several web sites have distance calculators to compute single distances. However,

with 58 ports, we need to retrieve 1653 unique port combinations. Provided that man-

ually performing this task will take some time and probably cause errors, we decided

to come up with an automated solution. After some investigation, we found a distance

calculator website suitable for such a solution, PortWorld Distance Calculcator. Using

a self-constructed PHP script, and our list of ports, we managed to obtain 90% of the

combinations.

The 10% missing values were caused by missing ports and database errors. Some

ports were included in the website’s database, but did not contain any distance values.

These values had to be added manually using different web sites, Distances.com Dis-

tance Calculcator and Sea Rates Distance Calculcator. Among these web sites, different

values for the same pair can be found, due to different methods of distance calculation.

However, the differences are not substantial. For example, for the distance Rotterdam

- Hong Kong, PortWorld Distance Calculcator found 9,668 nm, Distances.com Distance

Calculcator 9,742 nm, and Sea Rates Distance Calculcator 9,684 nm.

The PHP script is presented in pseudo code in Algorithm 1. The result of the PHP

script is a list of port-to-port distances. We assume the westbound and eastbound

directions do not differ in distance. The final distance matrix is presented on page 191

in Appendix B.

5.2.6 Revenues & Costs

A specification of the revenues acquired with transporting containers and the costs in-

curred during this activity are part of our data set. However, since the revenue and cost

variables are easier to adjust than the fleet, demand, and distance variables, we specify

them with the additional model variables in Section 6.2.1.

5.3 Conclusion

In this chapter, we discussed the characteristics of a data set for the routing and schedul-

ing problem in liner shipping. The required characteristics for a suitable data set are

reality and general applicability. In this regard, general applicability refers to the broad

usability of the data set in different problem variants. We reviewed data sets from re-

lated work and presented a new data set. The research subquestion we tried to answer
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is the following:

4. What is an adequate data set to assess the effectiveness of solutions to the problem?

The three example data sets that we discussed did not meet the requirements of reality

and general applicability. They were either not based on reality, or did not contain

enough data to be general applicable. The data set from Alvarez (2009) contained unre-

liable distances and used the GDP to distribute total demand over the ports. Agarwal

& Ergun (2008) used random values for several model variables, thereby not fulfilling

the reality aspect. Yan et al. (2009) used private carrier data and only provided some

information on cost levels.

With the proposed Maersk Asia-Europe data set we strive to meet the requirements

of a suitable data set. It is based on the Maersk Asia-Europe service network during

spring 2010, and contains 58 ports. The data set consists of a demand matrix, distance

matrix, fleet, and revenue and cost information. We used several resources to generate a

representative and complete data set. We believe the MAE data set is adequate to assess

the effectiveness of solutions to the routing and scheduling problem in liner shipping.
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Chapter 6

Experimental design & results

This chapter outlines the design of our benchmark study and reports on the results of the

experiments. In particular, we provide answers to the following research subquestions:

5. Does the more advanced profit-driven sort insertion heuristic contribute more to

the quality of the solutions in the multi-start heuristic than the simple quantity sort

insertion heuristic?

6. What local search operators contribute the most to the objective function?

7. What is the most effective and/or efficient multi-start local search configuration to

solve routing and scheduling problems in liner shipping?

8. Under what circumstances is the use of transhipment hubs effective?

Section 6.1 gives a general introduction to the benchmark study we conducted. Section

6.2 outlines the design and experimental setup, while Section 6.3 presents the results

of the experiments. Finally, Section 6.4 provides an analysis and interpretation of the

results.

6.1 Introduction

In Chapter 4 we introduced the two-phased multi-start local search algorithm for the

routing and scheduling problem in liner shipping. In the first phase, the insertion heuris-

tic, we generate random solution candidates. The majority of the demand is allocated

to those candidates using two sorting methods: Quantity Sort, and PDA Sort. We can

refer to the Quantity Sort method as a basic, straightforward approach. PDA Sort,

however, tries to incorporate a more intelligent view on the demands.
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The second phase is the local search heuristic. In this phase we try to improve solution

candidates by exploring the neighborhood of each candidate in an attempt to find its

local optimum. Here, we use three different local search operators: the route-length

operator, the port-exchange operator, and the transhipment operator which introduces

transhipment to the solutions.

We can combine each local search operator with another, as well as with different

sorting methods. Each combination is valid, as long as we use at least one sorting

method in phase 1, and one local search operator in phase 2. All together, this provides

21 different combinations. When we examine different sequences of the local search

operators (i.e., does it matter in which sequence we apply the local search operators?)

the number of possible combinations is even larger. When we compare the results of

different combinations, this gives us insight into the performance of individual operators.

It will also reveal the best configuration to solve routing and scheduling problems in liner

shipping, using the multi-start local search algorithm.

We introduce a benchmark study that runs and compares all possible combinations

of sorting methods and local search operators. In section 6.2, we outline the design of

this study.

6.2 Experimental Design

The use of benchmark studies to compare algorithms with respect to a certain perfor-

mance measure is an established exercise. A proper framework to conduct such stud-

ies, and different methods to apply statistical test procedures have been introduced by

Hothorn et al. (2005). Benchmark studies are particularly suitable to assess the perfor-

mance of different learning algorithms, such as regression or classification models. For

these type of algorithms one can use resampling methods, such as cross-validation and

bootstrapping, to compare estimates of generalization error among different algorithms.

Although we cannot use resampling due to the nature of our data, we use the basic

framework to conduct a benchmark study. This means we run different implementations

of our algorithm using a single data set, and compare the values of the output variable,

the network profitability.

First, we present the model variables and their settings for this particular benchmark.

Subsequently, we do the same for the algorithmic parameters. After that, we shortly

discuss the data set that is used and elaborate on the implementation of the benchmark

study.
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6.2.1 Model variables

The multi-start local search algorithm is used to solve the routing and scheduling problem

in liner shipping. We need to specify the variables that are related to the economical

problem, such as sailing speed and cost parameters. Although a qualitative assessment

of the algorithm does not depend on the exact setting of these variables, the outcome

will obviously be different when the settings are altered. We provide the variables and

their settings used in this experiment, so that the benchmark study will be verifiable

and reproducible. The settings are chosen to represent reality, even though the details

of some variables, such as revenue, are often difficult to obtain, and have to be estimated

based on the information that is available.

Sailing speed

The sailing speed is defined in knots (nautical miles per hour) and is considered to be

constant in this study. In reality, sailing speed is varied mainly to control fuel consump-

tion. In this area, a fairly recent trend is known as slow steaming, a reduction of the

sailing speed to compensate for fleet overcapacity. Although more realistic, the use of

speed variation actually provides little more insight into the problem and its solution,

while it complicates the algorithmic design. Hence, we use a fixed sailing speed of 20

knots, which seems fair since modern vessels are able to sail up to 30 knots.

Ship capacity

A fleet is usually composed out of different types of ships, each with their own cargo

capacity. Larger ships typically have a lower cost per TEU per mile, although their

capital costs are substantially higher. Therefore, the use of large ships must be justified

by a higher demand. In other words, utilization rate must be healthy to ensure the use

of large ships is economically viable. In algorithms, the use of different ship capacities

is complex, or computationally intensive at the least. One has to solve the problem for

different combinations of ship capacities, each time evaluating the objective function.

To avoid this problem, we use a fixed ship size. We assume a homogeneous, un-

restricted fleet of vessels, with a capacity of 12,000 TEU. We choose this rather large

capacity because it seems to fit the recent trend for ultra-large container ships. Also,

we consider inter-regional demand only, which (at least on the Asia-Europe trade lane)

involves large demands.
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Capital and operational costs

Owning and operating a fleet incurs capital and operational costs. Capital costs depend

on the size and capacity of the ship. Operational costs are related to a ship’s size as well,

because they typically involve maintenance, insurance and wages. Therefore, operational

costs are sometimes expressed as a fraction of the capital costs.

The relationship between a ship’s size and its capital costs is non-linear. In Van der

Meer (2011), a function is introduced that provides a relation between a ship’s size c (in

TEU) and the purchase price P (in US dollars):

P = 100, 000c0.75 (6.1)

This relation is based on historical purchasing data, acquired from internet sources

(prices as of 2010). When we use this function to estimate the purchasing costs of a

12,000 TEU vessel, we obtain the amount of $ 115m.

Based on expert estimates at the Port of Rotterdam, Van der Meer (2011) also

suggests that average fleet lifecycles are 10-15 years. We use the mean (12.5 years)

to compute the yearly costs associated with the purchasing price. To account for the

expected return on future cashflows, we have to apply a discount rate using equation

6.2.

C̄ =
P

T∑
t=0

1

(1 + r)t

=
r · P

(1 + r)− ( 1
1+r )T

where C̄ denotes the average costs per year

T denotes the expected average lifecycle of a ship

P denotes the purchasing price of a ship

r denotes the expected interest rate

(6.2)

We assume that the average interest rate is 5%. Using P = $115m, r = 0.05, and

T = 12.5, we obtain the average costs per year, C̄ = 11, 350, 574. Hence, we assume that

the average capital costs per year equal $ 11.35m.

Cullinane et al. (1999) showed that operational costs can roughly be divided into in-

surance costs on the one hand, and wages and other operational costs on the other

hand. Drewry Shipping Consultants (2007) uses a more refined cost breakdown into
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crew, insurance, repairs and maintenance, stores and supplies, and management and

administrative costs. The latter report provides projected operating costs for different

types of ships. In bulk carrier ships, the type that we mainly consider in liner shipping,

one often distinguishes between Panamax and Cape-size ships, referring to the maxi-

mum size of a ship for it to be able to pass the Panama canal. A ship that is too large

to use the Panama canal must sail around Cape of Good Hope or Cape Horn, hence

the name. The type of container ships we consider are Suezmax ships, these are ships

that have an acceptable draught for passing the Suez Canal. These kind of ships usually

have a crew of around 14 persons on board. For this type, Drewry Shipping Consultants

(2007) projects the average operating costs to reach US$ 6,000 per day in 2010. We

assume that a ship generally is operated 365 days a year, so that the operating costs are

$ 2.19m.

Fuel costs

Fuel costs (also known as ‘bunker costs’) are very important because they represent a

large portion of shipping companies’ budgets. Because of heavily fluctuating fuel prices,

liner conferences introduced a so-called ‘bunker adjustment factor’ (BAF) formula. A

shipping company typically charges basic shipping rates, with surplus charges to account

for fuel price fluctuations. While the basic shipping rate is relatively steady and is mostly

influenced by market conditions, the BAF uses monthly updated fuel price indicators. In

this way, ocean freight pricing is more transparent and shipping liners are able to recover

a larger portion of bunker costs from their customers. As liner conferences related to

European trade expired in 2008, Maersk Line introduced its own BAF formula (Maersk

Line BAF 2010).

To model fuel costs in this study, we simply use a fixed sum of $150 per nautical

mile. Although this figure varies not only with the fuel price, but also with the type of

vessel and the sailing speed, it appears to represent most related studies, such as the

ones from Shintani et al. (2007) and Notteboom & Vernimmen (2009).

Port and handling costs

Port costs usually vary among ports, mainly because of competitive reasons. Port costs

also vary with the type of vessel, where ship capacity, length and draught are the main

cost drivers. Because the differences are relatively small compared to the total costs a

shipping company faces, we assume that port costs are fixed. Data from different studies

indicate that average port costs vary between $ 15,000 and $ 30,000 (Shintani et al. 2007,
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Ting & Tzeng 2003). We use a fixed sum of $ 25,000 per entry, regardless of the port

and the type of vessel.

Handling costs are charged by the terminal for (off)loading activities. While each

terminal charges its own fee per container, average fees appear to be in the $150 - $200

range (Shintani et al. 2007, Ting & Tzeng 2003). Therefore, we use a fixed sum of $175

per TEU.

Revenue

The revenues are based on historical freight rate data from Containerisation Interna-

tional, shown in Figure 6.1. The graph indicates the difference in westbound and east-

bound rates, where the westbound (Asia-Europe) rates are much higher, and shows the

rates are quite asymmetric. Note that these freight rates are average rates, based on an

average trip along the Asia-Europe trade lane.

Figure 6.1: Historical freight rates on the Asia-Europe trade lane

We choose the westbound and eastbound rate to correspond to the 10-year average,

i.e., $1,400/TEU westbound, and $700/TEU eastbound. Of course, these rates still have

to be divided by the average distance on the trade lane to obtain the rate per nautical

mile. From our data set, we have calculated the average distance between Asian and

European ports, which turns out to be 8,350 nm. This leads to the conclusion that the

average revenue per nautical mile is $0.1677/nm westbound, and $0.0838/nm eastbound.

We use these rates in our model to represent the revenue.
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Slack time and port delay

Slack time is defined as built-in, extra time to cover for delays on the route, due to for

example weather conditions or delays at ports. Ships may arrive in a port in a certain

time slot, but must often pay a ‘penalty’ when it arrives too late. To avoid this, and to

ensure that the weekly arrivals at each port are maintained, slack time is used. We use

one day slack time for each route, independent of a route’s length or duration.

The time a ship spends in a port actually depends on more factors, like the time of ar-

rival, working-load of the terminal, the number of containers that have to be (off)loaded,

and the number of cranes used for the (off)loading activities. Because these facts are

uncertain and difficult to model, we use a fixed time of 0.5 days per port call.

In Table 6.1 we have summarized all model variables.

6.2.2 Algorithmic parameters

Besides the variables used in the model, there are algorithmic parameters as well. These

parameters do not relate to the economical problem but are used to control the algorith-

mic process. Below, we define the parameters and their settings. Some parameters are

defined as interval, which means that we let the algorithm choose random values within

a certain interval. We do this because it ensures diversity, while we avoid insensible

values (e.g. we avoid cycles with only one port).

Number of service networks

The multi-start local search algorithm works by repeatedly generating service networks

and improving them locally. The number of service networks that have to be generated

is manually set. For each run in our benchmark study, we build 100 service networks.

Number of routes in each network (interval)

Each network is initialized by randomly creating routes. To ensure variability among

the different networks, the number of routes that is created in each network should be

different. Creating a random number of routes each time will certainly ensure diversity,

but we have to draw a random number from a limited set, otherwise we could face either

extremely small or extremely large random numbers.

The interval we choose is rather important because it will affect the performance

of the algorithm, both in terms of efficiency and effectiveness. If the upper bound is
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too high, the algorithm will probably be slow because it has to work through a large

number of routes. However, when the lower bound is chosen too low with respect to

the number of ports in the data set, each network is likely to contain too few routes to

ensure diversity among them.

Diversity in this matter is essential because, ideally, we want each port to appear

regularly in the set of routes. The possibilities of adding ports to a route in a later

stage is rather limited, since the remaining capacities on a route often prevent unlimited

expansion. It is considerably easier to remove unprofitable ports from a route.

All in all, the safest approach is to choose a wide interval, so that networks with both

small and large numbers of routes will be generated. The procedure of the algorithm is

such that, obviously, only the strongest network will survive.

However, because we have the knowledge mentioned above, we choose to fit the

interval to this specific data set. The algorithm will draw a random number of routes

from the uniform distribution [6,15].

Length of a cycle’s string (interval)

Ideally the length of a string should be unbounded, that is, only the theoretical limits

should be applied. In other words, a string can have a length anywhere between 2 and

(2 ∗ p)− 2, where p is the number of ports in the data set. However, for larger data sets,

one can choose to enforce a decreased upper bound, for example just p. This serves two

purposes. On the one hand, it limits computational time because the strings in general

will become shorter. On the other hand, real life examples show that string lengths are

usually rather modest compared to the number of ports in a data set. Although one does

not want to constrain an algorithm too much, modest boundaries won’t be harmful.

Because we use a rather large data set, we choose to enforce boundaries that are

tighter than just the theoretical limits. The interval we use is between 2 and 30, whereas

the theoretical upper bound would otherwise be 114. The final length of a string is

determined by drawing a random number from the uniform distribution [2,30].

Fraction to randomly allocate in phase 1 (interval)

We have outlined the different phases of the multi-start local search algorithm in Chapter

4. In phase 1 of the algorithm, for each network, we generate several routes, and allocate

part of the demand to it in order to ensure diversity. After that, the remainder of the

demand is allocated using the two sorting techniques.

The fraction to be allocated is randomly chosen within a certain interval, because
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Table 6.1: Model variables and algorithmic parameters

Model variables
Sailing speed 20 knots
Ship capacity 12,000 TEU
Capital costs $11,350,000/yr
Operational costs 2,190,000/yr
Fuel costs $150/nm
Port costs $ 25,000/call
Handling costs $175/TEU
Revenue (westboud) $0.1677/nm/TEU
Revenue (eastbound) $0.0838/nm/TEU
Slack time 1 day
Port delay 0.5 days

Algorithmic parameters
Number of service networks 100
Number of routes per network 6-15
Number of ports in a string 2-30
Fraction to randomly allocate 5%-15%

the fraction should not be too large or too small. A small fraction will result in tiny bits

of demand being allocated, which is not reasonable, while a large fraction will interfere

with the sorting techniques.

We choose the fraction to allocate by drawing a random number from the uniform

distribution [5%,15%].

Table 6.1 shows a summary of all algorithmic parameters.

6.2.3 Data set

We use the Maersk Asia-Europe data set that is described in Chapter 5. It consists of

a demand matrix with the yearly demand in TEU between 58 ports, a distance matrix

containing the distances between these ports, a fleet of vessels, and a revenues and costs

specification.

The data set is based on the actual Maersk Asia-Europe network during spring 2010.

However, some estimations had to be made due to a lack of information regarding liner

operations. The total demand on the trade lane is estimated at 6.78 million TEU. The

distances between ports were obtained using online port-to-port distance calculators.

The demand and distance matrix can be found in Appendix B. The actual network
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underlying the data set consists of 9 routes with an average length of 17 ports. To

service these routes, Maersk operates a fleet of 91 vessels with a capacity ranging from

6,251 to 14,770 TEU, with the average capacity being approximately 8,500 TEU. Recall

that we assume an unrestricted fleet of vessels, and as a consequence, do not use the

fleet from the MAE data set. The revenue and cost data from the data set is already

specified in Section 6.2.1.

Since the data set is based on an existing service network, we believe it represents

reality. After we presented the results, we will compare our best network with the

network underlying the data set. This enables us to put the performance of the algorithm

into perspective, and assess the quality of the data set.

6.2.4 Implementation

The benchmark study consists of several simulations with different configurations of

sorting methods and local search operators. These simulations are integrated in a single

batch file, enabling easy collection of data. When running the presented experimental

setup in our batch file, we obtain one large data file containing all simulation cycles.

With the resulting data we can analyze the performance of the algorithm configura-

tions with respect to effectiveness and efficiency. We also obtain the best network of

services according to our algorithm, i.e., the solution with the highest profit from all our

simulations. However, this might not really be the optimal solution.

For mathematical optimization problems in general, the use of heuristic algorithms

does not guarantee finding an optimal solution. More often, only suboptimal solutions

may be found, and to obtain the optimal solution, enumeration algorithms have to be

used. The disadvantage of the exhaustive approaches is that they are extremely time-

consuming. The difference between the solutions found using our multi-start local search

algorithm and the optimal solution is called the optimality gap. The goal is always to

reduce the gap as much as possible. In our case, it is difficult to judge the size of the

optimality gap, since the optimal solution is not available. Obtaining it is practically

impossible, which is a characteristic of a combinatorial optimization problem, like the

one we face here. However, we try to estimate the gap in Section 6.3.3.

The simulation model is implemented in Matlab R2010a and is run on a Intel Core 2

Quad CPU at 2.40 GHz. Matlab is a numerical computation software package that allows

for straightforward implementation of algorithms. It has many ready-to-use functions

available, and we do not need additional libraries. We could have chosen for Java or

C++, but these are less user-friendly and require more sophisticated language-specific
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knowledge. Actually, Matlab itself is written in Java and C++, but will not reach

the performance of these languages. Therefore, the main disadvantage of Matlab is

that it can be slow, depending on which programming constructs are used. Moreover,

Matlab does not have code completion, as can be found in today’s integrated development

environments (IDE). In order to make the algorithm as fast as possible, we tried to use

the most efficient programming constructs throughout the development process. For

example, the use of an object-oriented approach as opposed to large vectors of data

turned out to be much more efficient in Matlab. Besides, the object-oriented approach

made modeling the problem much easier.

6.2.5 Hypotheses

Before we present the results of the benchmark study, we will review the hypotheses.

In other words, what kind of results do we expect? In Section 1.3.1 we discussed the

general hypotheses. Now that we have explained the algorithm, we can focus on our

expectations in more detail.

The first hypothesis concerns the sorting method. The use of sorting methods to

allocate demand to a network can improve the solutions. These methods however should

be based on some rationale. The first method we have designed is quantity based, i.e.

allocation starts with the origin-destination pair that has the largest demand. The sec-

ond method is profit-driven, which means that we assign a three-attribute based score

to each demand to indicate its profitability. The latter sorting method focuses on the

allocation of profitable demands first, so that ship capacity is not ‘wasted’ with demands

that are less profitable. Therefore, we expect that the profit-driven allocation (PDA)

sorting method will perform better.

Hence, we expect that network profits after the insertion heuristic will be higher when

the PDA sorting method is used. After the local search heuristic, which is the second

phase of the algorithm, we expect that the networks with PDA Sort will still perform

better than the networks with Quantity Sort, although a portion of the difference might

be abolished by the local search heuristic.

The second hypothesis is related to the local search operators. We introduced three

operators that try to improve solution candidates by exploring neighboring solutions.

These operators are: the route-length operator which aims at adding new ports to a

route and removing unprofitable ports, the port-exchange operator which tries to move
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ports within a route and between routes, and the transhipment operator, which focuses

on the use of hubs and transhipment of cargo. Each operator contributes in its own

way. The route-length operator is quite straightforward and directly contributes to the

profitability when a port (and thus more demand) is added to a route, or when costs

are saved by removing a port. The other two operators are less straightforward. The

port-exchange operator can yield savings in port costs and fleet costs, but a large por-

tion of this operator is dedicated to increasing capacity. Increased capacity is the aim of

the intra-route part of the operator, while it can also be a side-effect of the inter-route

part. Increased capacity has no direct effect on profitability, but it allows to allocate

additional demand which generates new revenue. Increasing capacity is also the major

goal of the transhipment operator, that first reroutes demand, after which additional

demand can be allocated using transhipment.

Previously, we mentioned that we expect the transhipment operator to perform best,

because transhipment is used in reality and should therefore substantially contribute to

the objective function. However, there are other reasons as well. In Sections 3.2.3 and

6.2.1 we showed that fuel costs are a major cost driver, while all revenues have to come

from the transportation of containers. This implies that a lot of money can be made

when demand allocation is increased while fuel costs remain the same. The only way

to obtain this is by increasing the average ship utilization in a network. When adding

more demand is not feasible due to capacity constraints, one of the methods to increase

utilization is to redistribute demand allocation in a network. Reallocating demand will

cause some parts of the network to gain in capacity, while other parts will loose capacity.

When this can be done such that new demand can be allocated, we increase the average

utilization. This is the idea underlying the transhipment operator. Therefore, we expect

that the transhipment operator will contribute to the objection function the most. After

all, allocating new demand while costs stay more or less the same is the largest increase

in profitability one can obtain.

Finally, we can express our expectations with regards to the final network layouts.

There are a few characteristics that are related to both the data set and the algorithm,

such as the average string length, the number of routes in a network, the fleet size, etc.

When we look at the data set, we see that there are 58 ports. In the original network

of Maersk there are 9 routes with 18 ports on average1. Since we have tried to model

our demand, distance, cost, and revenue parameters close to reality, we expect that the

1The average of 18 ports is based on the number of visits, not the number of unique ports. Ports are
allowed to be visited twice on the full trip.
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final networks will not deviate from the Maersk network very much. Both the number of

routes and the average string length seems feasible. The Maersk fleet on the Asia-Europe

trade lane consists of 91 vessels with an average capacity of 8,500 TEU. Since we use

12,000 TEU vessels, we expect that our fleet will turn out a bit smaller.

6.3 Benchmark Results

In this section we discuss the results of the benchmark study. Two sorting methods and

three local search operators yield 21 different configurations when we do not consider

ordering. Table 6.2 shows the results of these 21 different configurations. We use P and

Q to indicate the PDA Sort and the Quantity Sort method, respectively. Operators 1, 2

and 3 denote the route-length, port-exchange, and transhipment operator, respectively.

Due to its design, we always apply the transhipment operator before the other local

search operators, which explains the fact that operator 3 is always in the first position

of a configuration2.

The results in Table 6.2 show that configuration Q & 1-2 performs best, with a

profit of $4.81 billion. From the results, it also shows that the average profit across

all 100 networks with this configuration is better than most other configurations. Only

when we use the sorting methods P and P/Q, with the same operators 1 and 2, we obtain

similar average profits. In fact, the three configurations where we use the operator com-

bination 1-2 yield the highest profits. This already indicates that both sorting methods

yield similar results, and our hypothesis that PDA Sort would outperform Quantity Sort

seems not to hold.

To see whether there is any difference between Quantity Sort and PDA Sort, we

analyze the network profits and compute the averages of both sorting methods. We do

this both before the local search heuristic and after local search. Table 6.3 shows the

average profits. These profits show that the difference is small, particularly after local

search. For now, it seems save to assume that both sorting methods perform equally. In

Section 6.4 we will perform statistical analysis to test this statement.

2This has to do with the negative performance that results from the first step of the transhipment
operator. When the transhipment operator would be run after an other operator, there is less remaining
demand in the demand matrix to allocate in the second step, in order to cover for the negative per-
formance. Some more explanation regarding this behavior is given in Section 6.3.1. A more detailed
discussion of the transhipment operator implementation is given in Section 7.2

3P denotes PDA Sort, while Q denotes Quantity Sort.
41, 2 and 3 represent the ‘route-length’, ‘port-exchange’, and ‘transhipment’ operator respectively.

91



T
a
b

le
6
.2

:
R

es
u

lt
s

fr
om

th
e

b
en

ch
m

ar
k

si
m

u
la

ti
on

so
rt

lo
ca

l
se

ar
ch

p
ro

fi
t

p
ro

fi
t

#
ro

u
te

s
#

ro
u

te
s

#
p

or
ts

#
p

or
ts

fl
ee

ts
iz

e
fl

ee
ts

iz
e

m
et

h
o
d

3
o
p

er
a
to

r4
(a

ve
ra

g
e)

(b
es

t)
(a

ve
ra

ge
)

(b
es

t)
(a

ve
ra

ge
)

(b
es

t)
(a

ve
ra

ge
)

(b
es

t)

Q
1

$
4.

17
b

n
$
4.

72
b

n
10

.2
8

22
.9

26
.2

87
.8

71
Q

2
$
2.

52
b

n
$
3.

40
b

n
9.

7
10

22
.3

23
.5

83
.2

85
Q

3
$
2.

83
b

n
$
3.

79
b

n
10

.1
8

22
.4

25
.1

87
.5

71
Q

1-
2

$
4.

24
b

n
$
4
.8

1
b

n
10

.0
8

26
.0

27
.6

85
.6

69
Q

3-
1

$
3.

64
b

n
$
4.

28
b

n
9.

7
8

24
.6

29
.0

83
.1

70
Q

3-
2

$
2.

92
b

n
$
3.

63
b

n
10

.1
10

22
.3

22
.3

87
.0

83
Q

3
-1

-2
$
3.

66
b

n
$
4.

36
b

n
9.

6
8

24
.3

28
.3

82
.5

71
P

1
$
4.

14
b

n
$
4.

66
b

n
9.

8
8

26
.0

29
.6

83
.4

73
P

2
$
2.

56
b

n
$
3.

74
b

n
10

.1
14

21
.9

22
.8

85
.7

11
8

P
3

$
2.

83
b

n
$
3.

59
b

n
10

.2
10

22
.0

20
.7

87
.2

86
P

1
-2

$
4.

21
b

n
$
4.

74
b

n
10

.2
8

25
.4

30
.3

86
.4

72
P

3
-1

$
3.

60
b

n
$
4.

35
b

n
10

.1
7

24
.0

29
.0

86
.1

64
P

3
-2

$
2.

88
b

n
$
3.

56
b

n
9.

7
9

22
.2

23
.1

83
.8

78
P

3-
1-

2
$
3.

64
b

n
$
4.

29
b

n
9.

9
8

24
.0

29
.0

84
.1

74
P

/
Q

1
$
4.

17
b

n
$
4.

67
b

n
10

.2
7

26
.0

28
.9

87
.0

61
P

/
Q

2
$
2.

58
b

n
$
3.

63
b

n
9.

9
11

22
.0

23
.6

84
.6

94
P

/
Q

3
$
2.

89
b

n
$
3.

69
b

n
10

.0
7

22
.4

23
.0

86
.3

60
P

/
Q

1-
2

$
4.

24
b

n
$
4.

74
b

n
9.

8
8

26
.0

30
.4

84
.3

69
P

/
Q

3-
1

$
3.

56
b

n
$
4.

27
b

n
10

.0
8

23
.9

28
.5

84
.5

71
P

/
Q

3-
2

$
2.

92
b

n
$
3.

81
b

n
9.

7
7

22
.4

21
.9

83
.7

59
P

/
Q

3
-1

-2
$
3.

50
b

n
$
4.

34
b

n
10

.6
8

23
.5

27
.1

90
.3

71

92



Table 6.3: Average profits with different sorting methods

Before local search After local search

Quantity Sort $2.45 billion $3.40 billion
PDA Sort $2.55 billion $3.42 billion

Table 6.4: Average improvement compared to phase I

Configuration
Route-length Port-exchange Transhipment

operator operator operator

1 75.9% - -
2 - 3.0% -
3 - - 16.3%
1-2 75.9% 1.2% -
3-1 28.8% - 16.5%
3-2 - 0.4% 17.5%
3-1-2 28.2% 0.5% 17.0%
Average 52.2% 1.3% 16.9%

We are also interested in the performance of the local search heuristic. Therefore,

we provide the individual and combined performances of each operator in Table 6.4.

We aggregated the sorting methods because they hardly affect the performance of the

operators, so the figures in the table are averaged across the three sorting method com-

binations. The last row represents the average increase of each operator, regardless of

the configuration it was used in.

The 21 different combinations are the result of combining sorting methods and local

search operators without considering ordering. Of course it is interesting to know if

the sequence would affect the performance. However, if we add this relaxation to the

complete benchmark, the number of possible combinations inflates to 60! Running a

simulation of 60 combinations is computationally very intensive, so we chose to examine

the impact of the sequence for one configuration only. For configuration P/Q & 3-1-2

we have run all different sequences of the local search operators, yielding 6 combinations

in total. The results are presented in Table 6.5.

These results clearly indicate that the difference between alternative sequences is

limited. Average profits are slightly lower when the transhipment operator is applied

first, however, the sequence of operator 1 and 2 does not appear to affect the performance.

Figure 6.2 shows the profit distribution of all 2,100 networks (21 configurations,

100 networks each). The histogram indicates that there is a large spread between the

networks. This is caused by the randomized multi-start heuristic, which sometimes gen-
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Figure 6.2: Profit distribution across all 2,100 networks

erates very poor networks that cannot be improved enough by the local search heuristic.

In Table 6.6, the average execution times for the different implementations of the

two phases are presented. These numbers are based on the time needed to run the

full phase, with the specified implementation, for 1 network. Note that here we do not

consider multiple local search operators in phase 2. As a result, these numbers can be

interpreted as the average time each operator would need when it is run in a configu-

ration with another operator. However, in some cases the combined execution time is

lower, as there is less to improve when another local search operator already improved

the solution. Recall that these results are obtained using Matlab R2010a with a Intel

Core 2 Quad CPU at 2.40 GHz.

Table 6.5: Various operator sequences for the PQ & 1-2-3 configuration

Sequence Profit (average) Profit (best)

1-2-3 $3.77 billion $4.36 billion
1-3-2 $3.83 billion $4.47 billion
2-1-3 $3.71 billion $4.38 billion
2-3-1 $3.68 billion $4.33 billion
3-1-2 $3.50 billion $4.34 billion
3-2-1 $3.55 billion $4.24 billion
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Table 6.6: Average execution times of multi-start local search phases per network

Execution time

Phase 1: Generating initial solutions
Quantity sort 11.14s
PDA sort 11.54s

Phase 2: Local search optimization
Route-length operator 17.82s
Port-exchange operator 8.30s
Transhipment operator 121.90s

For the first phase of the multi-start local search algorithm, we find that Quantity sort

is slightly more efficient than PDA sort when it comes to execution time. This difference

can be explained by the functioning of both sorting methods. The Quantity sort method

sorts demands by their quantity, followed by a sorting of the feasible routes on remaining

capacity. The PDA sort method does not sort the demands, but uses a more complex

three-attribute based scoring system to sort the feasible routes. Still, the difference in

execution time is very small since both methods spend most time on the other parts

of phase 1, namely creating the routes and allocating the demand. Therefore, we can

conclude that the real difference in execution time between the two sorting methods is

negligible.

For the second phase, we find that the port-exchange operator is the most efficient.

Perhaps this is related to its weak performance, which could mean it is not able to ex-

change many ports within and between routes, and as a result finishes early. The tran-

shipment operator needs a lot of time compared to the other operators, since rerouting

demands using transhipment yields much more route possibilities than the direct path

approach of the route-length and port-exchange operator. Although the transhipment

operator does not change the network, this does not compensate for the extra time

needed to (re)allocate demands. Due to its high execution time, the transhipment oper-

ator might limit the number of networks to build when the algorithm is used within time

constraints. The route-length operator has a reasonable execution time, especially when

comparing its effectiveness with the other operators. It yields the most improvement

per second execution time that is spent.

The execution times provided in Table 6.6 give an indication of the time needed to run

a full algorithm configuration. For example, the multi-start local search algorithm Q &

1-2 configuration takes around 35 seconds to complete for one network. This comes down

to approximately one hour when generating 100 networks. Based on this information,
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the Q & 2, P & 2, and P/Q & 2 configurations are the most efficient algorithms, all

finishing within 20 seconds. In comparison with the most efficient networks, the most

effective network (Q & 1-2) takes about 80% more time5, but is approximately 68% more

effective6.

6.3.1 Interpretation

In Table 6.4 we can see that the route-length operator obtains around 75% profit increase

when this operator is applied on its own, and it also does so when applied as first operator

in a combination. Compared to the port-exchange and transhipment operator, the route-

length operator performs best. Its success can be explained by its highly influential

network adjustments and its profit-minded implementation. With respect to the other

two operators, the route-length operator greatly influences the service network. Where

the port-exchange operator only exchanges ports, the route-length operator actually

adds and removes ports. This really changes the number of occurrences of a port in

the service network, and thereby has far more influence on the final solution. The

profit-driven approach that is used when making add-remove decisions makes sure the

adjustments are only executed when the result yields a more profitable (or effective)

network.

Whenever the route-length operator is run after the transhipment operator, its per-

formance is substantially lower. Although the transhipment operator yields neat results

of 16-17% profit increase, the combined performance of both operators is worse than the

route-length operator alone. This is a result from the difficult cooperation between the

two operators. The transhipment operator can allocate demand pairs for which no direct

path exist, but that can be connected with the use of a transhipment hub. Transhipment

paths are allocated over two routes, the origin-hub path is allocated in the first route,

and the hub-destination path is allocated in the second route. When a network contains

a large number of transhipments, it is difficult for the route-length operator to perform

its task.

The route-length operator checks for each port in a route whether it is incurring

more costs than revenue. Whenever this is the case, the port and its cargo allocations

are removed from the route. However, the cargo allocations of that port might just

contain a number of transhipment paths. It might be the origin, hub, or destination

5Based on an execution time of 19.44s for the Q & 2 configuration, and 35s for the Q & 1-2 configu-
ration

6Based on an average profit of $2.52b for the Q & 2 configuration, and $4.24b for the Q & 1-2
configuration
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of several transhipment paths that is removed. In this case, due to the removal of the

transhipped cargo in one route, the demand allocations in the other routes are removed

as well. After the route-length operator has removed ports, it tries to add ports based

on the unfulfilled demand. However, the cargo that before was satisfied by transhipment

is now more difficult to reallocate. It might just happen that very little of this demand

gets allocated, yielding a substantial lower revenue than expected based on its single

performance.

From Table 6.4, it also shows that the port-exchange operator has the worst per-

formance of the three operators. It only produces around 1% profit increase. However,

when applied after the route-length operator, its 1.2% profit increase is still better than

no increase at all. The figures in Table 6.4 support the conclusion that the combination

of operator 1 and 2 performs best.

The weak results of the port-exchange operator can be explained by carefully looking

at the underlying ideas. On itself, exchanging ports within a route or between routes

does not yield any financial advantages, since the amount of demand that is allocated

remains the same. The only advantage is additional space on the ships, as a result of the

port exchange and new paths for the demand pairs. After the exchange, revenue should

be made by the allocation of new demand. However, a successful allocation depends

on the remaining capacity on the ship. This is often a bottleneck during the allocation

process. The results indicate that the additional space gathered was not enough to

allocate all new demand, or there just was not so much demand to allocate.

Recall that in the final stages of creating the initial solution, as much demand as

possible was allocated to the network. In order to successfully allocate a demand pair,

a direct path between origin and destination is needed. After exchanging some ports,

the number of new origin-destination direct paths is limited, especially when considering

that our total service network consists of 58 ports. This is different for the transhipment

operator, that is not bounded to direct paths, yielding more new allocation possibilities.

Furthermore, a successful allocation needs enough space on its depicted path. Together,

these two components keep the overall profit increase of the operator rather limited.

From reality perspective, one would expect that the introduction of transhipment

would boost the profit of a network. Therefore, in our hypothesis we stated that the

transhipment operator would outperform the other two operators. However, from the

results it shows that the transhipment operator does not perform that good, especially

in comparison with the route-length operator. In fact, the addition of the transhipment
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operator to another operator or a combination of the other two operators lowers the

average profit. This can be explained by focusing on the two steps of the operator.

In the first step, the operator reallocates existing demand using transhipment paths

whenever a shorter path over two routes can be reached. In this case, no new demands are

allocated in the network, yielding a profit gain of 0%. The only gain is some extra space

in the remaining capacities. However, we do incur extra handling cost for transhipping

the demand from one route to another. As a consequence, this step of the transhipment

operator yields a negative performance.

In the second step, the operator tries to allocate leftovers from the demand matrix.

This is demand that could not be allocated because there was no direct path between

origin and destination or there was not enough space. Using transhipment, the origin

and destination are connected via a hub, yielding more path possibilities. The gain from

this action is the extra demand that can be allocated, but the new allocations also incur

handling costs. Overall, this part does yield a positive performance.

From the results it seems that the gain in the second step is rather moderate and,

although it can compensate for the negative performance of the first step, it does not

yield the desired increase. This can have the following reasons. It might be the case

that there is not much demand left in the demand matrix to allocate. Another reason is

that there is not enough space in the remaining capacities of the routes to successfully

tranship demand. However, the most likely reason can be found in the chosen imple-

mentation of transhipment. Maybe too much demand is rerouted, incurring additional

handling cost, while the space that is gained is not used for new allocations. Perhaps

the current implementation of the transhipment operator is focused too much on the

demand allocation, trying to increase revenue, while it neglects minimizing the cost side.

The profits might have been higher when costs were cut by removing ports from a route

while transhipping its demand to other routes. For a more detailed discussion of the

transhipment operator implementation and its performance, we refer to Section 7.2.

6.3.2 Best network

In this section, we will present and discuss some detailed statistics of our best network.

This gives us an idea how the network looks like. Additionally, we compare the network

with the original Maersk service network that was used to construct the data set. In

Table 6.7 we provide the details of the overall best network, which is the network with

the Q & 1-2 configuration. From these figures, we can make the following observations.
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Table 6.7: Detailed results of the best network (Q & 1-2 config.)

Config. execution time (sec) 3,813
Profit $4.81 billion
Demand fulfilled (TEU) 6,567,376 TEU
Demand fulfilled (%) 96.9%
Number of routes 8
Fleet size 69 vessels
Avg. ports per route 27.6
Distance traveled (nm) 222,842 nm
Number of paths 1641
Total revenue $7.57 billion
Total costs $2.76 billion
Avg. utilization per route 59.8%
Fully used legs (total) 3 (221)
OD pairs covered (total) 1641 (1934)

First, we see that the demand fulfilled is almost 100%. Although that is a very high

score, it leaves us with the question: why is it not 100%? It could be that there is

insufficient capacity to transport the remainder, or it may be that the last few demands

are not profitable to fulfill. In the last row of the table we can see that not all OD pairs

are covered. About 15% of the available OD pairs is not covered at all. It might be the

case that there are no direct paths between the origin and destination of the remaining

demand pairs. When we calculate the demand corresponding to those uncovered OD

pairs, we find that the demand is 190,329 TEU, which is 2.8% of the total demand. We

can already sense that the demands of the uncovered OD pairs are quite small, because

those 15% of the OD pairs make up for only 2.8% demand. Anyway, this leads to the

conclusion that the lack of direct paths is responsible for most of the unallocated de-

mand. The other 0.3% of the unallocated demand is probably not fulfilled because of

capacity constraints and unprofitable amounts of demand between OD pairs.

Second, we observe that the utilization rate is almost 60%, this seems to be rather low.

However, recall that there is a substantial trade imbalance between the eastbound and

westbound direction on the Asia-Europe trade lane. More specifically, the westbound

direction is responsible for 71.97% of the total demand, and the eastbound direction for

the remaining 28.03%. With this information, we are able to compute the maximum

attainable average utilization rate on the trade lane, which equals (71.97 + 28.03)/(2

* 71.97) = 69.47%. Given this value, our average utilization per route of 59.8% is not
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even that bad.

Still, the utilization rate implies that we could use smaller ships than the 12,000 TEU

capacity ships that we are currently using. However, when taking a closer look at the

utilization on each route, we find that only one of the eight routes has an over-capacity

of more than 1,000 TEU. On this route we could actually use a 8,000 TEU ship. All

other routes have at least one or more legs that require nearly full capacity. This leads

to the discussion: what ship size would be optimal to use?

A full study on optimal ship size is beyond the scope of this study, however, we did

some research. In an additional experiment, we used a ship capacity of 8,000 TEU, which

is about the average ship size that Maersk uses on the Asia-Europe trade lane. We tried

to run a simulation of 100 networks using the Q & 1-2 configuration, with the smaller

ship size. In Section 7.3 we provide the results of this experiment. It turned out that

the overall performance is worse. The best network has a profit that is approximately

6% lower. Also, the utilization rate is significantly lower. This leads to the conclusion

that smaller ship sizes do not guarantee higher utilization, let alone higher profitability.

In the same additional experiment, we also tested a mixed fleet. By removing car-

goes we optimized the ship size per route, leading to a fleet with different ship sizes. In

contrast to the fixed ship size of 8,000 TEU, this approach did yield profitable results,

and a new best solution was found. The average utilization rate across 100 networks

increased from 45.4% to 59.6% after introducing a mixed fleet. An extensive description

of this additional experiment is given in Section 7.3.

Third, when we focus on the network structure, we see that the best network con-

sists of 8 different routes. This corresponds more or less to the original Maersk data

set, which has 9 routes. In Appendix C we provide an overview of all routes and port

occurrences in our network. When we compare these routes with the original Maersk

routes from Appendix B, we can see that our routes, on average, are longer. The average

route length in the original Maersk network was 16 ports, against 27.6 for our network.

This can have the following reasons.

For the first reason, recall from Chapter 4 that the route-length operator is the only

operator influencing the number of ports in a route. In our algorithmic parameters, we

allowed a maximum string length of 30. However, this boundary only applies for the

network generated by the randomized initialization phase. The route-length local search

operator can extend a route even further outside this boundary. Maybe the difference

in average route length could have been limited by lowering the boundary of 30 ports.

Another reason that may play an even more important role regarding the high string
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length is the lack of transhipment. Since our best network does not incorporate tran-

shipment, all demand pairs have to be satisfied by direct paths between origin and

destination. This means that the origin and destination of a demand pair should occur

in the same route, in order to allocate its demand. Suppose we have a network and

some remaining demand pairs to be allocated, of which no direct paths exists in the cur-

rent network. When we apply the (inter)port-exchange operator, ports are exchanged

between routes, and new direct path possibilities to satisfy our demand pairs might be

created. However, the exchange of ports also removes already allocated demands. The

only way to satisfy additional demand while keeping the existing demand allocations, is

to use the route-length operator. As a result, ports are added to the routes as long as

the demand that can be allocated is enough to cover for the additional costs. In this

case, it seems that it was profitable to extend the routes with quite some ports, in order

to obtain the additional demand allocations.

Fourth, the fleet of our network is smaller than the original Maersk fleet from the

data set. Our network needs 69 vessels against 91 vessels for the Maersk network. How-

ever, there are substantial differences in the vessel size used. Maersk operates a fleet

with a capacity ranging from 6,251 to 14,770 TEU, with the average capacity being

approximately 8,500 TEU. Recall that we assume an unrestricted fleet of vessels with

a capacity of 12,000 TEU. This makes the specific number of vessels incomparable, but

we can still compare the total capacity used on both networks.

Using Appendix Table B.4 we find that the total capacity on the Maersk network is

768,559 TEU. The total capacity on our network is 69 ∗ 12, 000 = 828,000 TEU. The

difference is not that large, especially when considering our average utilization, which

we expect to be somewhat lower than the average utilization on the ships in the original

Maersk network. Unfortunately, we have no information regarding the utilization in

Maersk’s network.

The financial statistics of the best network yield excellent values, but can be point of

discussion. Particularly the large difference between total revenue and costs, where the

revenue is almost a factor 2.75 larger than the costs, is striking. We obtained a profit

of $4.81b with our best network. When looking at the Maersk 2010 interim report, we

find a total profit of $0.49b in the first half of the year on the Asia-Europe trade lane.

For the full year, a total profit of around $1b can be expected. This means our network

generated almost five times as much profit as the original Maersk service network, even

though the data set was based on that network. This rather large deviation can have
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several causes.

First, the revenue of the Maersk network should be corrected for the CMA CGM

vessels that operate in a joint operation. The demand that these vessels take care of is

incorporated in the demand matrix, but its revenue is not incorporated in the numbers

from the interim report. The CMA CGM vessels are responsible for 9,5% of the demand

in the demand matrix, such that we can increase the profit of the Maersk network to

$1,095b. Naturally, this increase does not help much, the difference remains substantial.

Second, there might be inaccuracies in the model variables, especially regarding the

revenue and cost variables. The large difference between total revenue and costs for our

best network might indicate unrealistic values for the revenues, the costs, or both. The

revenue variables, split in westbound and eastbound revenue, are determined based on

a historical average, and should be representable. The cost variables might be of more

importance in this respect. Actually, the chosen cost structure might be too limited, and

not take all specific costs into account that Maersk does. For example, our study does

not incorporate overhead costs, only the costs directly following from the operation of

the liner ship. Furthermore, for the fuel cost, we based our estimation on other studies.

Since the fuel price is very volatile, the fuel costs might be estimated too low. The profit

of a network is very sensitive to its revenue and cost data, such that a small deviation

from reality can have large influence on its value.

Figure 6.3 represents one of the routes in our best network. The figure shows the

loading and offloading activities at each port, as well as the ship utilization between port

calls. The utilization rates clearly show the problem that shippers face in real life. On

some parts of the route, almost full capacity is reached, while utilization drops below

40% on other parts of the routes. The difference between the eastbound and westbound

direction becomes very clear when looking at the sample route. The turning ports in

this route are Kwangyang and Gdansk. Note that the vessels load more cargo in Asia

than they offload, and that the vessels offload more in Europe than they load. This

indicates the trade imbalance7 on the Asia-Europe trade lane. In line with the loading

and offloading movements goes the utilization of the ships. The utilization is at its best

(95.1%) when leaving Asia.

7Westbound demand is responsible for 71.97% of the total demand.
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Figure 6.3: Sample route of the best network
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6.3.3 Optimality & Upper bound

In the previous section we provided a comparison of our best network with the original

Maersk service network that the data set is based on. We have seen that the profit from

our best network is more than four times the actual profit of the Maersk network. We

tried to justify this difference, but it is clear that our assumptions and variable settings

do not perfectly match the ones from Maersk. As a result, it is difficult to make the

comparison with the original Maersk profit. However, there is another way to place the

performance of our algorithm into perspective, namely by comparing our best profit with

the upper bound.

The upper bound is a theoretical bound of the highest possible profit that can be

obtained, based on the particular assumptions we made and the variable settings used.

Note that this differs from the optimal solution, since the upper bound is no actual

solution, it is merely an indication of the maximum attainable profit given the variable

settings. In our case, the upper bound does not even create a service network neither is

it based on one. The upper bound profit is the result of fulfilling all demand, and only

incurring the costs that are directly related to satisfying this demand. In general, the

optimal solution will not be able to reach the profit of the upper bound.

The upper bound is computed in the following way. We use exactly the same model

variable settings as presented in Section 6.2.1, apart from the slack time, which is set to

zero. The rationale behind this decision is that the upper bound does not use a network,

such that slack does not occur. Furthermore, recall that the upper bound does not as-

sume a weekly service. In order to obtain the upper bound profit we need to compute the

maximum attainable revenue, based on transporting all demands in the demand matrix,

and the accompanying costs.

We walk through the demand matrix, and for each demand pair we compute the

revenue and its costs. The revenue follows from multiplying the OD demand by the

shipping rate, either eastbound or westbound, and the distance in nautical miles. Since

we are computing the upper bound, we want minimum costs for transporting the de-

mands. To that end, we compute the number of ships needed for transporting the OD

demand by dividing the yearly OD demand by the vessel capacity (12,000 TEU) while

assuming 100% utilization. We allow a non-integer number of ships, such that costs are

only assigned to the ship capacity that was actually used. For example, if the cargo

between port A and B is 3,600 TEU, we can multiply all costs, except for the handling
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cost, with 30%8. In addition, we compute the number of days needed for cruising from

origin to destination, such that the yearly capital and operational costs can also be dis-

counted to the number of days the ship was actually used for the specific demand pair.

In this way, we compute the total cost of each demand pair, consisting of capital and

operational costs, fuel costs, port costs, and handling costs. Now that we calculated the

total revenue and the total costs, one might think we are able to compute the upper

bound profit.

However, we still have to cover for the trade imbalance between the eastbound and

westbound direction of the Asia-Europe trade lane. Up to this point, we considered

origin-destination pairs separately, that is, we did not consider A-B and B-A at the

same time. In order to cover for the trade imbalance between A-B and B-A we have

to add additional costs, since the number of ships needed, based on the 12,000 TEU

ship size, on the east- and westbound directions differ. Naturally, it makes no sense to

cruise with a different size on the westbound direction as one would on the eastbound

direction. Therefore, we have to compute the costs of the imbalance, and its resulting

empty slots, for each full demand pair (e.g., A-B and B-A). Again we walk through the

demand matrix, but now we consider the full demand pair at once. For each full demand

pair, we compute the trade imbalance. Using this value, we again compute the fraction

of the 12,000 TEU ship that we need to satisfy this imbalance. Then, we compute the

additional capital and operational costs, fuel costs, and port costs, in a way analogous

to the cost calculation above. Note that there are no additional handling costs, since the

costs for handling the containers are already taken into account in the previous calcu-

lation. Now that we have computed the total additional costs for all full demand pairs,

we add this number to the total costs that we found in the previous calculation. Finally,

we are able to determine the upper bound profit by subtracting the total costs from the

total revenue. The upper bound revenue is $7.79b and the costs are $2.70b, yielding

an upper bound profit of $5.09b. The imbalance costs are responsible for $469m of the

total costs.

An overview of the upper bound and our best solution is given in Table 6.8, to-

gether with the absolute difference between them. The upper bound of 5.09 billion

dollar is approximately 280 million dollar higher than the profit of our best solution.

This places the performance of the multi-start local search algorithm into perspective.

In Section 6.2.4, we argued it is impossible for us to determine the optimality gap, the

difference between our solution and the optimal solution. However, now we do have

8The value of 30% is obtained by computing 3,600/12,000.
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information on the difference between our solution and the upper bound. This relative

gap equals 5.5%9.

Table 6.8: Performance of best network versus upper bound

Best network Upper bound ∆

Profit 4.81b 5.09b 0.28b
Revenue 7.57b 7.79b 0.22b
Costs 2.76b 2.70b -0.06b

From Table 6.8 we can see that the revenue for the upper bound is $0.22b higher

than the revenue from our solution. This difference directly follows from the amount of

demand that is fulfilled. Where the upper bound satisfies all demand, our solution only

satisfies 96.9% of the total demand. Although the revenue of the upper bound is higher,

its costs are still lower than the costs incurred by our solution. Recall that the upper

bound is very efficient with its 100% utilization of ships and does not incur costs that

follow from having a network, like extended cycle duration because of additional slack

time. Also, in the upper bound we calculate the costs for transporting each demand

pair separately, assuming we shuttle between origin and destination, and we discount

the costs to the exact ship volume that is used. Since our best solution does have a

network with weekly services, its utilization is considerably lower, resulting in a larger

number of ships needed to transport the demand. This ultimately results in the $0.06b

difference in costs.

Note again that the upper bound does not resemble the optimal solution. The optimal

solution will actually be lower than the upper bound, which is a theoretical bound based

on perfect circumstances. Given this information, we believe the algorithm performs

well for a heuristic approach.

6.4 Result Analysis

In Section 6.3 we have provided the results of the benchmark study. The raw figures

are not truly meaningful without a proper analysis. In this section, we use some basic

methods to analyze the results and give an interpretation of the outcomes. This enables

us to answer the subquestions that we formulated in the first paragraph of this chapter.

9The relative gap is defined as the absolute gap divided by the upper bound.
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6.4.1 Analysis design

In this section we are eager to answer the research subquestions which relate to the

performance of the algorithm, such as: what local search operators contribute the most

to the objective function?, and what is the most effective and/or efficient multi-start local

search configuration to solve routing and scheduling problems in liner shipping?. In order

to answer these questions, we need to carefully analyze the results we have provided in

Section 6.3. Raw figures are not conclusive as to what method performs better than

the other, unless we perform some sort of statistical analysis. The main reason is that

we use random numbers, so that we cannot control the variation. Because different

configurations are not based on the same set of random numbers, we need to perform a

statistical analysis.

We are also interested in the composition of profitable networks as opposed to less

profitable networks. Can we find a relation between, for example, the number of routes

in a network and its profitability? In the following paragraphs we will explain what

methods we use to analyze the results.

Statistical analysis

The benchmark study provides results for each combination of sorting method and local

search operator. We would like to assess whether one result is significantly better than

the other, or not. To test this, we subject the results to a Student’s t-test. We use the

unpaired t-test, which can test the null hypothesis that the population means related to

two independent, random samples from an approximately normal distribution are equal.

The unpaired t-test, which is formulated in equation 6.3, is defined by Armitage & Berry

(1994).

t =
X̄1 − X̄2√
s2( 1

n1
+ 1

n2
)

s2 =

n1∑
j=1

(xj − x̄1)2 +

n2∑
i=1

(xj − x̄2)2

n1 + n2 − 2

where X̄1 and X̄2 are the samples means, s2 is the combined

sample variance, and n1 and n2 are the samples sizes.

(6.3)

If there is a significant difference in the variances of the two samples, the unpaired
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t-test is not appropriate. We should then use a slightly different formulation of the

unpaired t-test, which is known as Welch’s t-test (Armitage & Berry 1994) and is for-

mulated in equation 6.4.

t =
X̄1 − X̄2

sX̄1−X̄2

sX̄1−X̄2
=

√
s2

1

n1
+
s2

2

n2

where s2
k =

∑nk
j=1(xj − X̄k)

2

nk − 1
, k ∈ {1, 2}

(6.4)

For each pair of samples, we have to assess whether there is a significant difference in

the sample variances. We can test this using a two-sample F-test. In this test, the null

hypothesis H0 assumes that the variances are equal, and the alternative hypothesis H1

assumes that they are different. We calculate the F-ratio by dividing the larger sample

variance by the smaller sample variance. We can compare that F-ratio with Fα/2, which

can be found in the F-distribution table. We would also need the degrees of freedom:

df1 = n1 − 1 and df2 = n2 − 1. We reject H0 if F > Fα/2, in which case we have to use

the Welch’s t-test because the two sample variances are not equal. Otherwise, we can

assume the variances are equal and we use the unpaired t-test. The steps of the F-test

are shown in table 6.9.

Table 6.9: Using the F-test

hypothesis:
H0 : σ1 = σ2

H1 : σ1 6= σ2

test statistic: F =
larger sample variance

smaller sample variance

deg. of freedom:
df1 = n1 − 1
df2 = n2 − 1

rejection: reject H0 if F > Fα/2

Using the basic methods we provided above, we can assess whether one result is

significantly better than the other. This leads to answering the qualitative subquestions

we have formulated earlier.
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Network composition analysis

Besides the performance of the algorithm and its components, we are also interested

in the question: what does a good network look like? We have collected data about

the composition of networks during the benchmark simulation, so that we can analyze

these data and, hopefully, can identify relationships between a network’s composition

and its profitability. This will also help to better understand the algorithm, and avoid

the image of a ‘black box’ where some magical operations produce profitable networks

without any intuition. We might expect that, for example, the number of routes in a

profitable network is higher than those in less profitable ones. Although it is by definition

not the case that a large bunch of routes make a good network, we can say that neither

too few or too many routes are helpful towards a profitable network. The same issue

applies to the average number of ports in a route. We hope that a thorough analysis of

the network’s composition will lead to the answer to these questions. In particular, we

will use data of the following statistics for each network:

1. number of routes

2. average number of ports per route

3. average route utilization (eastbound)

4. average route utilization (westbound)

5. number of operated vessels

6. percentage of containers that is transhipped

7. percentage unallocated containers

We use multiple linear regression (MLR) to identify relationships between these char-

acteristics and the profitability of a network. MLR is a simple and straightforward tech-

nique to examine the linear correlations between independent variables (defined above),

and a single dependent variable, in this case profit. An MLR analysis produces regression

coefficients (β’s) which indicate to what extend the profit is predicted by each of the

independent variables.
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A typical MLR model looks like the formula in equation 6.5.

y = β0 + β1x1 + β2x2 + ...+ βkxk + ε

where y denotes the dependent variable (profit), x1 ... xk

denote the independent variables (features), β0 denotes the

constant term, β1 ... βk denote the regression coefficients,

and ε is the error term.

(6.5)

For each network we can obtain these regression coefficients, which tell us how strong

the relationship is between the characteristics of a network and its profitability. If the

coefficient of one feature is larger than that of another feature, its relationship is stronger.

6.4.2 Analysis

We start with the statistical analysis, which we can apply to different result data. First,

we will test whether the ‘winning’ configuration really performs better than the second-

best configuration, or third-best configuration. Second, we will compare the two sorting

methods and test whether there is a significant difference between Quantity Sort and

PDA Sort, both for the initial profits (before local search) and final profits (after local

search). Third, we will further analyze the impact of operator sequence. We showed the

results for different sequences of all three operators, and will test if the differences are

significant.

Comparing configurations

The configuration Q & 1-2 provided the network with the highest profit. Also, the

average profit of this configuration is the highest, together with the P & 1-2 configuration.

But the average profit of the Q & 1 configuration is very close, only 1.7% lower than the

Q & 1-2 configuration. To test whether the best network performs significantly better

than other configuration, we apply a so-called t-test. Using this test, we compare the

profits of the configurations that have an average profit larger than $4 billion.

First we have to assess whether there is a significant difference in the variances of

the samples, using an F-test. In Section 6.4.1 we explained how to use the F-test. In

Table 6.10 we provide the F-ratios for each combination of configuration.

The table shows the F-ratio for all combination pairs, which is equal to the larger

sample variance divided by the smaller sample variance. We reject the null hypothesis
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Table 6.10: Different configurations: F-ratios

Q & 1 Q & 1-2 P & 1 P & 1-2 P/Q & 1 P/Q & 1-2
Q & 1 1.00 1.01 1.19 1.25 1.31 1.11
Q & 1-2 1.01 1.00 1.18 1.24 1.32 1.10
P & 1 1.19 1.18 1.00 1.05 1.57 1.08
P & 1-2 1.25 1.24 1.05 1.00 1.65 1.13
P/Q & 1 1.31 1.32 1.57 1.65 1.00 1.46
P/Q & 1-2 1.11 1.10 1.08 1.13 1.46 1.00

(two sample variances are equal) when the F-ratio is larger than Fa/2. A common value

for alpha is 0.05, so we will use that value as well. Using df1 = df2 = 100 − 1 = 99,

we obtain F0.025 ≈ 1.52 from the F-distribution table. Hence, for all combinations with

an F-ratio smaller than 1.52 we assume that the variances are equal, otherwise they are

not. In Table 6.10 we marked the values for which the pairs have unequal variances bold.

Now that we know for which configuration pairs the variances are equal and for

which they are not, we can perform the corresponding t-test. Samples with equal vari-

ances are subjected to the unpaired t-test, while the Welch’s t-test is used for samples

with unequal variances.

We start with the first pair: configurations Q & 1 and Q & 1-2. We know that

their variances are equal, so we use the unpaired t-test. First we calculate the combined

sample variance s2:

s2 =

n1∑
j=1

(xj − x̄1)2 +

n2∑
i=1

(xj − x̄2)2

n1 + n2 − 2
=

(5.9524 + 5.9949) · 1018

100 + 100− 2
= 60.3399 · 1015

(6.6)

Next we compute the value for t:

t =
X̄1 − X̄2√
s2( 1

n1
+ 1

n2
)

=
(4.2423− 4.1679) · 109√

60.3399 · 1015 · ( 1
100 + 1

100)
= 2.141 (6.7)

Using the t-value, we can obtain the p-value from the table of values from the Stu-

dent’s t-distribution. The t-value of 2.141 corresponds to a p-value of 0.034. If the

p-value is below the statistical significance threshold α, then the null hypothesis (sample

means are equal) is rejected. We use the common threshold α = 0.05, which leads to the

conclusion that the p-value is smaller than α, and the null hypothesis is rejected. Hence,

the sample means are not equal and we can safely assume that the Q & 1-2 configuration
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Table 6.11: Different configurations: p-values

Q & 1 Q & 1-2 P & 1 P & 1-2 P/Q & 1 P/Q & 1-2
Q & 1 1.000 0.034 0.466 0.305 0.980 0.035
Q & 1-2 0.034 1.000 0.006 0.323 0.025 0.975
P & 1 0.466 0.006 1.000 0.095 0.427 0.007
P & 1-2 0.305 0.323 0.095 1.000 0.288 0.319
P/Q & 1 0.980 0.025 0.427 0.288 1.000 0.027
P/Q & 1-2 0.035 0.975 0.007 0.319 0.027 1.000

performs significantly better than the Q & 1 configuration.

Similarly, we compute the p-values for all other configuration pairs. In Table 6.11

we show these p-values.

Recall that we reject the null hypothesis, the assumption that sample means are

equal, if a p-value is smaller than α = 0.05. Using the table’s values, we can see that the

best configuration, Q & 1-2, performs significantly better than Q & 1, P & 1 and P/Q

& 1, but performs equally as P & 1-2 and P/Q & 1-2. Hence, although their average

profits are close to the best configuration, the configurations where only the route-length

operator is used perform significantly worse than the use of both the route-length and

the port-exchange operator. This supports the general conclusion that the use of the

operators 1 and 2 leads to the best results.

It also seems that the use of the sorting method is not really relevant. This leads us

to the next statistical test: is there a significant difference in the use of different sorting

methods?

Comparing sorting methods

We introduced two different sorting methods that are used to allocate demands to initial

networks. We would like to know whether one method performs better than the other.

The results of the configurations are not conclusive, so we have to analyze the different

results of both sorting methods separately. When we aggregate all 21 configurations

and analyze the profits, we can compute the average profit of networks that have used

the PDA Sort method, and of networks that have used the Quantity Sort method. We

do this both before local search and after local search. The profits before local search

will tell the most about the performance of each sorting method, but of course, we are

mainly interested in the final results (after local search). In Table 6.3 we presented the

average profits. Before local search, Quantity Sort performs on average 4% better, while
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Table 6.12: Two sorting methods: F-ratios

Q before P before Q after P after
local search local search local search local search

Q before
1.00 1.01

local search
P before

1.01 1.00
local search
Q after

1.00 1.01
local search
P after

1.01 1.00
local search

Table 6.13: Different configurations: p-values

Q before P before Q after P after
local search local search local search local search

Q before
1.000 0.000

local search
P before

0.000 1.000
local search
Q after

1.000 0.536
local search
P after

0.536 1.000
local search

the difference is only 0.6% after local search. To assess whether these differences are

significant, we perform a statistical analysis.

Similar to the configuration analysis above, we compute the F-ratios and compare

them with Fα/2. The degrees of freedom (sample sizes minus one) for Quantity Sort

and PDA Sort are 1,068 and 1,030 respectively, so that we obtain F0.025 = 1.11. Table

6.12 shows the F-ratios. All ratios are smaller than 1.11, so that we assume that sample

variances are equal.

Next, we subject the samples to the unpaired t-test. In Table 6.13 we present the

p-values. Recall that p-values lower than α = 0.05 indicate that sample means are not

equal, which leads to the conclusion that one method performs significantly better than

the other.

The p-values indicate that the Quantity Sort method performs significantly better

than the PDA Sort method when we compare them before local search, but after local

search there is no significant difference between the two sorting methods.
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Comparing local search operator sequence

Local search operators can be applied in random order. However, the operators have a

direct effect on the structure of the networks. Ports might be moved, added, removed,

etc. The work of one operator affects other operators. Therefore, we have tested the

performance of different sequences. Three operators can be applied in six different

sequences. We tested these sequences using the PQ sorting method. The average profits

are listed in Table 6.5. From this table, it appears that the operator sequence 1-3-2

performs best, with an average profit of $3.83 billion. But the second best, sequence

1-2-3, has an average profit of $3.77 billion. Is the best sequence significantly better

than the second best sequence? To answer this question, we subject the samples to a

t-test again.

Table 6.14: Different operator sequences for P/Q: F-ratios

1-2-3 1-3-2 2-1-3 2-3-1 3-1-2 3-2-1
1-2-3 1.00 1.02 1.02 1.30 1.17 1.13
1-3-2 1.02 1.00 1.00 1.28 1.19 1.15
2-1-3 1.02 1.00 1.00 1.27 1.19 1.15
2-3-1 1.30 1.28 1.27 1.00 1.52 1.47
3-1-2 1.17 1.19 1.19 1.52 1.00 1.03
3-2-1 1.13 1.14 1.15 1.47 1.03 1.00

First, we calculate the F-ratios and compare them with F0.025 ≈ 1.52. For sample

pairs with an F-ratio smaller than 1.52 we assume that their sample variances are equal

and apply the unpaired t-test. From the F-ratios provided in Table 6.14 we conclude

that most sequences have similar variances, only sequences 3-1-2 and 2-3-1 have an F-

ratio that is around the value of 1.52. Due to rounding, it is not obvious from the table,

but the F-ratios actually exceed F0.025, so that their sample variances are not equal.

Next, we apply the appropriate t-test to each sequence pair. We apply the unpaired

t-test for all pairs, except for the sequence combination 3-1-2 and 2-3-1, for which we

use Welch’s t-test. The corresponding p-values are given in Table 6.15.

We conclude that one sequence performs better than another if their p-value is smaller

than α = 0.05. When we look at average profits, Table 6.5 shows that sequence 1-3-2

performs best, followed by 1-2-3. However, their p-value is 0.263 which is substantially

larger than 0.05. Therefore, we cannot say that there is a significant difference between

the performance of the sequences 1-2-3 and 1-3-2. When we compare the best sequence

(1-3-2) with the third-best sequence (2-1-3), we find a p-value of 0.023. Because that

value is smaller than 0.05 we reject the null-hypothesis that sample means are equal,
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Table 6.15: Different operator sequences for P/Q: p-values

1-2-3 1-3-2 2-1-3 2-3-1 3-1-2 3-2-1
1-2-3 1.000 0.263 0.248 0.045 0.009 0.000
1-3-2 0.263 1.000 0.023 0.001 0.000 0.000
2-1-3 0.248 0.023 1.000 0.426 0.125 0.002
2-3-1 0.045 0.001 0.426 1.000 0.388 0.013
3-1-2 0.009 0.000 0.125 0.388 1.000 0.141
3-2-1 0.000 0.000 0.002 0.013 0.141 1.000

and conclude that the best sequence performs significantly better than the third best.

This shows that, although the differences are small, it is best to run operator 1 first,

before applying the other two operators.

Network Composition Analysis

In this part, we analyze the impact of a network’s composition and properties on its

profitability. To this end, we select a set of features that describes each network and

perform multiple linear regression (MLR). The regression analysis can tell what features

have a strong impact on the profitability of a network. For example, if profitable net-

works tend to have long routes, the MLR analysis will turn up with a high regression

coefficient for that particular feature.

In the first step, we prepare the data for the MLR analysis. This means that we

compose a table with a network on each row, and all the features in the columns. In the

last column we place the profit of each network, which will be the dependent variable.

Before we apply the regression model, we normalize all feature data to obtain values

between zero and one. We do this by using the min-max normalization, which subtracts

the minimum value of a feature from each of its values, and then divides the difference

by the range of the feature. Although this procedure is not necessary for the regression

model itself, it will be easier to interpret the regression coefficients if data is normalized,

because it allows direct comparison between coefficients.

The results of the regression model are provided in Table 6.16. We have listed

all the features, including their minimum, maximum, and mean values. The last column

shows the regression coefficients for the features and the constant term. The regression

analysis also showed that R2 = 95.9%, which indicates that the model has a proper fit.

The regression coefficients lead to some important conclusions regarding the rela-
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Table 6.16: MLR: overview of features and their regression coefficients

min max mean
β

(x 109)

Constant term 4.83
Number of routes 6 14 9.9 -0.99
Average number of ports per route 17.7 33.6 24.2 -0.29
Average route utilization (eastbound) 9.3% 64.5% 28.3% -1.08
Average route utilization (westbound) 21.3% 88.3% 47.7% 1.77
Number of operated vessels 9.4 11.8 10.6 -0.26
Percentage of containers that is transhipped 0 60.0% 22.3% -0.73
Percentage unallocated containers 0.4% 65.0% 14.0% -3.49

tionships between a feature and a network’s profitability.

First, there is a strong negative relationship between the percentage of unallocated

containers and the profitability. In other words, allocation of containers leads to a higher

profit. In itself, this conclusion is rather obvious. However, the coefficients show that

this feature is the most important one. Not the route utilization, nor the size of a net-

work is the most important, but how much of the available demand you can allocate is

crucial. This is also important for future reference, because it indicates that profit will

benefit from improving allocation the most.

Second, we see that both the number of ports per route and the number of op-

erated vessels are of minor relevance compared to the other features. Their coefficients

are rather small, only around -0.25. This might be explained by the fact that both port

costs and vessel costs are not that important. It is far more important what routes are

used, and how much demand can be allocated to them.

Third, the coefficient for the number of transhipped containers is negative. This

is not surprising, given our findings in Section 6.3. In that section, we concluded that

the transhipment operator has a poor performance. Transhipping containers is rather

expensive, and it appears to be difficult to allocate enough extra demand to compensate

for those additional costs. Again, the regression coefficient of β = −0.73 supports the

conclusion that the algorithm performs better without transhipment.

Finally, we find that the westbound route utilization is positively related with profit,

while the eastbound route utilization is negatively related. This appears quite strange,
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because one would expect that a higher utilization, either eastbound or westbound,

would yield a higher profit.

The fact that we encounter an unexpected sign triggers warning signals. When we

think about these two utilization factors more carefully, we feel that there must be

a strong dependency between them. After all, route utilization will be higher when a

network is properly designed, i.e., when the routes and the ports on those routes allow for

a large allocation rate. Also, utilization will be limited when the remaining capacity on

a route is insufficient. This is likely to affect both eastbound and westbound allocation.

To test this theory, we calculate the correlation between the factors. A correlation

coefficient ρ = 1 means perfect dependency. When we calculate the correlation between

the eastbound and westbound utilization, we find that ρ = 0.96. In comparison, most

correlation coefficients between the other features do not exceed ρ = 0.5. This supports

the idea that eastbound and westbound utilization are strongly related.

The problem with correlated variables in a regression model is that they can cause

what is called multicollinearity. This phenomenon occurs when two or more variables are

strongly related. Multicollinearity can affect the coefficients of those related variables

severely. While the model as a whole might be accurate (or fit), one should not trust the

individual coefficients of correlated features. The problem is explained in more detail by

Farrar & Glauber (1967).

Multicollinearity can be solved in multiple ways, one of which is to exclude either

one of the correlated features, or to combine them into one feature. We will suffice with

a short analysis with either one of the features left out. When we leave out eastbound

utilization, the regression coefficient for the westbound utilization becomes β = 0.67.

Vice versa, for eastbound utilization we find that β = 0.22. All other coefficients are

more or less the same as listed in Table 6.16.

These results seem more sound. Despite the difference, at least both coefficients are

positive and within a reasonable range.

6.5 Conclusion

In this chapter, we have presented the results of the multi-start local search algorithm.

We also provided an extensive analysis and interpretation of the results. This enables

us to answer the following research subquestions:

5. Does the more advanced profit-driven sort insertion heuristic contribute more to

the quality of the solutions in the multi-start heuristic than the simple quantity sort

insertion heuristic?
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6. What local search operators contribute the most to the objective function?

7. What is the most effective and/or efficient multi-start local search configuration to

solve routing and scheduling problems in liner shipping?

8. Under what circumstances is the use of transhipment hubs effective?

We found that the algorithm produces very different networks. There is a large spread

in the profitability of the final networks, which is due to the multi-start characteristic

of the algorithm. Some initial networks are constructed too weakly to end up as a good

network, while others start off much better and become strong networks after local search

has been applied.

In general, we see that revenues are rather high compared to the associated costs.

That is mainly caused by the simplified cost structure we have chosen, which inevitably

leaves out some cost variables. This also explains the rather large deviation between our

best profit ($4.81 billion) compared to the expected Maersk 2010 profit ($1.095 billion).

Still, our results indicate that the multi-start local search algorithm is quite capable

of producing sound networks. The network with the highest profit was produced using

the ‘Q & 1-2’ configuration, which denotes the use of the Quantity Sort method, and

local search operators 1 and 2 (route-length, and port-exchange operator respectively).

This configuration is also the one that performs best on average, although the config-

urations ‘P & 1-2’ and ‘P/Q & 1-2’ perform similarly. That the algorithm is capable

of producing sound networks also follows from our comparison with the upper bound

of $5.09 billion, indicating a relative gap of 5.5% with the upper bound. Note that the

optimal solution will have a lower profit than the upper bound, which means that the

gap to the optimal solution will be smaller.

This brings us to answering the first subquestion:

5. Does the more advanced profit-driven sort insertion heuristic contribute more to

the quality of the solutions in the multi-start heuristic than the simple quantity sort

insertion heuristic?

The profit-driven sort method uses a profitability based scoring system to allocate de-

mand. We expected that this method would yield better results. However, statistical

analysis showed that there is no significant difference in network profits between the

profit-driven sort method, and the much more simple quantity-based sort method. On

the other hand, the network profits before the local search phase indicate that Quantity
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Sort yields significantly better results. However, the difference is cancelled out by the

local search phase. The difference in execution time between both sorting methods is

negligible.

While the sort methods did not show different results with respect to profit, we

witnessed completely the opposite with the local search operators. We are now able to

answer the subquestion:

6. What local search operators contribute the most to the objective function?

The route-length operator shows an average improvement of 52% compared to the initial

phase without local search, which indicates that this operator is very effective. When

the operator is used on its own, or in conjunction with the port-exchange operator, its

relative improvement is even higher than 75%. This success can be explained by its

highly influential network adjustments and its profit-minded implementation. The port-

exchange operator has the worst performance, it only improves performance by 1-2%.

It appears that the limited remaining capacity on the routes is the bottleneck for this

operator.

The transhipment operator on its own performs modestly. Its improvement of around

16-17% is not that bad. However, when combined with the route-length operator, the

performance of the latter operator is heavily affected to the extend that their combined

performance is worse than the application of the route-length operator alone. Statistical

analysis confirms that the combined force of the route-length and port-exchange operator

leads to the best results. The transhipment operator performs less than expected, since

it incurs too much costs in the first phase of the operator, by rerouting demands, and

cannot compensate for this extra cost in phase 2, when allocating new demand pairs.

When looking at execution time, the port-exchange operator is the most efficient,

followed by the route-length operator. The transhipment operator is the least efficient,

it needs much more time due to the increased number of path possibilities that arise

when using transhipment.

The preceding conclusions also lead to the answer to the following subquestion:

7. What is the most effective and/or efficient multi-start local search configuration to

solve routing and scheduling problems in liner shipping?

We have seen that the use of the route-length operator in conjunction with the port-

exchange operator leads to the best profits. We have also seen that the ‘Q & 1-2’
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configuration yields the highest profit, both on average and based on the best network

we found. However, statistical analysis showed that this configuration did not perform

significantly better than the ‘P & 1-2’ and ‘P/Q & 1-2’ configurations. Therefore, we

conclude that the configurations in which operators 1 and 2 are used, in that specific

order, leads to the best results. The use of different sorting methods is not relevant.

The Q & 2 configuration is the most efficient, since it needs the least computation time

among all combinations, namely 20 seconds for one network. The ‘Q & 1-2’ configura-

tion needs around 35 seconds to complete, which is still reasonable given its 68% higher

effectiveness.

When we analyze the characteristics of profitable networks, we find that they share

common properties. The most important factor is allocation. Profitable networks all

have a high percentage of allocated containers. The number of routes in a network,

and the route utilization are also relevant factors, although they affect profit less than

allocation. The number of ports per route, and the fleet size have the lowest impact on

profitability.

We also find a negative relation between the number of transhipped containers and

the profit. This confirms the earlier conclusion that the transhipment operator is out-

performed by other operators.

Finally, we will answer the last subquestion:

8. Under what circumstances is the use of transhipment hubs effective?

The definition of transhipment is transferring cargo from one ship to another, with

the ships operating on different services, in order to continue the journey to its final

destination. The transhipment takes place in a hub port, which is a port that is visited

by both services. Introducing transhipment can improve the allocation of demand, and

thereby the profit, in three ways. First, transhipment can reduce the path length from

origin to destination. Second, transhipment can prevent unnecessary movements of

cargo along the turning point. Third, transhipment enables unallocated demand to be

allocated. These improvements result from the increase in path possibilities that comes

with transhipment.

In general, the introduction of transhipment is effective as long as the revenue from

the additional demands that can be transported covers the extra costs that are incurred.

Anyway, in our benchmark study, the improvement of the transhipment operator was

rather disappointing. We gave several explanations for this weak performance. It might
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be the case that the use of transhipment is not effective because there is not much demand

left in the demand matrix to allocate. Another reason is that there is not enough space in

the remaining capacities of the routes to successfully tranship this additional demand.

Another reason is the implementation of the transhipment operator. We choose to

first optimize the remaining capacities, such that the additional demand can better be

allocated in the second step. However, since these steps are not combined, it may happen

that too much demand is rerouted, while the space that is obtained is not used for new

allocations. In this situation, the high rerouting costs cannot be covered. Costs might

have been cut when combining the two steps, only rerouting demand when additional

space is needed. Moreover, a cost-analysis should be part of the operator to make sure

improvement takes place for each move.

We can summarize the circumstances that are necessary for an effective introduction

of transhipment as follows. The additional demand that can be allocated with tranship-

ment should be enough to cover for the costs. Furthermore, there should be enough

remaining capacity on the ships in order to allocate the extra demand.
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Chapter 7

Additional experiments

In this chapter we provide various additional experiments to the benchmark study from

Chapter 6. These experiments will show the performance of the multi-start local search

algorithm from a different angle, and justify some of the choices we have made. In

Section 7.1, we provide a small benchmark of the multi-start local search algorithm

against completely different algorithms, for which existing results are available. Since

we are the first to use the Maersk Asia-Europe data set, it is difficult to place the results

from Chapter 6 into perspective. However, using data from a previous study, we are

able to compare the performance of the multi-start local search algorithm with other

approaches. Section 7.2 compares the performance of different implementations for the

transhipment operator. It provides two alternative implementations, and justifies the

choice for the implementation that was used in the benchmark study. In the experiment,

we will show how a single-hub model performs as opposed to our default multi-hub model.

In Section 7.3, we provide the results of an additional experiment that uses a smaller ship

size. In the benchmark study we used a fixed ship size of 12,000 TEU, but the rather

low utilization rates on the routes made us wonder if a smaller ship size could increase

the performance. We perform a small experiment using a ship size of 8,000 TEU, as well

as an experiment with a mixed fleet, that give an answer to this question. Section 7.4

investigates the performance of our algorithm when varying initialization parameters for

the multi-start phase. For example, it is interesting to know how the number of networks

influences the final performance, such that a tradeoff can be made between effectiveness

and execution time. In Section 7.5 we analyze the impact of re-applying local search

operators. We provide multiple configurations to investigate whether it pays off to use

the same operator more than one time. Finally, Section 7.6 concludes the chapter.
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7.1 A seven-port model of the Asia-Europe trade lane

The Asia-Europe trade lane is a popular subject, given the numerous studies devoted to

different logistical challenges on this trade lane. Its relevance to researchers, the huge

volumes, and the trade imbalance make this trade lane an interesting subject. Although

suitable data sets for liner shipping are difficult to obtain, as we have seen in Chapter

5, some smaller scaled examples exist.

In this experiment, we use a smaller data set and different parameters. Although

these parameters are not anywhere close to reality, we use them to compare the results

of the experiment with earlier results from another study.

In Man (2007), a self-constructed ten-port data set is introduced to test the per-

formance of the heuristic that is proposed. This heuristic is based on the generic set

covering problem, which is adjusted to account for the capacity constraint and the cargo

allocation component involved with liner shipping. The implementation is completed

and presented as the KWM algorithm in Lachner & Boskamp (2010). The latter study

also proposes a new heuristic, the so-called PDA algorithm, which uses profit-driven

criteria to allocate demand. For computational performance reasons, the ten-port data

set was scaled down to a seven-port model and used to asses the performance of both

algorithms.

In this section, we subject the seven-port data set to the multi-start local search

algorithm as presented in Chapter 4, using the same parameter settings as defined in

Lachner & Boskamp (2010). This allows us to compare the results. Before we present

the results on the seven-port model, we will first elaborate on the data set, the model’s

assumptions, and provide the model’s variable settings.

7.1.1 Assumptions and model variables

The seven-port data set originates from the ten-port data set as constructed by Man

(2007). It represents the Asia-Europe trade lane, containing ports from Asia, the Middle

East, and Europe. The distances between ports are based on the Sea Rates Distance

Calculcator (2010). Demand between the ports is estimated by the original author, and

not based on any real world data. The demand of the final seven-port data set is shown

in Table 7.1.

The majority of the assumptions we provided in Chapter 3 are also applied in Lachner

& Boskamp (2010). However, we have to identify the differences and their possible

impact, because the outcome is likely to be biased due to different assumptions.

First of all, revenue is defined differently. The revenue per TEU is defined as a sum
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Table 7.1: Demand matrix of the seven-port model (in 1,000 yearly TEU’s)

O/D Tokyo Shanghai Singapore Jebel Ali Antwerp Rotterdam Hamburg

Tokyo 0 0 87 23 100 223 138
Shanghai 0 0 92 18 151 631 364

Singapore 118 131 0 24 149 358 277
Jebel Ali 42 28 21 0 46 51 39
Antwerp 102 132 72 0 0 0 0

Rotterdam 110 501 155 8 0 0 0
Hamburg 98 280 123 3 0 0 0

per traveled mile, as opposed to our assumption that revenue is calculated based on the

direct distance between the origin and destination of the cargo. It is the multi-start local

search algorithm that will suffer from this inconsistency, because the direct distance can

never be higher than the traveled distance, while the other way around is often the case.

Therefore, we will by average experience lower revenues.

Second, we assume that because of the trade imbalance, revenue is asymmetric, which

means that revenue depends on the direction cargo travels. However, we can overcome

this difference by adjusting our revenue variables such that the two directions yield equal,

symmetric, revenues.

Variable settings can easily be modified, unlike the assumptions that are the founda-

tion of an algorithm. The cost structures of the PDA and KWM algorithm match ours.

However, the variable settings are quite different. We will have to adjust our settings

to avoid any inconsistencies. For example, having a higher or lower revenue per TEU

strongly affects the outcome of an algorithm, in such a way that algorithm outcomes

cannot be compared anymore. In Table 7.2 we provide the original variable settings

from Chapter 6, along with the adjusted settings that are used in this experiment.

7.1.2 Results

In this section we discuss the results from both the KWM and PDA algorithm, as well

as the results from the multi-start local search algorithm.

The report of Lachner & Boskamp (2010) provides a case example, which shows re-

sults for one of the nearly 700 different configurations of their benchmark study. This

case example conveniently shows the output variables so that we can compare results

from all the three algorithms in detail. It should be mentioned that the implementa-

tion of the KWM and PDA Algorithm from Lachner & Boskamp (2010) contained an

inaccuracy in the profit calculation part, which not only results in low profits, but also
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Table 7.2: Adjusted model variable settings

Original settings Adjusted settings

Sailing speed 20 knots 26 knots
Ship capacity 12,000 TEU 10,000 TEU
Capital costs $11,350,000/yr $18,000,000/yr
Operational costs $2,190,000/yr 0
Fuel costs $150/nm $100/nm
Port costs $ 25,000/call $200,000
Handling costs $175/TEU 0
Revenue (westboud) $0.1677/nm/TEU $1.0417/nm/TEU
Revenue (eastbound) $0.0838/nm/TEU $1.0417/nm/TEU
Minimum slack time 1 day 2 days
Port delay 12 hours 20 hours

causes unbalanced performance among the two algorithms. We have fixed the error and

recalculated the results for the single case example. We will use these results below

instead of the original results.

The multi-start local search algorithm uses two sorting methods (Quantity Sort and

PDA Sort), and three local search operators. However, one of the local search operators,

the transhipment operator, contains elements that are not covered in the KWM and PDA

algorithms. These algorithms do not support transhipment, so it would be unfair to use

the transhipment operator. Hence, we have three1 sorting methods and two operators,

of which we include the different sequences, resulting in 12 different configurations.

In Table 7.3 we show the results from all three algorithms. The best configuration

for the multi-start local search algorithm in this case turns out to be ‘P/Q & 2’. which

means: randomly use PDA Sort or Quantity Sort, and use the port-exchange local search

operator.

The results indicate that the profit increases with more than 35% when we use the

multi-start local search algorithm, compared to the KWM and PDA algorithms. That

is mainly because of the increased ship utilization: with roughly the same fleet, we

transport 94.9% of the demand, as opposed to only 63.9% in case of the PDA algorithm.

From Table 7.3 it also appears that the execution time increases dramatically with

the new algorithm. However, the execution time of the PDA algorithm rises exponen-

tially with the number of ports involved, due to the calculation of all possible route

1We also consider a method that chooses randomly between Quantity Sort (Q) and PDA Sort (P)
for each network, denoted by P/Q.
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Table 7.3: Algorithms’ results of the 7-port model

KWM PDA
Multi-start
local search

Execution time (sec) 1.5 97.2 18,318
Profit $66.7 billion $67.8 billion $92.7 billion
Demand fulfilled (TEU) 7,003,300 6,008,000 8,913,393
Demand fulfilled (%) 74.6% 63.9% 94.9%
Number of routes 16 9 10
Fleet size 81 60 66
Avg. ports per route 4 7.2 5.1
Distance traveled (nm) 282,177 197,883 229,785
Number of paths 51 15 60
Total revenue $68.2 billion $68.9 billion $94.6 billion
Total costs $1.49 billion $1.1 billion $1.9 billion
Best configuration - - P/Q & 2
Avg. utilization per route 36% 71% 75%
Fully used legs (total) 5 (36) 27 (56) 23 (51)
OD pairs covered (total) 33 (33) 13 (33) 33 (33)

combinations. The number of possibilities is referred to as the permutation problem,

and is equal to
n∑
k=1

(
n

k

)
, where n denotes the number of ports in the data set. The PDA

algorithm allows problems up to 7 or 8 ports, before the problem becomes computation-

ally too expensive to solve. The multi-start local search algorithm doesn’t suffer from

this problem, so that real life examples with over 60 ports can be easily solved within

a reasonable amount of time. Moreover, we have simulated all twelve different configu-

rations, one for each possible sorting method and local search operator sequence. Once

the best configuration is known, one may use that one for future simulations, so that

the execution time is reduced to roughly 1
9th. In other words, although the execution

time of the example above is relatively high, the multi-start local search algorithm is

very scalable.

Another striking figure is the low costs compared with the total revenue. Each al-

gorithm shows that total costs are only about 2% of the total revenue. Obviously, this

proportion is not very realistic. The main reason for this outcome is due to the high

revenue we have assumed: over $1/nm/TEU. This is almost ten-fold the revenues we find

in real-life data. However, to compare results of the multi-start local search algorithm

with the KWM and PDA algorithm, we have set the cost and revenue variables equal to

the settings used in previous studies. This leads to abnormal cost-revenue proportions.
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Still, the conclusion holds that the multi-start local search algorithm performs over 35%

better than the other two algorithms.

Table 7.4 shows the results of all configurations, as well as the performance of each

local search operator. These results show that operator 2 performs better than operator

1. The difference with the benchmark study in Chapter 6, where we obtained over 50%

profit increase with operator 1 and only 1-2% with operator 2, is striking.

Table 7.4: Multi-start local search algorithm: results of all configurations

Configuration Profit
Profit Increase Increase

(best) average operator 1 operator 2

P & 1 $82.8 bn $69.3 bn 2.2% -
P & 2 $90.8 bn $66.2 bn - 7.0%
P & 1-2 $89.7 bn $68.6 bn 2.6% 4.5%
P & 2-1 $91.9 bn $66.5 bn 3.6% 6.5%
Q & 1 $84.1 bn $74.3 bn 2.3% -
Q & 2 $86.1 bn $58.6 bn - 3.7%
Q & 1-2 $89.9 bn $59.0 bn 6.5% 1.7%
Q & 2-1 $88.4 bn $60.3 bn 4.0% 3.1%
P/Q & 1 $81.7 bn $70.6 bn 2.5% -
P/Q & 2 $92.7 bn $61.2 bn - 4.8%
P/Q & 1-2 $89.4 bn $68.5 bn 3.9% 3.6%
P/Q & 2-1 $91.1 bn $64.8 bn 2.7% 5.0%

In this experiment, we used different cost and revenue parameters. Obviously, this

affects the behaviour of the algorithm. The algorithm, and in particular the operators,

are sensitive to different parameters. One of the reasons operator 1 (the route-length

operator) performs so much worse, can also be found in the parameter settings of the

model. Recall that this operator tries to remove cost-inefficient ports and to add new

ports to allocate additional demand. When we take a look at the cost and revenue pa-

rameters, we see that the revenues are much higher than the original (realistic) settings.

On the other hand, port costs are considerably higher, but that effect is more or less

neutralized by the handling costs which are set to zero. In other words, the revenues are

too high compared to the cost parameters.

When we think of the route-length operator, we expect that it will hardly remove any

ports, because the revenues will most often exceed the costs. Hence, no profit increase

is obtained by removing ports. On the other hand, we would expect that new ports are

added, because it seems quite easy to make money from additional demand, due to the
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high revenue rate. But even with the very modest performance of both operators, we

see that the average percentage of fulfilled demand is almost 95%. That leads to the

conclusion that initial networks, before the local search phase, already have most of the

demand allocated. In other words, it will be difficult for the route-length operator to

find demand that it can allocate by extending a route with an additional port, especially

because it also relies on the remaining capacities on those routes.

We observe that the port-exchange operator, which only moves ports, in this situa-

tion yields a better performance.

Figure 7.1: Profits of P/Q & 2 and Q & 1 configurations compared

The results also show that the winning configuration, P/Q & 2, has a rather low

average profit. This contradicts the results from the benchmark study, where the con-

figuration with the highest average profit also produced the best network. One could

wonder whether the best network, with a profit of $92.7 billion, is some sort of ‘outlier’,

or a coincidence. To answer this question, we take a closer look at the profit distribution

of the configurations. Figure 7.1 shows the boxplot of both the best configuration (P/Q
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& 2), and the configuration with the highest average profit (Q & 1). These boxplots

show the median value as well as the 25th and 75th percentiles, also known as lower

quantile or lower hinge, and upper quantile or upper hinge, respectively. The lower and

upper adjacent values depict the smallest and largest values in the data set, that are

not outliers. Outliers are defined as values that are beyond 1.5 times (upper quantile

- lower quantile). Hence, in the left boxplot, where no outliers are found, the adjacent

values represent the extreme values. On the contrary, the right boxplot contains a lot

of outliers below the lower quantile, so that the lower adjacent value is not equal to the

smallest value in the data set.

The figure shows that the profit distribution of the Q & 1 configuration is much

more narrow compared to the P/Q & 2 configuration. Also, the latter configuration has

more extreme values. We observed that over 15% of the 100 networks has a higher profit

than the best network in the Q & 1 configuration. Hence, the best network cannot be

considered a coincidence. Although many other configurations have higher averages, the

P/Q & 2 configuration produces some high quality solutions, of which one is the best

network overall.

7.2 Different transhipment operator implementations

In Chapter 6 we discussed how to model transhipment in routing and scheduling of

liner shipping operations. Following from that discussion, we distinguish three main

approaches to model transhipment. In this experiment, we will present the other two

approaches, and compare the performance of these three different implementations of the

transhipment operator. Furthermore, we decompose the performance of the operators

into parts in order to understand their effect on the total result. This allows us to

interpret the success of the chosen implementations, and propose additional modeling

concepts. First, we will discuss the differences of the three implementations. Then, we

will present the experimental design. Finally, we report on the results of the experiments

and provide an analysis of the performance.

7.2.1 Transhipment operator implementations

The three approaches differ with respect to the number of ports fulfilling the hub func-

tion, and the number of transhipment moves allowed. We distinguish the single-hub

single-move variant, the multi-hub single-move variant, and the multi-hub multi-move

variant. The approaches should deliver different performances, where the underlying
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idea is that a better solution can be obtained at a higher computational cost.

All approaches consist of the same two steps, only the implementation differs. In

the first step, allocated demand pairs that satisfy certain criteria are rerouted via tran-

shipment hubs. In the second step, demand that could not be allocated before is now

allocated using transhipment. For the details and rationales behind these steps we refer

to Section 4.3.4. Next, we discuss the specifics of each approach.

Single-Hub Single-Move Transhipment

With single-hub single-move transhipment, we consider only one transhipment hub, and

only one transhipment move is allowed. Since only one port in the network fulfils the

hub function, we need to determine the best port for this task. In this implementation

we have chosen to assign the hub status based on the demand matrix. Using the demand

matrix, we calculate each port’s throughput, and the port with the highest throughput

becomes the hub. Then, we run the two steps described above, and only search for tran-

shipment possibilities via the chosen hub, for a single transhipment move. This means

the transhipment path consists out of the origin-hub path and the hub-destination path.

Since we consider only a singe hub and allow a single transhipment move, the execution

time will be the lowest of the three approaches. Furthermore, less transhipment path

possibilities are available, such that we expect this approach to underperform against

the other two approaches.

Multi-Hub Single-Move Transhipment

With multi-hub single-move transhipment, all ports are transhipment hubs, but we only

allow one transhipment move. Assigning all ports the transhipment status may seem

too much, but remember that not all ports have to be used as hub. Having multiple hub

ports is a big advantage over the use of a single hub, since the number of transhipment

possibilities increases considerable. What changes in comparison with the single-hub

single-move variant is that in this case we search for transhipment possibilities via each

(hub) port on the interval [origin,destination]. Again the transhipment path consists

out of the origin-hub path and the hub-destination path. We already have seen the

implementation of this approach in Chapter 4, and this is the one used in the benchmark

study in Chapter 6. The execution time of this approach is in between the execution

time of the single-hub single-move and multi-hub multi-move approach.
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Multi-Hub Multi-Move Transhipment

With multi-hub multi-move transhipment, all ports are transhipment hubs, and we allow

multiple transhipment moves. This is the most complex, but also the most realistic con-

cept. Instead of obtaining a transhipment path consisting of the origin-hub path and the

hub-destination path, like with the previous approaches, we can generate transhipment

paths of any length. For example, we might obtain a transhipment path consisting of

the paths origin-hub1, hub1-hub2, hub2-hub3, and hub3-destination. Allowing multiple

transhipment moves increases the number of transhipment possibilities greatly, such that

we expect to find the best solutions using this approach. However, the disadvantage is

that the computational cost needed to enumerate all these possibilities is much higher.

In order to prevent the execution time to become too large, we limit the number of

transhipment moves to 5. Since the operator prefers the shortest transhipment paths,

and we expect most demand pairs to be connected within 5 transhipments, this will have

almost no influence on the final result.

The precise working of the multi-hub multi-move operator is as follows. It follows the

same steps as the other variants, only the implementation differs. This difference lies in

the way we search for transhipment possibilities. In the case of multi-move transhipment,

we generate all possible transhipment paths between the origin and destination. We iter-

ate through all ports on the interval [origin,destination] and keep a list of transhipment

path candidates.

For example, suppose we have to find multi-move transhipment paths for demand

pair 3-7. Then, we start with port 3 and store the routes that contain this port. Suppose

port 3 occurs on route A and C, then our path candidates list contains 3(A) and 3(C).

Next, we do the same for port 4, but now we can only extend existing path candidates.

Suppose port 4 occurs on route A and B, then our path candidates become 3(C), 3(A)-

4(A), and 3(A)-4(A)-4(B). Note that we can tranship in port 4 from route A to B,

however we can also remain on route A, therefore we end up with these candidates.

Suppose port 5 occurs on route B and C, then our path candidates become 3(C)-5(C),

3(A)-4(A), 3(A)-4(A)-4(B)-5(B). Note that 3(A)-4(A) is unchanged and remains in the

list for future ports. We continue this process until we reach the destination port. Then,

we finalize the path candidates that are able to end at the destination port, and throw

away all others, obtaining the list with all correct transhipment possibilities. Then,

we throw away candidates that do not have enough remaining capacity, and sort the

candidates by length, i.e., the number of ports visited. Recall that we set a limit of 5

transhipment moves, in order to lower execution time. As a result, some path candidates
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may become invalid during the process and are deleted.

7.2.2 Experimental design

In this experiment the objective is to gain insight into the performance of the differ-

ent transhipment operator implementations. With performance we mean effectiveness

(profit), but we are also interested in the efficiency (execution time). In the benchmark

study from Chapter 6 we used the multi-hub single-move transhipment operator, since

we wanted to obtain a good solution in a reasonable amount of time. With this ex-

periment, we can find out whether or not it was the right choice to use that operator

implementation.

The experiment consists of a number of simulations in which we create an initial

service network, on which we run all three transhipment operator variants separately.

The initial solutions are generated using the first phase of the multi-start local search

heuristic that is described in Chapter 4. In order to obtain unbiased results we choose

the ’P / Q’ parameter, indicating a randomly chosen insertion heuristic, i.e., either PDA

sort or Quantity sort. Once the initial solution is obtained, it will be used as starting

point for all three operator variants.

We run 10 of these simulations2, after which we compute the average results. In

addition, we perform two extra runs of 10 simulations, in which either the first or the

second step of the transhipment operator is left out. Recall that the first step focused

on rerouting existing demand, whereas the second step focused on allocating remaining

demand from the Demand matrix. This will give us more insight into the influence of

these steps on the performance.

For this experiment we use the same model variables and algorithmic parameters as

presented in Table 6.1, except for the number of service networks, which is set to 10. We

also use the MAE data set, consisting of 58 ports from the Maersk Asia-Europe network

during spring 2010, of which a more detailed specification is available in Chapter 5.

Following the characteristics of the three implementations, we expect the single-hub

single move variant to perform the worst, and the multi-hub multi-move variant to per-

form the best. The performance of the multi-hub single-move variant will be in between.

Furthermore, we expect the multi-hub multi-move variant to be computationally most

intensive, i.e., least efficient, and the single-hub single-move variant to be the most effi-

cient. We expect the efficiency of the multi-hub single-move variant to be in between.

2The number of 10 is chosen in order to prevent the total running time to become too long. We
acknowledge this is not enough to obtain statistically reliable results, but at least it gives an indication
of the performance variation among the implementations.
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7.2.3 Results

In this section we discuss the results of the experiment, where we compare the perfor-

mance of three different implementations of the transhipment operator. Table 7.5 shows

the results of the main experiment, as well as the experiments in which only one step is

activated.

Table 7.5: Results of the transhipment operator implementations

Initial
SHSM MHSM MHMM

Network

Experiment with both steps
Avg. Profit increase - 8.8% 16.7% 7.3%
Min. Profit increase - 0.0% 1.3% -10.3%
Max. Profit increase - 14.2% 30.9% 29.5%
Avg. Profit $2.639b $2.867b $3.067b $2.805b
Avg. Revenue $5.294b $5.712b $6.315b $6.542b
Avg. Cost $2.654b $2.845b $3.248b $3.737b
Avg. Demand 68.0% 72.7% 81.0% 83.5%
Avg. Demand transhipped - 14.5% 44.9% 48.1%
Avg. Paths transhipment - 492.1 1483.2 2208.2
Avg. Exec. time (sec) - 6.36 107.94 2254.73
Min. Exec. time (sec) - 2.28 61.64 85.63
Max. Exec. time (sec) - 12.06 174.65 16635.73

Experiment without step 2 (Allocate remaining demand)
Avg. Profit increase - -2.84% -12.71% -25.57%
Avg. Profit $2.494b $2.419b $2.174b $1.848b
Avg. Revenue $5.418b $5.418b $5.418b $5.418b
Avg. Cost $2.924b $2.967b $3.244b $3.570b
Avg. Demand 69.53% 69.53% 69.53% 69.53%
Avg. Demand transhipped - 5.30% 37.43% 39.63%
Avg. Exec. time (sec) - 6.43 78.05 2713.37

Experiment without step 1 (Reroute existing demand)
Avg. Profit increase - 14.52% 24.86% 23.26%
Avg. Profit $2.845b $3.239b $3.544b $3.496b
Avg. Revenue $5.916b $6.456b $6.901b $6.976b
Avg. Cost $3.071b $3.217b $3.356b $3.481b
Avg. Demand 75.74% 81.89% 87.77% 88.72%
Avg. Demand transhipped - 7.50% 13.87% 14.85%
Avg. Exec. time (sec) - 5.73 52.27 1258.37
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When considering the main experiment, we notice that the multi-mub single-move

(MHSM) transhipment operator, that we used in Chapter 6, turns out to be the most

effective. It actually performs much better, on average, than the single-hub single-

move (SHSM) and multi-hub multi-move (MHMM) operators. Moreover, it is the only

operator of which the profit increase kept positive over all 10 runs, whereas with the

other two operators we observe no profit increase or a negative increase. The reasons

for this negative performance become more clear later, when looking at the other two

experiments. The MHSM operator has the highest profit of all operators, followed by

the SHSM operator. The MHMM operator, which we expected to perform best, actually

has the least profit, due to the high amount of handling costs that it incurs. It does

yield the most revenue, but it turns out it cannot keep the costs down, resulting in a

overall result that is worse than it is for the other operators.

The average demand percentage that is fulfilled corresponds to the operator charac-

teristics. The SHSM operator can fulfil less demand than the MHSM operator, since it

can create less transhipment possibilities. The same goes for the MHSM operator, which

can fulfil less demand than the MHMM operator. This is also visible from the average

number of transhipment paths.

When looking at the efficiency, the SHSM operator has the lowest execution time

and the MHMM operator has the highest, just as expected. The efficiency of the MHSM

operator is in between, but much closer to the SHSM operator. The distribution of the

execution time for the MHMM operator is very wide. The maximum running time for

the MHMM operator over the 10 runs was 16635 seconds, which comes down to 4.6

hours. This indicates the problem with using this operator in a multi-start approach.

When creating 100 networks, the MHMM operator may cause the total running time of

the multi-start local search algorithm to take weeks.

The results of the other two experiments showed in Table 7.5 give us some insight in

the performance of the steps that each operator consists of. First, we ran an experiment

where step 2, in which we allocate remaining demand, was left out. From this result we

can see that, as we expected in Section 6.3, a negative profit increase is obtained in step

1. This is due to the fact that step 1 only reallocates demand that was already allocated.

The goal of the reallocation process is to gain more space on the ships, in order to al-

locate more demand in step 2. As a result, we gain no revenue, but do incur additional

cost, and the MHMM operator does so more than the other two operators. Second, we

ran an experiment where step 1 was left out. Remarkable is the profit increase for the

MHSM operator, that is slightly higher than the MHMM operator. When looking at the
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revenues and cost, we can see that the MHMM operator does yield the most revenue,

but the additional handling cost incurred are too high to obtain the highest profit.

At this point we are able to judge our decision to use the multi-hub single-move

transhipment operator in Chapters 4 and 6. Based on this experiment, the MHSM oper-

ator turns out to be the most effective, and reasonably efficient. We did not expect the

MHSM operator to perform better than the MHMM operator when it comes to effective-

ness, but the additional costs incurred from the extra handling activities were such high

that it prevented a good overall result. Furthermore, this experiment clearly shows that

too much profit is lost in step 1 of the transhipment operator. Prior to this experiment,

it seemed reasonable to first gain space in the ships, by rerouting demand that unneces-

sarily visits the turning point and could be allocated to shorter paths via transhipment.

Then, step 2 would be better able to allocate demand that could not be allocated to di-

rect paths. However, after running this experiment, we have to conclude that maybe too

much demand is rerouted. It might have been better to only reroute demand where addi-

tional space was needed by combining steps 1 and 2. This would keep the extra handling

cost incurred to a minimum. Moreover, a profit-loss calculation should be incorporated

in the transhipment operator in order to prevent profit decreasing moves. Focusing on

a higher level, it might be better to let the transhipment operator adjust the network,

like the route-length and port-exchange operators do. At the moment, the transhipment

operator only focuses on reallocating demand, whereas changing the network based on

certain demand characteristics may yield better transhipment possibilities. We propose

these improvements for future research.
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7.3 Using smaller sized ships

In Chapter 6 we have seen that, using 12,000 TEU ships, the best network has an average

utilization rate of 59.8%. The average utilization rate for the Q & 1-2 configuration

overall is worse, only 45.4%. In addition, Section 6.4.2 points out that there exists only

a modest positive relationship between the utilization rate and a network’s profit.

We know from reality that the utilization rate is an important issue. We did not

incorporate the problem of empty container repositioning into our model, but it is often

used to boost utilization rate on one hand, and deal with trade imbalances on the other

hand. Still, the fleet that Maersk uses on the Asia-Europe trade lane is composed out of

smaller and larger sized ships, with an average capacity of almost 8,500 TEU. Although

the actual utilization rate is unknown, this leads to the question whether it would be

more profitable to use smaller sized ships.

In the benchmark study from the previous chapter we assumed a fixed ship capacity

of 12,000 TEU. This choice follows the trend of larger container ships on the one hand,

and avoids the computational intensity of mixed ship capacities on the other hand. In

this experiment we examine the impact of a smaller ship size on the profitability.

7.3.1 Using a fixed ship capacity of 8,000 TEU

Using a mixed fleet (i.e., using a fleet with both smaller and larger ships) provides the

flexibility to match the ship size to the demand on a certain route. However, solving the

allocation problem for different ship sizes is computationally very intensive.

In this part of the experiment we change the ship size from 12,000 TEU to 8,000

TEU. Using a fleet with fixed, smaller sized ships, we examine the impact on the prof-

itability for the Q & 1-2 configuration. We are primarily interested in the resulting profit

together with the utilization rate. In other words, will the use of smaller ships result in

higher utilization, and if so, will this be more profitable?

To examine the impact of the use of smaller sized ships, we use the Q & 1-2 con-

figuration. We maintain exactly the same variable and parameter settings as defined in

Chapter 6, except for the ship size. Instead of 12,000 TEU we limit the ship capacity to

8,000 TEU. Then, we build 100 networks using the multi-start local search algorithm.

We compare both the average performance as well as the performance of the best net-

work, and analyze their profitability, utilization rate, and network composition, such as

number of routes and the string length.

We use the following adjusted parameters. The yearly capital costs for a 8,000 TEU
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vessel are equal to $8.35 million. A smaller vessel also consumes less fuel, such that

we assume the fuel costs are reduced to $120/nm. For a more detailed explanation of

these parameter settings, we refer to the next subsection. Smaller ships are less cost-

efficient, which shows from the costs per container per mile. When we consider the best

network of the benchmark study, the details provided in Table 6.7 show that a fleet of

69 vessels together sail 222,842 nm per week. Hence, on average one ship sails 167,939

nm per year. The yearly costs of a 12,000 TEU ship are $11.35m, which corresponds to

$11, 350, 000/167, 939) = $67.58 per nm. When fuel costs ($150) are added, the costs are

equal to $217.58 per nm. Similarly, if we compute the costs for a 8,000 TEU vessel, we

obtain ($8, 350, 000/167, 939) + $120 = $169.72 per nm. When we divide these figures

with the ship capacities, we obtain $0.018 and $0.021 for the 12,000 TEU and 8,000

TEU ship respectively. This confirms that the costs per TEU per mile are higher when

smaller ships are used. In order to compensate for this, a higher utilization rate has to

be obtained.

In Table 7.6 we present the results. To allow for easy comparison, we provide both

the new 8,000 TEU results, and the 12,000 TEU results from Chapter 6. Furthermore,

we provide both the average figures and the figures corresponding to the network with

the best profit.

Table 7.6: Results of the Q & 1-2 configuration using 8,000 TEU ships

8,000 TEU 12,000 TEU

Profit (average) $4.00 billion $4.24 billion
Profit (best) $4.54 billion $4.81 billion
Utilization (average) 72.4% 45.5%
Utilization (best) 69.8% 59.8%
Fleet size (average) 89.2 85.6
Fleet size (best) 103 69
Number of routes (average) 10.5 10.0
Number of routes (best) 12 8
Avg. ports per routes (average) 25.4 26.0
Avg. ports per routes (best) 26 27.6
% unallocated containers (average) 12.6% 5.5%
% unallocated containers (best) 1.8% 3.0%
Total revenue (average) $6.72 billion $7.34 billion
Total revenue (best) $7.65 billion $7.57 billion
Total costs (average) $2.72 billion $3.10 billion
Total costs (best) $3.11 billion $2.76 billion
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The results show that the ship utilization is improved considerably when we use the

smaller 8,000 TEU ships, both on average as well as in the best network. At the same

time, we can see that the fleet has expanded, especially in the best network. There are

103 ships used in the 8,000 TEU case as opposed to the 69 ships in the 12,000 TEU

case, which leads to increased capital costs. Total costs have risen over 12%. Revenues

increased slightly to $7.65 billion, because more containers could be allocated. However,

the rise in revenues cannot compensate for the additional costs. In the best network,

profit has dropped with over 6% to $4.54 billion.

The network composition is more or less the same. The networks consists of slightly

more routes, which are (on average) a bit shorter, but these differences appear to be

rather insignificant.

In summary, the use of smaller ships leads to an expansion of the fleet. The associated

rise in costs is not completely covered by the improved utilization rate and the increased

number of allocated containers. This results in a deterioration of the profit with more

than 6%. We conclude that a fixed ship size of 8,000 TEU performs worse than its 12,000

TEU alternative. Of course, in reality, fleets are usually composed of mixed ship sizes.

For example, the Maersk fleet used in the MAE data set consists of ships with a capacity

between 6,251 TEU and 14,770 TEU. In the second part of this experiment, we try to

optimize individual routes by introducing a mixed fleet.

7.3.2 Optimizing individual routes using a mixed fleet

In this second part of the experiment we apply a more advanced technique. Instead

of using a fixed ship capacity, we analyze each route of a network and determine the

optimal ship size. Hence, we obtain a (heterogeneous) fleet with mixed ship capacities.

This works as follows. Each route has a utilization rate between two ports, which is based

on the use of a 12,000 TEU ship. When the maximum utilization rate on the route is

below 100% we can use a smaller ship, because clearly, the ship is never completely

full. In that case, we lower the ship’s capacity in steps of 1,000 TEU, until it cannot be

lowered any more without exceeding the 100% utilization constraint. However, this is

just the first step, without any difficult computations involved. For example, when we

analyze each of the eight routes in the best network of the Q & 1-2 configuration, we

observe that only one route has a maximum capacity such, that a 8,000 TEU ship can

be used. For the other seven routes we need capacities of more than 11,000 TEU so that

we cannot lower the capacity on those routes. Therefore, we take our technique a level

further.
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The second step is to calculate the trade-off between a smaller capacity and the loss

of cargoes. In other words, we compare the savings that are obtained using smaller ships,

with the loss in revenues when we remove some of the cargoes from a route. This seems

sensible, because utilization rates tend to be very volatile and are high during a small

part of the cycle (e.g., when leaving Asia). The sample route in Figure 6.3 is such an

example. We see that utilization rates are rather low on the major part of the route, but

all of a sudden, between Hong Kong and Jebel Ali the ships are used more than 90%.

When we remove some of the allocated cargo such that the maximum capacity never

exceeds (for example) 75%, we can replace the 12,000 TEU ships that are currently being

used on that route by smaller and cheaper 9,000 TEU ships. However, removing cargo

from a route is costly because we lose revenue. Whether it is also beneficial depends on

the amount of cargo we have to remove and how profitable that cargo was. Sometimes,

we can reallocate (part of) the cargo to other routes. In that case, we reduce the loss in

revenues.

Of course we have to use different cost parameters for each ship size. There are

three cost parameters that vary with the ship size: capital costs, operational costs, and

fuel costs. We chose to keep the operational costs unchanged, because it is difficult to

set the correct values for that parameter. Ships in the 8,000-12,000 TEU region tend

to have comparable operational costs, because they have similar crew sizes. Ships that

are smaller than 8,000 TEU tend to have less costs, but we rather avoid that discussion

and use the same operational costs. Obviously, the capital costs are different as well.

Using equations 6.1 and 6.2, we have calculated the yearly capital costs for each ship

size. Similarly, we calculate the fuel costs for different ship sizes. Fuel consumption is

linearly related with the power of a ship’s engine. According to a report of MAN B&

W Diesel A/S (2008), the specified engine power of a 6,000 TEU ship is 53,800 kW,

while it is approximately 60% more in case of a 12,000 TEU ship. Although there is

not a perfect linear relationship between ship capacity and engine power, for the sake of

simplicity we assume there is, so that we can easily calculate the fuel costs for any ship

size.

Engine power grows with 60% when ship capacity increases from 6,000 to 12,000

TEU. Similarly, fuel costs have to rise 60% as well. We assumed the fuel costs to be

$150/nm when ship capacity is 12,000 TEU. We can calculate the savings in fuel costs

for every 1,000 TEU capacity reduction as follows: $150·(60/160)·(1/6) ≈ $9.50. Hence,

we have to subtract roughly $9.50/nm for every 1,000 TEU of capacity reduction. Table

7.7 shows the yearly capital costs, as well as the fuel consumption we used for the differ-
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Table 7.7: Using mixed ship sizes: costs per capacity

Capacity (TEU) Yearly capital costs Fuel consumption $/nm/1,000 TEU

12,000 $11.35m $150.00/nm $18.13
11,000 $10.6m $141.50/nm $18.51
10,000 $9.87m $131.00/nm $18.98
9,000 $9.12m $121.50/nm $19.53
8,000 $8.35m $112.00/nm $20.21
7,000 $7.55m $102.50/nm $21.07
6,000 $6.73m $93.00/nm $22.18
5,000 $5.87m $83.50/nm $23.69
4,000 $4.97m $74.00/nm $25.90
3,000 $4.00m $64.50/nm $29.44
2,000 $2.95m $55.00/nm $36.28
1,000 $1.76m $45.50/nm $55.98

ent ship sizes. In the third column, we provide the costs per 1,000 TEU per nautical mile.

The technical approach is as follows. Using the steps explained above, we analyze

each route in all 100 networks of the Q & 1-2 configuration. First, we try to reduce the

ship capacity without removing cargo. The resulting profit, which can never be lower

than the original profit with 12,000 TEU capacity, is set as a benchmark.

Next, we find the leg of the cycle where the utilization rate is the highest. The

objective is to reduce that rate, so we obtain the target level of this utilization rate

first. This target is initially equal to the utilization rate of the second-busiest leg, but

we optimize that rate with respect to the full capacity. For example, suppose that we

need a capacity of 11,400 TEU to cope with the busiest leg, and that we need 10,700

TEU for the second-busiest leg. Since we reduce ship capacity in steps of 1,000 TEU,

we will set the capacity at 11,000 TEU, which is feasible because we remove at least 400

TEU from the busiest leg.

Once the target is set, we remove cargo to lower the utilization rate of the busiest

leg. We do this by finding all cargo that passes the leg with the highest utilization rate,

and we sort them according to profitability (i.e., according to distance between origin

and destination). Then, we remove cargo until we reach the target utilization.

In the next step, we try to reallocate the cargo that we just removed to other routes

of the same network. Obviously, unallocated cargo means lost revenue, so reallocation is

much more preferred. Iterating through all other routes, we try to reallocate the cargo.

After removing (and sometimes reallocating) cargo, we obtain a reduced ship capac-

141



ity. We compare the profit of the updated route with the initial route. If the new profit

is higher, we save the modifications and keep the new ship capacity. If not, we do not

save them, but we still proceed with the next step.

So far, we reduced the utilization of the busiest leg, which is the part of the route

with the highest utilization rate. If the reduction was profitable, we saved the changes.

In the next step, we are going to reduce the two busiest legs. Similarly to the previous

steps, we first set the utilization target. We use the utilization of the third-busiest leg as

a basis of this target, and then optimize it just like before. We then remove (and try to

reallocate) cargo such that the utilization of the first and second-busiest leg is reduced

to match the target. We repeat these steps, each time adding one leg, until we reduced

all legs to the level of the one with the lowest utilization rate.

The previous steps form a iterative process. Sometimes, it is not profitable to reduce

capacity, so that the route stays unchanged. Other times we successfully reduce the

capacity, either at an early stage, or after multiple iterations.

In Table 7.8 we provide the results of the experiment with mixed ship sizes. We

clearly observe that a substantial gain in profit is obtained. A new best network is

found, with a profit of $4.97 billion. On average, the profit increase is 8.7%. We also

see that the percentage of unallocated containers has slightly increased, indicating that

around 23,000 TEU of each network cannot be reallocated after removal.

Not surprisingly, the utilization rate increased, from 45.5% to 59.6%. We find that

the average ship capacity across the 100 networks is now around around 8,700 TEU,

instead of 12,000 TEU. This more or less corresponds to the mixed fleet of Maersk,

which has an average capacity of almost 8,500 TEU. In the best network, we now have

an average ship capacity of 7,154 TEU. Out of the eight routes, only one still has a

capacity of 12,000 TEU. The other capacities vary between 3,000 and 11,000 TEU.

In the first part of this experiment, we tried to use smaller, but fixed ship sizes.

This turned out to worsen the performance. In this second part, we used a fairly simple

technique to reduce ship capacities based on lowering maximum capacity. Although a

small part of the cargoes was removed, this approach worked. The average ship capacity

dropped dramatically, from 12,000 TEU to approximately 8,700 TEU. This lead to

savings in both the capital costs and the fuel costs. On average, we gained 8.7% in

profit.

The best network gained a staggering 22.5% profit increase to $4.97 billion. This is

3.4% higher than the performance of the former best network from Chapter 6, which had

a profit of $4.81 billion. The utilization rate of 59.2% is acceptable, given the fact that
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Table 7.8: Result of using mixed ship sizes

Statistic Result

Best network
Profit $4.97 billion
Profit increase 22.5%
Average ship capacity 7,154 TEU
Utilization rate 59.2%

Average across 100 networks
Profit $4.61 billion
Profit increase 8.7%
Average ship capacity 8,721 TEU
% unallocated containers (before) 5.5%
% unallocated containers (after) 5.8%
Utilization rate (before) 45.4%
Utilization rate (after) 59.6%

Execution time 12,398 seconds

the maximum attainable utilization, which we computed in Section 6.3, is only 69.47%

because of the trade imbalance.

The execution time of the algorithm is 12,398 seconds, which is just over 2 minutes

per network. A large portion is dedicated to the reallocation phase. Because many

potential reallocation positions have to be computed, this phase is computationally quite

intensive. Still, considering the results, one should not be reluctant to take the effort.

Recall that we computed the maximum attainable profit in Section 6.3.3. This so-

called upper bound was equal to $5.09 billion. This mixed fleet experiment yields a best

profit of $4.97 billion. That means that the relative gap with the upper bound is only

2.6%. The relative gap with the optimal solution, which incurs more costs because it

represent an operational service network, will be less than 2.6%.

In summary, we see that using a mixed fleet is quite profitable. Using mixed ship sizes

during the allocation phase is computationally very intensive, but as an optimization

phase afterwards it is very effective and much more efficient. In future studies, we would

suggest that the ship size optimization could be an extra (third) phase after the local

search phase.
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7.4 Varying multi-start initializations

In the benchmark study from Chapter 6 we have used specific values for the algorithmic

parameters of the multi-start initialization. These parameters include the number of

service networks to build, the number of routes per network, the number of ports in a

string, and the fraction to randomly allocate. The values of these parameters influence

the initial networks that are generated in the first phase of the multi-start local search

algorithm. It is interesting to get more insight in the performance of various multi-start

initializations. To that end, we present an additional experiment focusing on the number

of service networks to build and the so-called subset selection technique.

Each service network that is generated in the multi-start approach, yields a differ-

ent performance. This diversity of initial solutions is the advantage of the multi-start

approach. When generating a large number of initial solutions that are widely spread

throughout the solution space, we strive to approach the optimal solution. The more

networks we build, the larger the chance of finding a better solution or obtaining the op-

timal solution. However, the more networks we build, the longer the execution time. The

decision for the number of service networks to build is a tradeoff between effectiveness

and efficiency.

In this experiment, we compare three different values for the number of service net-

works in a Q & 1-2 configuration. From the benchmark study, we have a case with 100

networks, and additionally we perform a case with 500 and 1,000 networks. From the

three runs, we focus on the most effective network, i.e., the network with the highest

profit. This experiment gives us insight in the tradeoff that is being made between ef-

fectiveness and efficiency.

The results of the experiment are presented in Table 7.9. From the results, we

notice that no new best profit was found after running a 500 and 1,000 network param-

eter setting. Still, the $4.81 billion profit from Chapter 6, found during a run of 100

networks, is the best. We expected to find a better solution, but apparently we found an

exceptionally good solution in our benchmark study. It also indicates that more networks

is not always better, we do not always find a better solution, we only increase the chance

of finding a better one. When we increase the number of networks, the algorithm needs

more computation time. The average time needed is around 38 seconds per network.

As a result, the 1,000 network run took 10.5 hours to complete. We did not register

the execution time of the Q & 1-2 configuration during the benchmark study, as it was

part of a batch with multiple configurations. Based on the average of 38 seconds per
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Table 7.9: Best results of the different multi-start initializations

Number of service networks 100 500 1,000

Best profit 4.806b 4.773b 4.770b
Execution time (s) N/A 19,408 37,812

network, the 100 network run would take approximately an hour to complete. In this

case, the profits from the 500 and 1,000 network run did not compensate for the extra

computational time.

Not only do we want to analyze the impact of more multi-start initializations, we

also want to study the so-called ‘subset selection technique’. This technique is used by

Brønmo et al. (2007). It works by selecting N best solutions and discard the others,

before entering the local search phase. The main reason is to limit the computational

time involved with local search techniques. The number of operations on each network

that is required to find a local optimum is extensive. Selecting only the best solutions

can dramatically speed up the process. However, the downside is that you potentially

can discard good solution candidates.

To study the effect of subset selection, we plotted the profits of the initial networks,

together with the profits of the same networks after the local search operators have been

applied. This is done for the 100 network run with the Q & 1-2 configuration from

the benchmark study. The result is visualized in Figure 7.2. Note that we sorted the

networks by initial profit. When selecting a subset of best networks, for example 50%,

we would only end up with the right half of the plot. However, from the figure it shows

that our best solution, the $4.81b profit in observation 20, actually results from a weak

initial solution. This justifies leaving out the selection of the best initial networks in the

benchmark study from Chapter 6.

In this experiment we have seen that the number of service networks to build is

a tradeoff between effectiveness and efficiency. Although the results of this experiment

showed differently, in general, it still holds that building more networks usually discovers

networks with higher profits. This can be explained by the increased chance of finding

a new best solution. It is pure luck that we obtained a better solution in the 100

network run than in the 1,000 network run. Given this, it remains difficult to decide

on the number of service networks to build. The efficiency is the limiting factor in

this respect. The level of efficiency needed is really a personal preference, and also

depends on the computational power available. Furthermore, we showed that the subset
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Figure 7.2: Network profits before and after local search

selection technique proposed in Brønmo et al. (2007), makes no sense for the routing

and scheduling problem in liner shipping.

7.5 Re-applying local search operators

In Section 4.3 we introduced the operators that are used to perform local search. Each

operator works in its own way, trying to improve initial solutions. Most of the oper-

ators’ techniques directly affect the structure of a network, by moving, adding ports

and transforming routes. Because the operators are not designed iteratively, but rather

progressively, applying the same operator more than once might be useful.

We restrict this experiment to configurations which have one operator only. We

extend these configurations by applying the same operator again. This prevents inter-

ference between the operators, which may affect the performance and lead to a situation

where experiment results are difficult to interpret.

Using the Quantity Sort method, we choose the three configurations where each oper-

ator is applied on its own. We use the results which we have gained from the benchmark

study in Chapter 6. Hence, for each of the three configurations Q & 1, Q & 2, and Q &

3, we already have 100 completed networks, including statistics about their profit and

the performance increase obtained by the local search phase. In this experiment, we use

each set of 100 networks and apply the same operators for a second time. We observe
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Table 7.10: Results of re-applying local search operators

Configuration
Operator increase Operator increase

(first time) (second time)

Q & 1-1 74.1% 1.8%
Q & 2-2 1.5% 0.4%
Q & 3-3 15.3% 0.0%

the performance increase obtained by the re-application of the operator.

Table 7.10 shows the results of the experiment. We see that the performance in-

creases of the second run are small, but they are present. Except for the transhipment

operator, which does not yield an increase in the second run at all. When we compare

operator 1 and 2, we see that the difference between the two runs is significantly larger

for operator 1 than it is for operator 2. We can easily explain that difference. Each

operator starts with the first route in a network, tries to improve it, and consecutively

works its way through the set of routes. Once it finishes the improvement of one route,

it will move forward and not look back. But operator 2 works slightly different.

Operator 2, the port-exchange operator, moves ports between pairs of routes. Hence,

when it has finished optimizing one route, the operator might still change that same route

at a later stage because, for example, it wants to move in a port from another route.

Hence, because the route and network structure can change constantly, in the second run,

the port-exchange operator can achieve relatively more than the route-length operator.

This is different for the route-length operator. This operator will try to improve one

route at a time, and will never change an earlier route once it finished optimizing that

route. Nevertheless, the route-length operator manages to increase profit in the second

run. One might wonder why. There is a plausible explanation for this effect. The route-

length operator considers every port in each route, and calculates whether this port is

profitable. In other words, is there sufficient cargo from and to this port to justify the

costs associated by a weekly port call? Now imagine that the operator analyzes port A

and concludes that it is profitable, because it receives a lot of cargo from port B and

C. Then, the operator analyzes the next port in the cycle, which is port B. This time,

it concludes that it is more profitable to remove port B from the cycle. However, by

removing port B, the cargo between port B and port A is lost, and so are its revenues.

Sometimes this can lead to port A suddenly becoming unprofitable. But the operator

does not look back to port A. In such situations, the operator will improve the solution

in a second run, because it finds that port A is not profitable any more now that port B
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is absent. Because the route-length operator is designed to look at one port at a time,

running the operator twice can further increase profit.

Finally, we see that the transhipment operator does not improve solutions during

a second run. This corresponds with the way the transhipment operator works. The

operator does not change the structure of the network. It merely reallocates some of the

demands to other routes, by searching for shorter paths. Because the structure of the

routes and the networks are not altered, it will find and use all available shorter paths in

the first run, leaving nothing to do in the second run. Also, the gain of the transhipment

operator is to be found in the allocation of additional demands, which could not be

allocated previously because there was no direct path or there was insufficient capacity.

However, all leftover demand will be allocated (if possible) in the first run. Because the

operator will not re-allocate any demands in the second run, as explained before, it will

also be impossible to allocate any additional demand.

In summary, we see that re-applying the same operator can be useful for the route-

length operator and the port-exchange operator. Although the improvements of the

second run, compared to the first run, are rather modest, one has to realize that only

1% increase in profit still represents a large sum of money. All in all, the port-exchange

operator appears to benefit relatively the most from a re-application phase.

7.6 Conclusion

In this chapter, we provided additional experiments to show the multi-start local search

algorithm from different angles. The experiments also justify some of the choices we made

in, for example, the transhipment operator and the benchmark parameter settings.

First, we used the multi-start local search algorithm to find a solution for the seven-

port data set. We adjusted the variable and parameter settings to comply with a previous

study. Our current solution performs over 35% better than two alternative solutions.

Second, we compared different, alternative implementations of the transhipment op-

erator. We introduced the single-hub single-move, and the multi-hub multi-move variant,

next to the multi-hub single-move variant that was used in Chapter 6. Although one

might expect that the most extensive variant, the multi-hub multi-move, performs best,

we observed that the multi-hub single-move variant yields the best results. The multi-

hub multi-move variant does yield higher revenues, but the additional handling costs that

are incurred keeps the profit down. This supports the choice for this implementation in

Chapter 4 and its use in the benchmark study from Chapter 6.
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Third, we analyzed the impact of smaller ship sizes, since we observed a rather low

utilization rate when using 12,000 TEU ships. In an attempt to improve utilization, we

changed the ship size to 8,000 TEU. This improved the utilization rate considerably,

from 45.5% to 72.4% on average. Also, the fleet size increased due to the use of smaller

ships. However, the profit dropped by around 6%. This leads to the conclusion that

the use of a fleet with smaller sized ships alone does not yield a better performance.

Therefore, we also studied the effect of a heterogeneous fleet with mixed ship capacities.

This turned out to be much more successful. We found a new best network with a profit

of $4.97 billion. The average utilization rate of this network increased to 59.2%. The

average ship capacity dropped to just over 7,000 TEU, which is more realistic than the

12,000 TEU we used before, given the fact that the average ship capacity of the MAE

fleet is almost 8,500 TEU. With an average profit increase of nearly 9% across all 100

networks, the application of a mixed fleet is very effective.

Fourth, we changed the multi-start initializations. In Chapter 6 we used 100 networks

per configuration. To see whether the use of more networks leads to a better solution,

we changed the number of networks to 500 and 1,000 for the Q & 1-2 configuration.

Although the use of more networks theoretically should increase the chance of finding a

better solution, we found no better network using 500 or 1,000 networks. In heuristics,

decisions are often based on the trade-off between performance and computation time.

More (intensive) computations often lead to better solutions. However, heuristics are

especially meant to limit computation time at the cost of performance. The optimal

balance is difficult to determine, and also depends on the application. In our case, we did

not find a better solution using more networks, but at the same time, the computational

effort increased considerably. This leads to the conclusion that the use of 100 networks

is reasonably good, and using 500 or even 1,000 networks does not always compensate

for the extra computation time. The conclusion justifies our choice to use 100 networks

in the benchmark study, especially when considering multiple algorithm configurations.

Besides the number of networks, we also experimented with subset selection. By selecting

a subset of best initial networks before applying the local search heuristic, one can save

computational time. However, we found no convincing relation between initial profits

(before local search) and final profits (after local search). Therefore, applying subset

selection is likely to throw away good solution candidates and is not useful.

Finally, we studied the effect of re-applying operators. We found that the tran-

shipment operator will not improve solutions during a second run. On the contrary,

the route-length and port-exchange operator do improve solutions in the second run,

although their relative increase is considerably less compared to the first run.

149





Chapter 8

Conclusions and Future Research

In this thesis we presented a multi-start local search algorithm for the routing and

scheduling problem in liner shipping. It is a transformation of the algorithm used in

Fagerholt & Lindstand (2007), that focuses on industrial and tramp shipping instead.

The algorithm consists of a randomized initialization phase that generates initial net-

works, and a local search phase that tries to improve the solution using local search op-

erators. The nature of the algorithm allows for variation among its two main phases. For

the first phase, we implemented the quantity sort insertion heuristic from Brønmo et al.

(2007), and proposed a profit-driven sort insertion heuristic. For the second phase, we

proposed three new local search operators, the route-length operator, the port-exchange

operator, and the transhipment operator. The route-length operator removes ports from

round trips that incur more costs than revenue, and tries to allocate unassigned cargoes

by adding ports to round trips. The port-exchange operator relocates ports within a

route or between routes in an attempt to improve solutions. The transhipment operator

introduces the use of hubs and transhipment to save costs and allocate the remaining

cargoes. When combining different implementations of each phase, different algorithms

are obtained. We presented a benchmark study to find out what is the most effective

algorithm among these combinations. To that end, we also proposed a data set that

is based on the actual Asia-Europe network of Maersk Line. Furthermore, we have

presented several additional experiments to gain more insight in the working of the al-

gorithm, the experimental design of the benchmark study, and their effect on the final

result. In Section 8.1 we will present the conclusions of our research by answering the

research questions. In addition, the contributions of this research are set out. Further-

more, suggestions for future research are made in Section 8.2.
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8.1 Conclusions

Our main research question was what is the performance of multi-start local search heuris-

tics for solving routing and scheduling problems in liner shipping? In order to answer

the main research question, it was decomposed into subquestions. We have answered

these eight subquestions from Section 1.3 in the previous chapters. These answers will

now be summarized to answer the main research question.

1. What are the specifics of liner shipping and what are its typical routing and schedul-

ing problems?

Liner shipping is characterized by carriers providing a regular repetitive schedule

of services, which is called the carrier’s service network. An important problem

in liner shipping is determining a service network of routes and frequencies that,

for more or less given demand between ports and a fleet’s capacity, maximizes

profit. This problem is referred to as the routing and scheduling problem in liner

shipping. In general, solution approaches are either mathematical programming

oriented, which is computationally intensive but will find the optimal solution,

or heuristic oriented, which is more efficient but does not guarantee to find the

optimal solution.

2. What are multi-start and local search techniques, and why do they work?

The multi-start technique is used to explore multiple regions of the solution space.

Multi-start refers to restarting an algorithm with different parameters, such that

each time a different region is explored. The main advantage of the multi-start

technique is that it decreases the chance of ending up in a local optimum. Local

search is a heuristic optimization technique that tries to improve initial solutions

by moving through the solution space and searching for neighboring solutions that

maximize a given objective. Since local search only explores a very small region of

the solution space, and may get stuck in a local optimum, it very suitable to use

in collaboration with the multi-start technique.

3. Can we transform the multi-start local search algorithm from tramp shipping studies

to the case of liner shipping?

The multi-start local search approach is a general technique, and not restricted

to a specific problem. It is the implementation of the two phases that makes the

algorithm applicable to a specific problem. Our starting point was research that

used multi-start local search for solving the routing and scheduling problem in
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tramp shipping. Since the liner shipping specifics make the problem so different, it

requires an alternative implementation. We were able to transform the multi-start

local search algorithm from tramp shipping to liner shipping by creating such

a different implementation. The most important difference between the tramp

shipping and the liner shipping implementation is that tramp shipping moves with

spot cargoes to find the optimal routes, whereas liner shipping mainly moves with

ports to find the optimal network. We implemented two sort methods, one that

was adjusted from the tramp shipping study and a new one. Furthermore, we

proposed three new local search operators.

4. What is an adequate data set to assess the effectiveness of solutions to the problem?

In Chapter 5, we reviewed several data sets from literature to assess their usability

for our problem. We defined the required characteristics for a suitable data set as

representing reality and being generally applicable. In this regard, general appli-

cability refers to the broad usability of the data set in different problem variants.

Unfortunately, the reviewed data sets were either not based on reality, or did not

contain enough data to be generally applicable. As a result, we proposed a new

data set that is based on Maersk’s Asia-Europe service network, and strives to

meet our requirements. We believe the proposed data set is adequate to assess the

effectiveness of solutions to the routing and scheduling problem in liner shipping.

5. Does the more advanced profit-driven sort insertion heuristic contribute more to

the quality of the solutions in the multi-start heuristic than the simple quantity sort

insertion heuristic?

Although the profit-driven sort method uses a profitability based scoring system to

allocate demand, statistical analysis showed that there is no significant difference

in network profits compared to the much more simple quantity-based sort method.

However, that is only the case when comparing both sorting methods after the local

search phase has been applied. When comparing the performance after the first

phase of the algorithm, quantity sort yields significantly better results. However,

this difference is cancelled out by the local search phase.

6. What local search operators contribute the most to the objective function?

Of all three local search operators, the route-length operator yields the best profit

increase. Its average improvement of nearly 76% is much higher than the 16%

of the transhipment operator and the 3% of the port-exchange operator. When

considering a configuration of multiple operators, the combined route-length and
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port-exchange operator performs best. The success of the route-length operator

can be explained by its highly influential network adjustments and its profit-minded

implementation. The port-exchange operator performs rather bad, probably due to

limited remaining capacity on the routes, which becomes a bottleneck for relocating

ports. The transhipment operator performs less well than expected, since it incurs

too much costs with rerouting demands before allocating new demand pairs.

7. What is the most effective and/or efficient multi-start local search configuration to

solve routing and scheduling problems in liner shipping?

The most effective multi-start local search configuration is ‘Q & 1-2’, i.e., quantity

sort in the first phase and the route-length operator followed by the port-exchange

operator in the second phase. However, this configuration is not significantly

better than the ‘P & 1-2’ and ‘P/Q & 1-2’ configurations, which indicates that

the sorting method has no significant influence. The ‘Q & 2’ configuration is the

most efficient, since it needs the least computation time among all configurations,

namely 20 seconds for one network. In contrast, the ‘Q & 1-2’ configuration takes

approximately 35 seconds to complete, although it is approximately 68% more

effective.

8. Under what circumstances is the use of transhipment hubs effective?

The use of transhipment can improve the allocation of demand, and thereby the

revenue, in three ways. First, transhipment can reduce the path length from

origin to destination. Second, transhipment can prevent unnecessary movements

of cargo along the turning point. Third, transhipment enables unallocated demand

to be allocated, since more path possibilities are available. In general, the use of

transhipment hubs is effective when the revenue from the additional demands that

can be transported covers the costs that are incurred as a result of transhipping the

demand. Furthermore, the remaining capacity on the ships should be large enough

to be able to allocate the extra demand. Only then transhipment can successfully

be applied.

Finally, we are able to answer our main research question, what is the performance of

multi-start local search heuristics for solving routing and scheduling problems in liner

shipping?

We have seen that the first phase of the multi-start local search algorithm, gener-

ating the initial solutions, can not be optimized by choosing a specific sorting method.

However, the second phase, improving the solutions using local search operators, does
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have a large influence on the final result. There are large differences in solution im-

provement among the local search operators. Therefore, one has to take care when

choosing a specific algorithm configuration. This also goes for the input provided to the

model, since the network composition and the resulting profit are sensitive to the input

parameter settings. We have noticed this in the comparison of our best network with

the Maersk Asia-Europe service network, where our profit deviated due to the use of a

different cost structure. However, we obtained a better judgement of the performance

of the multi-start local search technique by computing the upper bound and the relative

gap to our best solution. The assessment of the performance of the multi-start local

search algorithm remains subjective. We believe the relative gap to the upper bound

is a good measure in this respect. Considering that the optimal solution will be lower

than the upper bound, although we do not know by how much, a relative gap to the

upper bound of less than 10% seems acceptable. Given that we obtained a relative gap

of 5.5%, and the answers to the subquestions above, we conclude that multi-start local

search heuristics, as a technique, perform satisfactory when applied to liner shipping

routing and scheduling problems.

The problem of routing and scheduling in liner shipping has received little attention

in literature. Most research focused on mathematical programming, and the research

focusing on heuristics applied the problem to industrial and tramp shipping instead.

Therefore, this paper has a large contribution to this field, especially with respect to the

following points.

• Multi-start local search heuristics are proposed for liner shipping operations, these

provide adequate solutions to the routing and scheduling problem in liner shipping.

• A benchmark of the various multi-start local search heuristics is added, with an

analysis specifying the most effective configuration.

• A new data set that combines general applicability and reality is proposed, which

is based on the actual Maersk Asia-Europe service network.

8.2 Future Research

This research also uncovers possible future research directions in the field of routing and

scheduling for liner shipping.
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First, future work could focus on improving the studied algorithm by creating addi-

tional local search operators. Apart from the route-length, port-exchange, and tranship-

ment operator, alternative operators might yield good results. Additionally, improving

the current operators, especially the transhipment operator, might also be worthwhile.

The transhipment operator can be improved by introducing a revenue/cost tradeoff for

transhipment moves. Moreover, rerouting already allocated demands to gain capacity

should only be done when the space is really used. The operator can also be changed to

adjust the network, rather than purely focusing on the allocation of demand, although

the network composition analysis in Section 6.4.2 indicated that the profit benefits the

most from improving allocation.

Second, future work might focus on different approaches for solving the routing and

scheduling problem in liner shipping. In this thesis, we studied the heuristic multi-

start local search approach. We believe there are still many opportunities with heuristic

algorithms, although the solution will likely remain suboptimal. In this respect, it is also

interesting to gain insight in the performance of metaheuristic approaches for solving the

problem. These might deliver solutions that are closer to the optimal solution. Since

there is little literature available that focuses on solving the problem in liner shipping

operations, several approaches can still be applied.

Third, future work can discover different problem formulations. The problem can

easily be extended by leaving out some simplifying assumptions. For example, one can

take into account the feedering of intra-regional demand or use a restricted fleet. In

addition, some variables in our problem formulation could be improved to approach

reality. For example, in reality the fuel consumption depends on the cruising speed

and the cargo load of the ship. Furthermore, the operational cost that we used in the

additional experiment in Section 7.3 could be made dependent of the ship’s capacity.

One can also follow the trends in liner shipping to obtain research directions. Lately,

the bunkering of oil is in the middle of attention. When introducing bunkering to the

problem, an additional objective becomes determining the best spots to bunker for fuel.

However, the characteristic of liner shipping is that it follows a strict schedule, which

already puts some restrictions on the bunkering spots. Another trend is slow steaming,

which means the vessels travel at low speed to save costs. It might be interesting to

extend the problem with a flexible speed variable to study the effect of different speeds.

Lastly, the problem can be extended with the empty container repositioning problem.

This problem is a major cost-driver for carriers (Veenstra 2005), and is an important

step in approaching reality. It may be clear, every change in assumptions creates a new

variant of the problem, and there are numerous variants and extensions possible.
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Chapter 9

Discussion

The experimental design and the findings of this research instigate some further dis-

cussion regarding several points. First, we want to discuss the implementation of the

transhipment operator, that did not perform as expected. Second, we want to focus on

the influence of the fleet specification on the experimental design of this study, especially

regarding the surprising result of the mixed fleet approach. Last, we want to discuss

the findings regarding the subset selection technique, that seems to contradict previous

work from literature.

One can argue whether the transhipment operator should have been implemented

differently. The average improvement of the transhipment operator to the initial solu-

tions were rather disappointing. Moreover, combining the transhipment operator with

another operator in a single configuration resulted in even worse improvements. In the

current implementation, the reallocation of demand to gain space, and the allocation of

remaining demands are split in two separate steps. Furthermore, there is no real cost-

benefit tradeoff calculation being performed when (re)allocating demands. Anyway, we

did not expect to reallocate so much demand, since we estimated to have higher utiliza-

tion rates than we ultimately did. It turned out that the first step, the reallocation of

demands, incurs too much costs. Afterwards, it had not even been necessary to reallo-

cate those demands, since the additional demand that can be allocated does not cover

for the costs.

The rationale behind the two-step design was the idea that sometimes you need to

make costly changes, in order to obtain a better solution than we were able to obtain

before. In other words, we wanted to prevent ending up in a local optimum, and go for

a better optimum. However, we acknowledge that this is not the task of the local search
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operator. The local search operator should find the local optimum, and the multi-start

characteristic is responsible for a diverse set of these local optima, such that we can pick

the best solution.

Currently, the transhipment operator only focuses on the allocation of demands, and

does not adjust the service network itself like the other operators. On the one hand, this

seems no big deal, since we know from the network composition analysis in Section 6.4.2

that the allocation is very important for the final profit. On the other hand, it might

be possible to obtain better results when the operator adjusts the network, since it will

provide new allocation opportunities.

In the problem formulation of Chapter 3 we specified the precise assumptions that

we made, in order to scope the research. We made different kinds of assumptions, either

representing reality, extending reality, or delimiting the scope of the study. One of the

assumptions extending reality was that we assumed a fleet with an unrestricted size,

consisting of vessels with similar size and capacity. Accordingly, in the experimental

design of the benchmark study, we specified a ship capacity of 12,000 TEU. So far, so

good. However, in the analysis of our best network, we found a rather low average uti-

lization rate of the routes. Nevertheless, we experienced that many routes had one or

more legs with nearly full utilization. This effect was clearly observable in Figure 6.3.

It made us wonder what ship size would be optimal to use. To that end, we performed

the additional experiment in Section 7.3.

First, we studied the effect of having a lower ship capacity, while still considering

a homogeneous fleet. We performed an experiment, running the algorithm with a ship

capacity of 8,000 TEU. Results indicated that both the average profits and the best

profit of the 8,000 TEU run underperformed against the 12,000 TEU run, although the

utilization rate increased. Next, we performed an experiment that ignored the assump-

tion of a homogeneous fleet, and allowing a mixed fleet. The starting point was a set

of networks from the benchmark study, no new networks were created. We removed

some demands from the high-utilization legs of each route in order to decrease the ship

size. We also tried to reallocate that demand to other routes. In this way, every route

obtained ships with a different size, together forming a mixed fleet. The results of this

experiment showed a surprising improvement in profit. It turned out that a mixed fleet

of smaller ships can be very profitable.

One can argue whether the initial choice for a 12,000 TEU ship capacity was sensi-

ble, especially when considering the average capacity of around 8,500 TEU that Maersk

uses. We defended this choice by pointing at the trend of larger container ships, and
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avoiding the computational intensity of mixed ship capacities. However, the difference

of 3,500 TEU is still very large. Afterwards, it seemed that the steps performed in

the additional experiment could well be used as a third phase to the multi-start local

search algorithm. The profit increases among the networks were different, meaning that

the best solution from the local search phase may be outperformed by another solution

after applying the third phase. The same thing currently happens in the second phase

of the algorithm, where the best networks from phase one are not necessarily the best

networks after phase 2 has been applied. Therefore, it fits pretty good in the current

implementation. Actually, extending the algorithm with this third phase may be even

better than sticking to a homogeneous fleet. The reason for this is that the extension of

the algorithm would yield a heterogeneous fleet, and such a mixed fleet was showed to

be more profitable.

In the additional experiment presented in Section 7.4, we focused on varying multi-

start initializations. As part of this experiment, we studied the effect of the subset

selection technique, that is used in the multi-start local search algorithm for tramp ship-

ping in Brønmo et al. (2007). In their study, the technique is part of the first phase of

the algorithm, that generates the initial solutions. It works by selecting N best solutions

and discarding the others, before entering the local search phase. The rationale for using

this technique is to limit the computational time by only continuing with the best initial

solutions.

Nevertheless, the result of our experiment showed that the subset selection technique

does not make sense, at least for liner shipping operations. We found that there is no

direct relation between the quality of the initial solution, and its quality after the local

search phase has been applied. Moreover, our optimal solution was obtained from a

very weak initial solution, that definitely had been discarded if we used the subset

selection technique. The question is whether the difference in shipping type, i.e., tramp

shipping versus liner shipping, has such an influence that this technique becomes useless.

We believe this is not the case. The rationale of limiting the computation time is no

argument for using this approach, since creating less networks eventually yields the

same result. Therefore, the advantages of its application in Brønmo et al. (2007) remain

unclear. At least, because the rationale is not trivial, the previous study should have

clarified the characteristics of this technique that make it work in the case of tramp

shipping operations.
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Glossary

Cycle A round trip based on the string of ports.

Direct path Used to indicate that the origin and destination of a demand

lay in a single route. Then, the direct path is the part of the

route from origin to destination.

Feeder-line Provides regional services on feeder routes, feeding and dis-

tributing containers to and from the hub using smaller-sized

ships like barges.

Frequency The number of departures from a port for a specific service in

a given time frame.

Hub A transhipment port where cargo is transferred from one ship

to another, to reach its destination. The transhipment can

take place either directly between the ships, or after short-

term storage in the container terminal.

Leg The route from a port to the next port in the string of ports.

Loop The same as a cycle.

Main-line Liner shipping route, connecting the largest ports (i.e., re-

gional hubs) with big container ships.

OD Abbreviation of origin-destination.

Path The ports that a demand comes across when traveling from

origin to destination. Also used to refer to either a direct path

or transhipment path.

Pendulum The same as a cycle.
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Rerouting Removing allocated demand from a origin-destination path, in

order to allocate to another path. The advantages of rerouting

can be gaining ship capacity on a route, or incurring less costs,

for example by visiting less ports.

Route A part of or the full string of ports, that the ship visits to

deliver a cargo. Used when referring to both the complete

cycle, i.e. the full string of ports, as well as a part of the

cycle, when considering the origin and destination of a cargo.

Service The same as a cycle. Sometimes also used to refer to a part

of the cycle.

Service network The set of services that a carrier provides.

Slack The time between the duration of a round trip and the next

integer number of weeks, when the cycle starts again.

String (of ports) The sequence of ports that a ship visits to complete a cycle.

TEU Twenty-foot equivalent unit, one TEU refers to a 20-feet long

container. The number of containers is measured in TEU.

Throughput The total number of movements into or out of a port, mea-

sured in TEU.

Transhipment Transferring cargo from one ship to another, in order to con-

tinue the journey to its destination. With transhipment, dif-

ferent services are combined to provide the transport from the

origin to the destination.

Transhipment path The full path from the origin to the destination of a demand,

when the demand is transhipped one or multiple times. As a

result, a transhipment path can travel via several routes.

Trip The same as a route.

Voyage The same as a cycle.
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Appendix A

Algorithms

In this appendix chapter we present pseudocode formulations of the multi-start local

search algorithm. Originally, the algorithm is implemented in Matlab code, but display-

ing the full Matlab codes required numerous pages. Therefore, the pseudocode presents

a compact version of the Matlab code, in order to provide the reader with the general

message of the algorithm. Table A.1 gives an overview of the algorithms in this appendix,

each representing a different part of the multi-start local search heuristic.

Table A.1: Overview of algorithm pseudocodes

Algorithm Description
2 The Multi-Start Local Search Algorithm
3 Generate a random route
4 Allocate random demand
5 Apply sorting method
6 Select and clean the best networks
7 Apply local search operators
8 Local Search: the route-length operator
9 Local Search: the intra-route port exchange operator
10 Local Search: the inter-route port exchange operator
11 Local Search: the transhipment operator
12 Transhipment operator: reroute allocated demand
13 Transhipment operator: allocate remaining OD demand
14 Transhipment operator: get transhipment path candidates
15 Single-hub single-move (SHSM) transhipment operator
16 Multi-hub multi-move (MHMM) transhipment operator
17 MHMM transhipment operator: get transhipment path candidates
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Algorithm 2: The Multi-Start Local Search Algorithm

Input: A set of ports P with size m, an origin-destination matrix Q with size m×m, an
inter-port distance matrix D with size m×m

Output: A (sub)optimal service network S

1 var networks = [];
2 for i← 1 to 100 do
3 var n = new Network();
4 n.Q = Q;
5 for j ← 1 to randint(5,20) do // random number of routes

6 var route = generateRandomRoute(P , Q) ; // See Alg. 3

7 n.append(route);
8 for k ← 1 to 3 do allocateRandom(route, n.Q) ; // See Alg. 4

9 end
10 networks.append(n);

11 end

12 foreach element n of networks do
13 var cargoes = matrix2array(n.Q) ; // convert OD matrix to array

14 var method = random(Quantity || PDA);
15 if method == ‘Quantity’ then sort(cargoes, descending by quantity);
16 foreach element c of cargoes do
17 var origin = c.origin; var destination = c.destination;
18 var feasibleroutes = [];
19 foreach element route of n.routes do
20 if isElement(origin, route) && isElement(destination, route) then

feasibleroutes.append(route);

21 end
22 var routes = applySorting(method, c, feasibleroutes) ; // See Alg. 5

23 var j = 1;
24 while q.demand > 0 && j < count(routes) do

// take minimum of either demand or remaining capacity

25 var demand = min( q.demand, routes(j).rc );
26 allocateDemand( routes(j), q.origin, q.destination, demand );
27 j = j + 1; q = q - demand;

28 end

29 end

30 end
31 networks = selectCleanTopNetworks(networks) ; // See Alg. 6

32 foreach network n of networks do applyLocalSearch(n); // See Alg. 7

33 sort(networks, −profit) ; // sort descending by column profit

34 var S = networks(1) ; // select the best network
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Algorithm 3: Generate a random route

Input: A set of ports P with size m, an origin-destination matrix Q with size m×m
Output: A random route r

1 foreach element p of P do
// Remove ports that don’t have demand

2 if ( sum[Q(p,:)] + sum[Q(:,p)] == 0 ) then P .remove(p);

3 end

4 var stringlength = randint(2, (2*m)-2);
5 var feasible = false;
6 while feasible == false do
7 var string = [];
8 for i← 1 to stringlength do string.append( randint(1,m) );
9 sort(string, ascending);

// get vector with number of times each element of string occurs

10 var c = histcount(string);
11 if c(1) == 1 && c(end) == 1 && find(c > 2)==false then
12 feasible = true;
13 end

14 end

15 var u = unique(string);
// first store the duplicates

16 var eastbound = u( find(c==2) );
17 var westbound = u( find(c==2) );

// then randomly assign the single occurences

18 var singles = u( find(c==1) );
19 singles( [1 end] ) = [] ; // remove the starting and turning point

20 for i← 1 to length(singles) do
21 var j = randint(1,2);
22 if j==1 then eastbound.append(singles(i));
23 if j==2 then westbound.append(singles(i));

24 end
// finally, assign the starting and turning point

25 eastbound.append( u(1) );
26 westbound.append( u(end) );

// sort the strings

27 sort(eastbound, ascending);
28 sort(westbound, desending);

29 var r = vertcat(eastbound, westbound);
30 return r;
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Algorithm 4: Allocate random demand

Input: A route route, an origin-destination matrix Q with size m×m

1 var demand = 0;
2 while demand == 0 do
3 var origin = randint(1,m);
4 var destination = randint(1,m);
5 demand = Q(origin,destination);

6 end
7 var fraction = 0.01 * randint(5,15);
8 demand = demand * fraction;

// Calculate remaining capacity on the path

9 var rc = calculateRC(route, origin, destination);
10 if rc > demand then
11 allocateDemand(route, origin, destination, demand);
12 updateRCMatrix(origin, destination, demand);
13 Q(origin, destination) -= demand;

14 end

Algorithm 5: Apply sorting method

Input: Sorting method method, specific cargo c, list of feasible routes feasibleroutes
Output: Set of ordered routes routes

1 var routes = feasibleroutes;
2 var origin = c.origin; var destination = c.destination;

3 if method == ‘Quantity’ then
4 foreach element route of routes do route.rc = calculateRC(route, origin, destination);
5 sort(routes, −rc) ; // sort decreasingly by remaining capacity

6 else if method == ‘PDA’ then
7 foreach element route of routes do
8 route.numports = findShortestPath(route, origin, destination);
9 route.activeness = findActivePorts(route, origin, destination);

10 var utilCurrent = calcCurrentUtil(route);
11 var utilNew = calcNewUtil(route, origin, destination, c.quantity);
12 route.utilDiff = (utilNew - utilCurrent) / utilCurrent;

13 end
// normalize each attribute using the max-min method

14 maxminnorm(routes.numports, routes.activeness, routes.utilDiff);
15 foreach element r of routes do
16 r.score = sum(r.numports, r.activeness, r.utilDiff);
17 end
18 sort(routes, −score) ; // sort decreasingly by score

19 end
20 return routes;
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Algorithm 6: Select and clean the best networks

Input: A set of networks networks
Output: A set of cleaned, best networks networks

1 foreach network n of networks do n.profit = calculateProfit(n);
2 sort(networks, −profit) ; // sort the networks descending by profit

3 if count(networks) > 200 then var selection = 0.15 * count(networks);
4 else if count(networks) > 50 then var selection = 0.3 * count(networks);
5 else var selection = 0.6 * count(networks);

// selection of the best networks

6 networks = networks(1:selection);
// clean inactive ports, i.e. ports without (off)loading movements

7 foreach network n of networks do
8 foreach route r of n.routes do removeInactivePorts(r);
9 end

10 return networks;

Algorithm 7: Apply local search operators

Input: A network n
Output: A network n

// Run Route-Length Operator

1 n = routeLengthOperator(n) ; // See Alg. 8

// Run Port-Exchange Operator

2 n = portExchangeOperator IntraPortExchange(n) ; // See Alg. 9

3 n = portExchangeOperator InterPortExchange(n) ; // See Alg. 10

// Run Transhipment Operator

4 n = transhipmentOperator(n) ; // See Alg. 11

5 return n;
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Algorithm 8: Local Search: the route-length operator

Input: Network n, interport distance matrix D, cost constants costs, and sailing speed speed
Output: A network n with the route-length operator applied

1 foreach route r of n.routes do /* first part: remove cost-inefficient ports */

2 for i← 1 to length(r.String) do
3 var port = r.String(i);
4 var costs = 0;
5 costs = costs + costs.port ; // add the fixed costs per port

6 var p port = r.String(pos-1) ; // get the port before port
7 var n port = r.String(pos+1) ; // get the port after port
8 var distance diff = ( D(p port, port) + D(port, n port) ) - D(p port, n port);
9 costs = costs + (distance diff * costs.fuel per mile) ; // add fuel costs per mile

10 var quantity = getQuantityAtPort(port);
11 costs = costs + (quantity * costs.handling) ; // add the handling costs per TEU

// - add the costs for addtional vessels

12 var sailingweeks before = ceil( (getTotalMileage(r) / (speed * 24)) / 7 );
13 var r2 = removePortFromRoute(r, port);
14 var sailingweeks after = ceil( (getTotalMileage(r2) / (speed * 24)) / 7 );
15 var costs per vessel = costs.capital + (costs.capital * cost.operational);
16 costs = costs + ( (sailingweeks after - sailingweeks before) * costs per vessel );
17 var revenue = getRevenueFromPort(r, port);
18 if costs > revenue then r = removePortFromRoute(r, port);

19 end
20 storeRoute(n, r);

21 end
22 for i← 1 to count(n.OD matrix) do /* second part: add ports */

23 for j ← 1 to count(n.OD matrix) do
24 demand = n.OD matrix(i,j);
25 if demand > 0 then
26 var profits = [];
27 for k ← 1 to count(n.routes) do
28 r = n.routes(k);
29 r2 = allocateDemand(r, i, j, demand);
30 var gain = calculateProfit(r2)− calculateProfit(r);
31 var maxQuantity = calcMaxQuantity(r2, i, j);
32 if gain > 0 then
33 profits.append(k, gain, maxQuantity);
34 end

35 end
36 profits = sort(profits, -profit) ; // sort decreasingly by profit

37 var m = 1;
38 while demand > 0 && m <= count(profits) do
39 var routeindex = profits(m,1);
40 var quantity = profits(m, 3);
41 n.routes(routeindex) = allocateDemand(n.routes(routeindex), i, j, quantity);
42 demand = demand - quantity;
43 m = m + 1;

44 end
45 n.OD matrix(i,j) = demand;

46 end

47 end

48 end
49 return n;
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Algorithm 9: Local Search: the intra-route port exchange operator

Input: A network n
Output: A network n

1 for i← 1 to count(n.routes) do
2 var route = n.routes(i);
3 var string = route.String;
4 var singleports = getSinglePorts(string);
5 singleports([1 end]) = [] ; // remove turning points

6 foreach element port of singleports do
7 leftpart = string(1:max(string)-1);
8 rightpart = string(max(string):end);
9 if isElement(port, leftpart) then

10 var pathlength1 = getTotalPathLength(route);
11 var route2 = route;

// move the port in the string from the left part to the right part

12 route2.String = cat( leftpart(-port), rightpart(1:find(rightpart > port, ‘last’)),
port, rightpart(find(rightpart < port, ‘first’):end) );

13 end
14 else if isElement(port, rightpart) then
15 var pathlength1 = getTotalPathLength(route);
16 var route2 = route;

// move the port in the string from the right part to the left part

17 route2.String = cat( rightpart(-port), leftpart(1:find(leftpart < port, ‘last’)),
port, leftpart(find(leftpart > port, ‘first’):end) );

18 end
19 route2.RC = rebuildRCMatrix(route2);

// check if the new string is feasible

20 if min(route2.RC) >= 0 then
// check if the new string is sensible

21 pathlength2 = getTotalPathLength(route2);
22 if pathlength1 > pathlength2 then
23 n.routes(i) = route2;
24 route = route2;
25 string = route.String;

/* Try to allocate new demand */

26 for k ← 1 to count(n.OD matrix) do
27 for l← 1 to count(n.OD matrix) do
28 var demand = n.OD matrix(k,l);
29 if demand > 0 then
30 var q = maxQuantity(route, k, l);
31 q = min(q, demand);
32 allocateDemand(route, k, l, q);
33 n.OD matrix(k,l) = n.OD matrix(k,l) - q;

34 end

35 end

36 end

37 end

38 end

39 end

40 end
41 return n;
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Algorithm 10: Local Search: the inter-route port exchange operator

Input: A network n
Output: A network n

1 var combinations = nchoosek(1:size(n.routeset,2), 2) ; // obtain all possible route pairs

2 for i← 1 to size(combinations, 1) do
3 var route1 = n.routeset( combinations(i, 1) );
4 var route2 = n.routeset( combinations(i, 2) );
5 foreach element port of route1.String do

// obtain all counterpart ports

6 var cp = unique([route1.Destinations(route1.Origins==port) ... ...
route1.Origins(route1.Destinations==port)]);
// check if all counterpart ports exist in the second route

7 if min(ismember(cp, route2.String)) > 0 then
8 var profit1 = calculateProfit(n);

// option 1: merge the ports

9 if ismember(port, route2.String) then
10 var n2 = mergePortToRoute(n, route1) ; // merge to route1

11 var profit2 = calculateProfit(n2);
12 var n3 = mergePortToRoute(n, route2) ; // merge to route2

13 var profit3 = calculateProfit(n3);
// save the network with the highest profit

14 if profit3 > profit2 && profit3 > profit1 then
15 n = n3;
16 end
17 else if profit2 > profit3 && profit2 > profit1 then
18 n = n2;
19 end

20 end

// option 2: move the port to route2

21 else
22 var string = n.routeset(route2).String;
23 var eastbound = string(1 : find(string == max(string))− 1);
24 var westbound = string(numel(eastbound) + 1 : end);
25 deletePort(n.routeset(route1), port);
26 var n2, n3 = n;
27 n2.routeset(route2).String = cat(insertPort(eastbound, port), westbound );
28 n3.routeset(route2).String = cat(eastbound, insertPort(westbound, port) );
29 profit2 = calculateProfit(n2);
30 profit3 = calculateProfit(n3);

// save the network with the highest profit: analogous to above

31 end

32 end

33 end

34 end
35 return n;
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Algorithm 11: Local Search: the transhipment operator

Input: A network n
Output: A network n

// Re-route allocated OD pairs via transhipment hub(s).

1 n = rerouteExisting(n) ; // See Alg. 12

// Allocate remaining OD matrix demand via transhipment hub(s).

2 n = AllocateLeftOvers(n) ; // See Alg. 13

3 return n;
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Algorithm 12: Transhipment operator: reroute allocated demand

Input: A network n
Output: A network n

1 foreach route r of n.routes do
// Loop through the allocated demand pairs.

2 foreach Allocated demand pair k in r do
3 if k is not already transhipped then
4 var origin = origin(k), var destination = destination(k);
5 if path(k) unnecessarily visits turning point then

// Obtain possible transhipment path candidates.

6 var path candidates = getTranshipmentCandidates(origin,destination,n) ;
// See Alg.14

7 if count(path candidates) > 0 then
8 path candidates = sort(path candidates, path length) ; // sort

ascending by path length

9 var candidatecursor = 1;
10 while demand > 0 && candidatecursor ≤ count(path candidates) do

// The maximum amount we can allocate depends on the

remaining capacities of the origin-hub (RC origin hub) and

hub-destination (RC hub destination) paths.

11 var maxAmount = min(RC origin hub, RC hub destination,
demand);

12 if maxAmount > 0 then
13 if maxAmount == demand then // We can reroute the full

demand.

14 Remove allocation k from route r. else // We can reroute

only part of the demand to this candidate.

15 r.Demands(k) = r.Demands(k) - maxAmount;
16 allocateDemand(n.routes(path candidates(candidatecursor)),

origin, destination, maxAmount);
17 demand = demand - maxAmount;

18 end
19 candidatecursor = candidatecursor + 1;

20 end

21 end

22 end

23 end
24 k = k + 1;

25 end

26 end
27 return n;
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Algorithm 13: Transhipment operator: allocate remaining OD demand

Input: A network n
Output: A network n

1 for i← 1 to count(n.OD matrix) do
2 for j ← 1 to count(n.OD matrix) do
3 demand = n.OD matrix(i,j);
4 if demand > 0 then

// Obtain possible transhipment path candidates.

5 var path candidates = getTranshipmentCandidates(i,j,n) ; // See Alg. 14

6 if count(path candidates) > 0 then
7 path candidates = sort(path candidates, path length) ; // sort ascending by

path length

8 var candidatecursor = 1;
9 while demand > 0 && candidatecursor ≤ count(path candidates) do

// The maximum amount we can allocate depends on the remaining

capacities of the origin-hub (RC origin hub) and

hub-destination (RC hub destination) paths.

10 var maxAmount = min(RC origin hub, RC hub destination, demand);
11 if maxAmount > 0 then
12 allocateDemand(n.routes(path candidates(candidatecursor)), i, j,

maxAmount);
13 demand = demand - maxAmount;

14 end
15 candidatecursor = candidatecursor + 1;

16 end

17 end
18 n.OD matrix(i,j) = demand;

19 end

20 end

21 end
22 return n;
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Algorithm 14: Transhipment operator: get transhipment path candidates

Input: An origin origin, a destination destination, a network n
Output: A list of transhipment path candidates path candidates

1 var interval = origin:destination;
// Loop trough the interval origin-destination, these ports are hub candidates.

2 for m = 2 to count(interval)-1 do
3 var hub = interval(m);
4 var possible origins = []; var possible destinations = [];
5 foreach route r of n.routes do
6 if r.String contains hub then
7 if r.String contains origin then
8 Find origin and hub position in r.String. Add shortest path between origin

and hub to possible origins.
9 end

10 if r.String contains destination then
11 Find hub and destination position in r.String. Add shortest path between hub

and destination to possible destinations.
12 end

13 end

14 end
15 if count(possible origins) > 0 && count(possible destinations) > 0 then
16 foreach origin-hub path orighub of possible origins do
17 foreach hub-destination path hubdest of possible destinations do
18 if orighub(route) = hubdest(route) then
19 path candidates = [path candidates; orighub, hubdest];
20 end

21 end

22 end

23 end

24 end
25 return path candidates;

Algorithm 15: Single-hub single-move (SHSM) transhipment operator

Input: A network n
Output: A network n

1 Analogous to the transhipment operator presented in Alg. 11, except for the way transhipment
path candidates are obtained. The ‘getTanshipmentCandidates(origin, destination, n)’ function,
used in line 6 of Alg. 12 and line 5 of Alg. 13, is implemented somewhat different from the
multi-hub single-move implementation in Alg. 14. Instead of looping through the
origin-destination interval (line 2 in Alg. 14), where each iteration considers a different hub port
from the specified interval, we only allow one fixed hub port. Therefore, the previous for-loop is
removed in the single-hub single-move variant.
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Algorithm 16: Multi-hub multi-move (MHMM) transhipment operator

1 Analogous to the transhipment operator presented in Alg. 11, except for the way transhipment
path candidates are obtained. The ‘getTanshipmentCandidates(origin, destination, n)’ function,
used in line 6 of Alg. 12 and line 5 of Alg. 13, is implemented differently, of which the multi-hub
multi-move variant is specified in Alg. 17. Furthermore, the maximum amount of demand that
can be (re)allocated (line 11 in Alg. 12 and line 10 in Alg. 13) may also depend on the minimum
remaining capacity over multiple transhipment paths.

Algorithm 17: MHMM transhipment operator: get transhipment path candidates

Input: An origin origin, a destination destination, a network n
Output: A list of transhipment path candidates path candidates

1 var interval = origin:destination;
// Walk trough the interval origin-destination, building the path candidates as we

go.

2 for m = 1 to count(interval) do
3 var routes with m = the routenumbers of routes that stop at port m.

4 if m == 1 then
// We have no existing path candidates.

// This is the origin port, store all routenumbers from routes with m in

variable path candidates, together with m and the portindex in the

routes.

5 else
// We already have path candidates, extend them if possible.

6 First, for each route in routes with m, we search for path candidates in path candidates
that are currently on that route. Whenever we find a match, we create a copy of the
path candidate and extend it with the portindex of port interval(m).

7 Second, if there are 2 or more routes in routes with m, we create additional path
candidates by transhipping copies of existing candidates, that are currently on one of
the routes, to another route.

8 Every time we extend a candidate we make sure the number of transhipment moves of
the candidate does not cross the limit of 5.

9 if interval(m) == destination then
// We are at the destination, finalize path candidates.

10 Delete all candidates that do not end at the destination port or that have no
transhipment moves. Determine each candidate’s path length and minimum
remaining capacity. Throw away the candidates that have no remaining capacity.

11 end

12 end

13 end
14 return path candidates;
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Appendix B

Maersk Asia-Europe data set

This appendix chapter contains all data of the Maersk Asia-Europe (MAE) data set, as

well as the data that was used to construct the set. In Table B.1, the original Asia-Europe

service network of Maersk is given, that was used to create the data set. Table B.2 shows

the vessels operating on these services. An overview of the ports in the MAE data set,

with the port names, port codes, country, and throughput, is given in Table B.3. In this

case, the throughput corresponds to the general troughput, i.e., not specifically related

to Asia-Europe demand. The throughput is used to determine the port’s importance

with regard to the other ports. Table B.4 specifies the fleet of the data set, with the

capacity of each vessel. In the table on page 190, we present the full demand matrix of

the MAE data set. The table on page 191 shows the distance matrix. Finally, Table

B.7 specifies the natural order of the ports in the data set. Recall that we assumed that

the ports lay in a natural order, such that the complex traveling salesman problem is

avoided. Although the demand and distance matrix are displayed in alphabetical order,

in the core data set file these matrices are shifted to fit the natural order. A map of the

ports in the data set is given in Figure B.1.
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Table B.1: Services in the original Maersk Asia-Europe network

AE1/AE10 AE10/AE1 AE2 AE3 AE6

Yokohama Shenzhen Yantian Busan Dalian Yokohama
Hong Kong Hong Kong Xingang Xingang Nagoya
Shenzhen Yantian Tanjung Pelepas Dalian Busan Shanghai
Tanjung Pelepas Le Havre Qingdao Shanghai Ningbo
Felixstowe Zeebrugge Kwangyang Ningbo Xiamen
Rotterdam Hamburg Shanghai Taipei Hong Kong
Hamburg Gdansk Bremerhaven Shenzhen Chiwan Shenzhen Yantian
Bremerhaven Gothenburg Hamburg Shenzhen Yantian Tanjung Pelepas
Tangiers Aarhus Rotterdam Tanjung Pelepas Jeddah
Jeddah Bremerhaven Felixstowe Port Klang Barcelona
Jebel Ali Rotterdam Antwerp Port Said Valencia
Shenzhen Da Chan Bay Singapore Tanjung Pelepas Damietta Algeciras
Ningbo Hong Kong Busan Izmit Tangiers
Shanghai Kobe Istanbul Ambarli Tanjung Pelepas
Kaohsiung Nagoya Constantza Vung Tau

Shimizu Ilyichevsk Shenzhen Yantian
Yokohama Odessa Hong Kong

Damietta Los Angeles
Port Said Yokohama
Port Klang
Tanjung Pelepas
Dalian

AE7 AE9 AE11 AE12
Shanghai Laem Chabang Qingdao Shanghai
Ningbo Tanjung Pelepas Shanghai Busan
Xiamen Port Klang Fuzhou Hong Kong
Hong Kong Colombo Hong Kong Shenzhen Chiwan
Shenzhen Yantian Zeebrugge Shenzhen Chiwan Tanjung Pelepas
Algeciras Felixstowe Shenzhen Yantian Port Klang
Tangiers Bremerhaven Tanjung Pelepas Port Said
Rotterdam Rotterdam Port Klang Piraeus
Felixstowe Le Havre Salalah Koper
Bremerhaven Tangiers Port Said Rijeka
Malaga Salalah Gioia Tauro Trieste
Shenzhen Yantian Colombo Genoa Damietta
Hong Kong Port Klang Fos Port Said
Shanghai Singapore Gioia Tauro Jeddah

Laem Chabang Damietta Port Klang
Port Said Singapore
Salalah Shanghai
Port Klang
Singapore
Liangyungang
Qingdao
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Table B.2: Vessels operating in the original Maersk Asia-Europe network

AE1/AE10 AE10/AE1 AE2 AE3 AE6

Sofie Maersk A.P. Moller Maersk Seville Maersk Kinloss Mathilde Maersk
Albert Maersk Skagen Maersk Maersk Saigon CMA CGM Debussy Maersk Antares
Carsten Maersk Sally Maersk Adrian Maersk Maersk Kuantan Gunvor Maersk
Maersk Singapore Arnold Maersk Maersk Salina Maersk Kowloon Mette Maersk
Clementine Maersk Svendborg Maersk Maersk Savannah CMA CGM Corneille Marit Maersk
Maersk Seoul Svend Maersk Anna Maersk Maersk Kelso Gerd Maersk
Maersk Taurus Columbine Maersk Arthur Maersk CMA CGM Musset Maersk Altair
Sine Maersk Maersk Tukang Maersk Stepnica Maersk Kwangyang Gudrun Maersk
Axel Maersk Clifford Maersk Maersk Semarang CMA CGM Bizet Marchen Maersk
Cornelia Maersk Maersk Salalah Maersk Stralsund Maersk Kensington Maren Maersk

Maersk Stockholm CMA CGM Baudelaire Georg Maersk
Grete Maersk
Maersk Alfirk
Margrethe Maersk

AE7 AE9 AE11 AE12
Eugen Maersk Maersk Sembawang Charlotte Maersk Maersk Kyrenia
Elly Maersk Maersk Sebarok Maersk Surabaya Safmarine Komati
Evelyn Maersk Maersk Serangoon Maersk Santana CMA CGM Berlioz
Edith Maersk SL New York CMA CGM Faust Safmarine Kariba
Estelle Maersk Maersk Seletar Soroe Maersk CMA CGM Balzac
Maersk Algol Maersk Kendal Susan Maersk Maersk Karachi
Ebba Maersk Maersk Sentosa Caroline Maersk CMA CGM Ravel
Eleonora Maersk Maersk Semakau Cornelius Maersk CMA CGM Flaubert
Emma Maersk Maersk Senang Chastine Maersk CMA CGM Voltaire
Gjertrud Maersk
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Table B.3: Ports in the MAE data set

Port name Code Country Region Visits∗ Troughput (TEU)

Aarhus DK AAR Denmark Europe 1 683,000
Algeciras ES ALG Spain Europe 2 3,042,759
Antwerp BE ANR Belgium Europe 1 7,309,639
Barcelona ES BCN Spain Europe 1 1,800,213
Bremerhaven DE BRV Germany Europe 5 4,535,842
Busan KR PUS South Korea Asia 3 11,954,861
Colombo LK CMB Sri Lanka Asia 2 3,464,297
Constantza RO CND Romania Europe 1 594,299
Dalian CN DLC China Asia 2 4,552,000
Damietta EG DAM Egypt Middle East 4 1,109,236
Felixstowe GB FXT United Kingdom Europe 4 3,100,000
Fos FR FOS France Europe 1 882,580
Fuzhou CN FOC China Asia 1 1,176,600
Gdansk PL GDN Poland Europe 1 240,623
Genoa IT GOA Italy Europe 1 1,533,627
Gioia Tauro IT GIT Italy Europe 2 2,800,000
Gothenburg SE GOT Sweden Europe 1 817,617
Hamburg DE HAM Germany Europe 3 7,010,000
Hong Kong CN HOK China Asia 9 20,983,000
Ilyichevsk UA ILK Ukraine Europe 1 95,119
Istanbul Ambarli TR AMB Turkey Europe 1 1,835,986
Izmit TR IZT Turkey Europe 1 156,321
Jebel Ali AE JEA Dubai Middle East 1 11,124,082
Jeddah SA JED Saudi Arabia Middle East 3 3,091,312
Kaohsiung TW KHH Taiwan Asia 1 8,581,273
Kobe JP UKB Japan Asia 1 2,247,024
Koper SI KOP Slovenia Europe 1 343,165
Kwangyang KR KAN South Korea Asia 1 1,810,438
Laem Chabang TH LCH Thailand Asia 1 4,621,635
Le Havre FR LEH France Europe 2 2,200,000
Liangyungang CN LYG China Asia 1 3,020,800
Malaga ES AGP Spain Europe 1 289,871
Nagoya JP NGO Japan Asia 2 2,112,743
Ningbo CN NGB China Asia 4 10,502,800
Odessa UA ODS Ukraine Europe 1 123,260
Piraeus GR PIR Greece Europe 1 1,403,408
Port Klang MY PKL Malaysia Asia 8 7,309,779
Port Said EG PSD Egypt Middle East 6 3,470,000
Qingdao CN TAO China Asia 2 10,260,000
Rijeka HR RJK Croatia Europe 1 145,000
Rotterdam NL RTM Netherlands Europe 5 9,743,290
Salalah OM SLL Oman Middle East 3 3,490,000
Shanghai CN SHA China Asia 7 25,002,000
Shenzhen Chiwan CN CWN China Asia 3 4,562,525
Shenzhen Da Chan Bay CN SAD China Asia 1 1,520,842
Shenzhen Yantian CN YTN China Asia 8 12,166,733
Shimizu JP SMZ Japan Asia 1 500,000
Singapore SG SIN Singapore Asia 4 25,866,400
Taipei TW TAP Taiwan Asia 1 1,000,000
Tangiers MA TNG Marocco Europe 4 1,000,000
Tanjung Pelepas MY TPP Malaysia Asia 10 6,000,000
Trieste IT TRS Italy Europe 1 276,957
Valencia ES VLC Spain Europe 1 3,653,890
Vung Tau VN SGN Vietnam Asia 1 1,849,746
Xiamen CN XMN China Asia 2 4,680,355
Xingang CN TXG China Asia 2 8,700,000
Yokohama JP YOK Japan Asia 2 2,798,002
Zeebrugge BE ZEE Belgium Europe 2 2,328,198

(*) Corresponds to the number of visits per port in the original service network.



Table B.4: Vessels in the MAE data set

Vessel name Capacity (TEU)

A.P. Moller 8160
Adrian Maersk 8272
Albert Maersk 8272
Anna Maersk 8272
Arnold Maersk 8272
Arthur Maersk 8272
Axel Maersk 8272
Caroline Maersk 8160
Carsten Maersk 8160
Charlotte Maersk 8194
Chastine Maersk 8160
Clementine Maersk 8648
Clifford Maersk 8160
CMA CGM Balzac 6251
CMA CGM Baudelaire 6251
CMA CGM Berlioz 6627
CMA CGM Bizet 6627
CMA CGM Corneille 6500
CMA CGM Debussy 6627
CMA CGM Faust 8204
CMA CGM Flaubert 6638
CMA CGM Musset 6540
CMA CGM Ravel 6712
CMA CGM Voltaire 6456
Columbine Maersk 8648
Cornelia Maersk 8650
Cornelius Maersk 8160
Ebba Maersk 14770
Edith Maersk 14770
Eleonora Maersk 14770
Elly Maersk 14770
Emma Maersk 14770
Estelle Maersk 14770
Eugen Maersk 14770
Evelyn Maersk 14770
Georg Maersk 9074
Gerd Maersk 9074
Gjertrud Maersk 9074
Grete Maersk 9074
Gudrun Maersk 9074
Gunvor Maersk 9074
Maersk Alfirk 9200
Maersk Algol 9200
Maersk Altair 9200
Maersk Antares 9200
Maersk Karachi 6930

Vessel name Capacity (TEU)

Maersk Kelso 6500
Maersk Kendal 6500
Maersk Kensington 6500
Maersk Kinloss 6500
Maersk Kowloon 6500
Maersk Kuantan 6500
Maersk Kwangyang 6500
Maersk Kyrenia 6978
Maersk Saigon 8450
Maersk Salalah 8600
Maersk Salina 8600
Maersk Santana 8478
Maersk Savannah 8600
Maersk Sebarok 6478
Maersk Seletar 6478
Maersk Semakau 6478
Maersk Semarang 8400
Maersk Sembawang 6478
Maersk Senang 6478
Maersk Sentosa 6478
Maersk Seoul 8450
Maersk Serangoon 6478
Maersk Seville 8478
Maersk Singapore 8478
Maersk Stepnica 8600
Maersk Stockholm 8600
Maersk Stralsund 8450
Maersk Surabaya 8400
Maersk Taurus 8400
Maersk Tukang 8400
Margrethe Maersk 9038
Marit Maersk 9038
Mathilde Maersk 9038
Mette Maersk 9038
Safmarine Kariba 6500
Safmarine Komati 6500
Sally Maersk 8160
Sine Maersk 8160
Skagen Maersk 8160
SL New York 6420
Sofie Maersk 8160
Soroe Maersk 8160
Susan Maersk 8160
Svend Maersk 8160
Svendborg Maersk 8160
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Destination

Aarhus (DK AAR )

Algeciras (ES ALG )

Antwerp (BE ANR )

Barcelona (ES BCN )

Bremerhaven (DE BRV )

Busan (KR PUS )

Colombo (LK CMB )

Constantza (RO CND )

Dalian (CN DLC )

Damietta (EG DAM )

Felixstowe (GB FXT )

Fos (FR FOS )

Fuzhou (CN FOC )

Gdansk (PL GDN )

Genoa (IT GOA )

Gioia Tauro (IT GIT )

Gothenburg (SE GOT )

Hamburg (DE HAM )

Hong Kong (CN HOK )

Ilyichevsk (UA ILK )

Istanbul Ambarli (TR AMB )

Izmit (TR IZT )

Jebel Ali Terminal (AE JEA )

Jeddah (SA JED )

Kaohsiung (TW KHH )

Kobe (JP UKB )

Koper (SI KOP )

Kwangyang (KR KAN )

Laem Chabang (TH LCH )

Le Havre (FR LEH )

Liangyungang (CN LYG )

Malaga (ES AGP )

Nagoya (JP NGO )

Ningbo (CN NGB )

Odessa (UA ODS )

Piraeus (GR PIR )

Port Klang (MY PKL )

Port Said (EG PSD )

Qingdao (CN TAO )

Rijeka (HR RJK )

Rotterdam (NL RTM )

Salalah (OM SLL )

Shanghai (CN SHA )

Shenzhen Chiwan (CN CWN )

Shenzhen Da Chan Bay (CN SAD )

Shenzhen Yantian (CN YTN )

Shimizu (JP SMZ )

Singapore (SG SIN )

Taipei (TW TAP )

Tangiers (MA TNG )

Tanjung Pelepas (MY TPP )

Trieste (IT TRS )

Valencia (ES VLC )

Vung Tau (VN SGN )

Xiamen (CN XMN )

Xingang (CN TXG )

Yokohama (JP YOK )

Zeebrugge (BE ZEE )
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Table B.7: Natural order of ports in the MAE data set

Number Port

1 Yokohama
2 Shimizu
3 Nagoya
4 Kobe
5 Busan
6 Kwangyang
7 Dalian
8 Xingang
9 Qingdao
10 Liangyungang
11 Shanghai
12 Ningbo
13 Fuzhou
14 Taipei
15 Xiamen
16 Kaohsiung
17 Shenzhen Yantian
18 Hong Kong
19 Shenzhen Chiwan
20 Shenzhen Da Chan Bay
21 Vung Tau
22 Laem Chabang
23 Singapore
24 Tanjung Pelepas
25 Port Klang
26 Colombo
27 Jebel Ali
28 Salalah
29 Jeddah

Number Port

30 Port Said
31 Damietta
32 Izmit
33 Istanbul Ambarli
34 Odessa
35 Ilyichevsk
36 Constantza
37 Piraeus
38 Rijeka
39 Koper
40 Trieste
41 Gioia Tauro
42 Genoa
43 Fos
44 Barcelona
45 Valencia
46 Malaga
47 Algeciras
48 Tangiers
49 Le Havre
50 Felixstowe
51 Zeebrugge
52 Antwerp
53 Rotterdam
54 Bremerhaven
55 Hamburg
56 Gothenburg
57 Aarhus
58 Gdansk
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Appendix C

Best network

In this appendix chapter we present additional information regarding the best service

network we found during the benchmark study. First, page 196 specifies the full service

network consisting of 8 routes. Then, on the next page, Table C.2 provides a comparison

between the original Maersk service network, and our best network. The comparison

focuses on the number of port occurrences in both networks.
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Table C.2: Comparison of port occurrence in Maersk network & our best network

Port name Occ. Maersk(1) Occ. Best(2) Occurs in routes

Aarhus 1 3 [1,3,8]
Algeciras 2 3 [4,5,6]
Antwerp 1 5 [2,4,5,7,8]
Barcelona 1 3 [1,3,4]
Bremerhaven 5 4 [1,2,3,7]
Busan 3 5 [1,1,2,3,5]
Colombo 2 4 [1,5,6,8]
Constantza 1 2 [3,7]
Dalian 2 3 [2,3,6]
Damietta 4 3 [6,7,8]
Felixstowe 4 3 [1,2,7]
Fos 1 3 [1,3,8]
Fuzhou 1 4 [2,5,5,6]
Gdansk 1 2 [3,8]
Genoa 1 5 [2,2,3,4,5]
Gioia Tauro 2 5 [3,4,5,7,8]
Gothenburg 1 3 [1,2,3]
Hamburg 3 5 [3,5,6,7,8]
Hong Kong 9 4 [1,2,5,8]
Ilyichevsk 1 0 -
Istanbul Ambarli 1 4 [1,3,5,7]
Izmit 1 2 [6,7]
Jebel Ali 1 4 [3,5,7,8]
Jeddah 3 3 [1,7,8]
Kaohsiung 1 4 [2,4,5,8]
Kobe 1 3 [3,4,5]
Koper 1 3 [1,4,6]
Kwangyang 1 6 [1,2,3,5,7,8]
Laem Chabang 1 2 [1,7]
Le Havre 2 4 [2,2,3,5]
Liangyungang 1 5 [1,2,3,5,7]
Malaga 1 3 [1,3,5]
Nagoya 2 3 [1,2,7]
Ningbo 4 4 [2,3,4,8]
Odessa 1 1 [2]
Piraeus 1 6 [1,4,5,6,7,8]
Port Klang 8 5 [1,3,5,5,6]
Port Said 6 5 [1,3,4,5,7]
Qingdao 2 7 [2,3,4,6,6,8,8]
Rijeka 1 2 [4,6]
Rotterdam 5 5 [1,2,5,6,7]
Salalah 3 7 [1,3,4,4,5,6,7]
Shanghai 7 4 [3,6,7,8]
Shenzhen Chiwan 3 3 [1,5,6]
Shenzhen Da Chan Bay 1 3 [1,5,6]
Shenzhen Yantian 8 5 [1,4,5,8,8]
Shimizu 1 2 [4,7]
Singapore 4 4 [2,3,6,7]
Taipei 1 2 [1,8]
Tangiers 4 3 [4,5,6]
Tanjung Pelepas 10 6 [1,3,4,4,6,6]
Trieste 1 3 [1,7,7]
Valencia 1 4 [1,3,4,6]
Vung Tau 1 5 [2,3,5,7,8]
Xiamen 2 6 [2,4,4,6,6,8]
Xingang 2 5 [1,2,3,6,8]
Yokohama 2 4 [1,5,6,7]
Zeebrugge 2 5 [4,5,6,6,7]

Total occurrences 144 221

(1) Corresponds to the number of visits per port in the original service network.
(2) Corresponds to the number of visits per port in our best service network.
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