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Abstract

This thesis contains an empirical review (financial case study) of two high fre-
quency stock return distributions and in particular an analysis of their tail-
behavior under temporal aggregation. In line with a long econometrical tra-
dition starting with [Mandelbrot, 1963], I study the unconditional return dis-
tribution of (stock) returns. I show that the (ultra) high frequency returns of
Dutch Koninklijke KPN N.V. (ticker: KPN NA) and Hong Kong’s Pccw
Limited (ticker: 0008 HK) show no signs of stable distributions, which is in
line with [Lau et al., 1990] but in contrast with [Pictet et al., 1996]. Using
simulation, I point out that market microstructure characteristics, i.e. tick size
and (il)liquidity, largely explain tail behavior of ultra high frequency under tem-
poral aggregation and show that the tail estimators kurtosis and tail index may
give contra-dictionary results. Handling ultra high frequency data, or data in
general, has many pitfalls. In the thesis I discuss these pitfalls and describe
methods to get around, such as tick data filtering. Overall, this thesis is an
advocate for thorough data analysis and econometrical research with a clear
focus on practicality.
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Chapter 1

Introduction

1.1 Research Objective

The goal of this thesis is to provide a financial case study of two specific high
frequency stock return distributions1. The stocks, KPN and Pccw, are com-
parable as they are both publicly held telecommunication companies, traded on
developed market places, Euronext Amsterdam and Hong Kong Stock
Exchange. However, both markets work differently which becomes apparent
when looked at their return distributions. I thoroughly investigate all aspects of
the high frequency return distributions, including the data quality and stylized
facts.

More specifically, I will focus on their tail behavior under temporal aggregation.
The importance of tail behavior, and other aspects of return distributions, un-
der temporal aggregation lies in the heart of the hypothesis of scalable markets.
With this hypothesis, one assumes that financial markets behave similarly on
different time scales. Proper examination of tail behavior under temporal ag-
gregation is needed to reject or accept this idea.

I will measure the tails according to standard kurtosis and the tail index using
the Hill estimator and using a simple OLS regression method. The quantitative
versus qualitative usability of the estimators will be investigated and I will try
to make plausible that illiquidity and tick size largely explain the tails of the
high frequency stock return distributions at the highest frequencies (< 1 hour).

1See [Eisenhardt, 1989] for a comprehensive paper on the process of inducting theory using
case studies. Table 1 in this paper provides a simple framework for building sound case studies.
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Chapter 1

Relevance High frequency data is essential to financials firms in general and
the Commodity Trading Advisor (CTA) Transtrend in particular. This CTA
applies a systematic trading strategy that exploits medium term trends2 in fi-
nancial markets. Although Transtrend is not known as a high frequency
trading specialist, high frequency data is used in many areas of its operation,
including but not limited to research and development, daily pricing and algo-
rithmic trading. Other financial firms, like banks and investment advisors, may
use high frequency data in similar areas.

As with all data, working with high frequency data knows many challenges.
First and foremost, the size of an average high frequency dataset is restric-
tive for complex modeling on a daily basis. Nevertheless, financial firms like
Transtrend, that have a clear focus on innovation, always look for ways they
can use new sources of information to improve their business. As such, un-
derstanding the full characteristic of high frequency data is of great interest to
financial academics and practitioners.

Methodology I choose to make this research particularly narrow, because of
both a practical as well as a theoretical reason. The main practical reason is
that high frequency data is plentiful by nature and by focussing on two specific
stocks, I confine the amount of computer power and time needed to handle the
data. Naturally, the disadvantage of this narrowing-down is that the amount
of quantitative statements that can be made about high frequency stock return
distributions in general, is limited to these two names. However, the amount
and quality of the qualitative statements increase with this focus on two names.

The second reason, which is more theoretical of nature, is because I agree with
John Maynard Keynes3, who regards economics as a moral science, and not
a natural science. According to [Skidelsky, 2009], Keynes acknowledges that
“there are areas statistical analysis [econometrics] may be a useful tool, but they
are limited to simpler, less abstract, relations.” Keynes: “The notion of testing
the quantitative influence of factors suggested by a theory as being important is
very useful and to the point. The question to be answered, however, is whether
the complicated model ... does not result in a false precision beyond what the
method ... can support.”

My impression of econometrics, at least at the (under)graduate level - at which
the foundation for additional study is laid anyway, is that there is little attention
for ideas behind the models and implications of the models. I think economics
is a hard subject to catch in numbers, especially because economics expressed
as a financial time series is the outcome of the whimsicality of human nature.
Citing [Skidelsky, 2009], “Keynes would have said that it is absurd to rely on
risk models based on past data at the moment bankers were creating complex
new products ever day.” I agree. This may sound strange from a researcher
working at a systematic, trend following CTA, whose business model it is to
use past data to exploit trends in financial markets. However, the fact that an
econometrician relies on markets depending on unreliable human beings, does
not mean he cannot try to explain. He should keep it mathematically simple

2Medium term means several weeks.
3John Maynard Keynes (1883 - 1946), British economist and revolutionizer of modern

economics.
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Introduction

though, and focus on know-why besides know-how. In the same vein, Keynes
told Jan Tinbergen4 in their dispute in writing, that one has to demonstrate
first of all that the methods used are applicable, instead of just applying them.
See e.g. [Garonne et al., 2004] and [Keuzenkamp, 1995].

In this line of thought, the main objective of this research will be to explain and
not to predict.

1.2 This thesis

In order to interpret the high frequency data of the two stocks properly, I will
discuss the following subjects throughout this thesis.

High frequency data In the age of computers, information is a blessing and
a curse.

The availability of cheap storage and high speed fiber optics has made informa-
tion plentiful. Google, high speed downloading and unlimited (free) storage of
data has become an integral part of our lives.

In financial markets, this is not different. Millions of trades take place every day.
Data providers like Reuters send a constant stream of high frequency data all
over the world. For many alternative investment managers, hedge funds or high
frequency traders this stream is indispensable to generate their income.

One could argue that high frequency time series, i.e. prices that are recorded
more often than daily, reflect a continuous arrival of news. These large datasets
are for example, tick-by-tick prices and quotes of the S&P500 stock index or
prices of the $/¥-foreign exchange rate sampled every five minutes. They con-
tain however, a lot of erroneous data. This data needs to be filtered to be
useable[Falkenberry, 2002].

The question with high frequency data arrises, what is valuable and what is not?
What can one do with this tsunami of information? This integral part of good
research is most often omitted. Some authors describe simple, ad-hoc filtering
rules as a side note ([Muller et al., 1990], [Dacorogna et al., 1993], [Pictet et al.,
1996]).

Because I think all research should start at the base, I will elaborately discuss
high frequency data, stylized facts, filtering and value in chapter 2.

Fat tails at lower frequencies According to [Bartolomeo, 2007] there are
three broad schools of thought in the discussion of fat tails in stock returns.

1. The returns have stable distributions and thus infinite variance.

2. The returns come from specific, identifiable, fat-tailed distributions (Gamma,
Student-t, et cetera).

4Jan Tinbergen (1903 - 1994), Nobel Prize winner and respectfully regarded as founder of
modern econometrics.
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3. The returns are conditionally normal at all time, but show fat tailed be-
havior due to time varying variance and volatility clustering.

The first school of thought starts with [Mandelbrot, 1963] and [Fama, 1965],
which will be discussed in chapter 3. The latter finds proof for Mandelbrot’s
stable Paretian hypothesis in daily US equity returns, but finds volatility clus-
tering as well. [Muller et al., 1990] find empirical evidence of a price change
scaling law in intraday foreign exchange rates. See [Rachev and Mittnik, 2000]
for a elaborate review of stable distributions.

The second school of thought uses asset pricing and risk free probabilities to
derive the theoretical distribution of stock returns. [Bartolomeo, 2007] refers to
[Gulko, 1999] who find risk neutral probabilities that are equivalent to returns
having a Gamma distribution. The literature on this idea is less comprehensive.

The third school of thought forms the foundation for the rich literature on
(G)ARCH models5. These models assume volatility clustering which is pre-
dictable. See e.g. [Engle, 1982] and [Bollerslev, 1986]. (G)ARCH models are
used on high frequency data to obtain volatility (and higher moments) esti-
mates on a lower frequency, like daily. Market microstructure (i.e. bid-ask
spreads and and tick sizes) however, heavily influence the usability to estimate
intraday volatility and kurtosis.

Research on fat tails is often applied to low frequency data, including daily,
weekly and monthly returns. High frequency data is mostly used to estimate
volatility at lower frequencies, using measures as realized volatility. Some litera-
ture on lower frequency can be used to research higher frequency data, although
one should recognize that the (trading) agents that act on one time scale are
different in nature from those that act at another time scale. Whether this leads
to the rejection of scalability of financial markets, is to be examined.

Stable distributions There are many fat-tailed distributions that have been
fitted to financial time series, such as log-normal, Student-T, Cauchy and mix-
ture distributions. These distributions often have the advantage that they are
well understood and as there exist analytical expressions for their pdf s, they are
easy to estimate.

A less widely used distribution is the stable distribution. Stable distributions
have the attractive property that the sum of n copies of independent, identically
distributed random variables is identically distributed as well. So, in a financial
context this means that in considering asset returns, it does not depend which
time scale one is looking at, i.e. hourly, daily or monthly returns will all have
the same distribution.

In fact, stable distributions are the only distributions (with the normal distri-
bution as a special case of the stable distribution) that have this property. This
property forms the heart of a generalized Central Limit Theorem (CLT): the
distribution of the sum a large number of independent identically distributed
random variables belongs to a family of distributions known as stable distribu-
tions. This is the main reason that price returns should have scale-invariant
properties in the first place.

5(G)ARCH, (Generalized) Autoregressive Conditional Heteroskedasticity
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The relative unpopularity of stable distributions is due to two major drawbacks.
Firstly, the variance and higher moments do no exist for stable distributions6,
and secondly, there is generally no analytical expression for the pdf available.
See chapter 3 or [Rachev and Mittnik, 2000].

The reason I will look at the stable distribution is because it offers an interesting
fat tailed alternative for the normal distribution. The stable distribution is a
so called power law distribution. Because of the research objective of this the-
sis (which is to explain), the use of the stable distribution suffers no drawback
from the lack of finite variance and lack of analytical pdf. Stable distributions
provide a very general approach and give a lot of insight into the tails of distri-
butions. The abundant availability of computational power has made the lack
of analytical expression of the pdf less important. The goal is to test the tails
and stability of high frequency returns. For this purpose, the stable distribution
is very well suited.

I will discuss stable distributions in more detail in chapter 3.

Organization This thesis is structured as follows.

First I will look at high frequency data in chapter 2. I will discuss the stylized
facts and show empirically what the influence of outliers and unfiltered data is.
I will embed my empirical findings in the literature. As the data is the timber
of the house I am building, this data analysis will be substantial.

In chapter 3, I will give an overview of stable distributions and tail indices,
both from a theoretical a well as an empirical point of view. This part is needed
to obtain a better understanding of stability and tail behavior. I will discuss
the literature on (unconditional) stable return distributions of (stock) returns,
starting with [Mandelbrot, 1963] and [Fama, 1965].

In chapter 4, I will report my findings on the tail behavior of the high frequency
data. This part will contain an in depth analysis on a individual level for the
two stocks KPN and Pccw. In chapter 5 I will describe a simulation of high
frequency data that captures the findings of chapter 4 on tail behavior under
temporal aggregation.

Finally, I will conclude in chapter 6.

6This does not count for the limiting case of the normal distribution
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Chapter 2

High frequency data

Since the age of computers, larger and larger datasets have become available.
In finance, this has lead to large datasets of prices recorded more often than
daily. This what we call high frequency data.

High frequency data covers everything between prices recorded tick-by-tick and
daily prices. Most often seen are tick-by-tick prices, prices recorded over five
minutes intervals and hourly prices.

As mentioned in chapter 1 these datasets contain a lot of information, of value
for both academics and practitioners. However, there are many challenges as-
sociated (in handling the information) as well.

The most important challenge is that high frequency datasets are not as freely
available as daily datasets. The problem is budget. Well known and most
studied datasets have been provided by Olsen & Associates (1995, foreign ex-
change data) and the Trade and Quotation database which consists of quotes
and prices traded on NYSE, AMEX (now part of NYSE) and NASDAQ. The
first dataset is freely accessible. Other datasets however are very costly and
most often only collected by commercial investment firms, as opposed to uni-
versities and research groups. In this research I will use in house Transtrend
data. It contains both spot and futures prices of almost all commodities, stocks,
fixed income and foreign exchange markets from all over the world.

2.1 Value of high frequency data

In general, high frequency data is valuable at any stage of the investment pro-
cess. Some examples of how high frequency data can be used, are given below.

1. High frequency data as primary source of price information. If you would
follow the adage ‘the market is always and ultimately right’, collecting as
much information about market prices as sensible, is of extreme impor-
tance. For high frequency traders, collecting as much prices as possible
is viable, since the more they know, the quicker they can react, which
ultimately will give them the edge over competition.

7
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2. High frequency is not solely of interest for high frequency trading strate-
gies. Even for lower frequency investments, looking at higher frequencies
may give a better understanding (i.e. pricing) of the market at the desired
frequency. A clear example of how higher frequencies may influence pric-
ing at a lower frequency, is shown in figure 2.1. In this figure, we see that
some outliers at the end of the day, provide a wrong daily price. Next to
that, the volatility estimate of that day will be wrongly biased by those
outliers.

3. High frequency trading as a source of secondary information. For instance,
the data can be used for estimation of daily volatility and daily correlation.
It can even be used for the estimation of trading costs, i.e. slippage, which
depends on bid-ask spreads and intraday liquidity.

Figure 2.1: Traded prices of the common stock of Ageas (former Fortis),
traded on Oct. 13 2010 on Euronext Bruxelles. Both high and low of the
day are clearly influenced by some severe outliers at the end of the day. A look
a this figure reveals a lot of valuable insight in the behavior of this stock on that
day: the real volatility is a lot lower than the observed (uncorrected) volatility.
Daily data provided by Reuters and Bloomberg may have been false in this
particular case.

These examples are far from complete. In general, high frequency data is impor-
tant for anything from data collection to making investment decisions, trading,
portfolio construction, estimation of executing costs, et cetera.

2.2 Stylized facts

The stylized facts of high frequency returns are similar to, but distinct from
daily returns, see [Taylor, 2005]. Intraday returns are defined equivalently to
daily returns, i.e. the logarithm of the price change during some interval (or
from trade to trade). The stylized facts of daily returns are as follows.

8
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1. The distribution of returns is not normal. It is approximately symmetric;
it has fat tails and is high peaked.

2. There is almost no correlation between returns. This is regardless of the
lag between the returns.

3. There is positive first order dependence between absolute returns. This is
valid for squared returns as well.

These stylized facts cover (low frequency) financial returns and are mostly undis-
puted. For high frequency data they seem to be valid as well.

Throughout this thesis I use high frequency data of two stocks: Dutch
Koninklijke KPN N.V and Pccw Limited from Hong Kong.

KPN is a Dutch telecommunication company. Its main listing is on Eu-
ronext Amsterdam (Reuters Identification Code (RIC): KPN.AS) and
has a market capitalization of 2.5b USD. Due to European regulation
(MIFID), KPN is traded on many other exchanges, multilateral trading
facilities (MTF) and other (dark) trading pools. To grab the full market, I
use a composite data stream to capture all trades on the primary exchange
and all alternative venues. The RIC for this stream is KPNEUR.xbo.

Pccw is a telecommunication company as well. Its main listing (and only
listing besides a US ADR) is on the Hong Kong Stock Exchange (RIC:
0008.HK). Pccw has a market capitalization of 2.5b USD.

The data for botch stocks runs from January 1, 2010 through June 30,
2010. I will use prices on business days between the official opening hour
and closing hour, and where applicable, I respect trading breaks. Overnight
returns are omitted. I do not use after hours data.

Fat tails Intraday returns are leptokurtic. This means they have fat tails and
high peaks. This is shown for KPN in figure 2.2. In this figure we see four
histograms for four different measurement intervals. With increasing interval
(decreasing frequency) we see a return distribution that gets less discrete. This
is because tick size gets less important with decreasing frequency.

Figure 2.3 shows the intraday returns for Pccw. The discrete steps in all
histograms arise as a result of discrete price changes due to fixed tick sizes. The
high peak at 0 for the highest frequencies is mainly due to the fact that the
prices are more often recorded than there are trades in the particular intervals.
This is a form of illiquidity.

Figure 2.2 and 2.3 nicely show that two apparently comparable telecom stocks,
show completely different return distributions. This is a first sign, that we have
to be careful with general, quantitative statements about the return distribu-
tions. Or in other words, we should know what we are doing.

Kurtosis Although kurtosis may not be the right measure to estimate the
tails (I am getting a little ahead of myself), it can be insightful to see how the
tails of the distribution (in the sense of kurtosis) behave under aggregation.

9
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Figure 2.2: Histogram of log-returns of KPN for different frequencies. The data
runs from January 1, 2010 through June 30, 2010. From top left clockwise: 15
second returns, 5 minute returns, 15 minute returns and 1 hour returns.

Figure 2.3: Histogram of log-returns of Pccw for different frequencies. The
data runs from January 1, 2010 through June 30, 2010. From top left clockwise:
15 second returns, 5 minute returns, 15 minute returns and 1 hour returns.

10
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The kurtosis increases with the frequency of the returns, which is to be expected
if finite fourth moments and i.d.d. returns are assumed. In figures 2.4 and 2.5
kurtosis is plotted vs frequency for KPN and Pccw. It shows three lines.

Figure 2.4: Kurtosis vs frequency (expressed in interval seconds) for KPN. The
data runs from January 1, 2010 through June 30, 2010. The line labeled change
shows kurtosis calculated using non-overlapping time intervals. The line labeled
mchange shows kurtosis calculated using overlapping time intervals. The line
labeled tchange is the theoretical kurtosis based on mchange, calculated using
a simple bootstrap. The dashed lines show the 95% confidence interval.

First line, labeled change, shows kurtosis that is calculated on normal log-
returns over non-overlapping time intervals.

The second line, labeled mchange, shows kurtosis calculated on log-returns
over overlapping intervals. This means the following. Assume we are interested
in 15 second returns and kurtosis. In that case we calculate the return over the
first 15 seconds of trading (starting the first second of trading), followed by the
returns over the 15 seconds starting from second 2 of trading, followed by the
returns over 15 seconds starting in second 3, and so forth. I divided the interval
in 15 parts, so in total you get 15 times more returns than in the normal case.
For example, for the 1-hour interval returns, you get returns starting at 0 min,
4 min, 8 min, through to 56 min. The kurtosis is estimated by calculating the
kurtosis over the 5 parts individually and then averaging over these 5 kurtoses.
The advantages of this method are that the start of the sample choice does
not influence the estimation and that we have more robust estimator. The line
mchange runs smoother and clearly shows an increase of the kurtosis with
increasing frequency.

The third line is the theoretical kurtosis, calculated using a simple bootstrap

11
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Figure 2.5: Kurtosis vs frequency for Pccw. The data runs from January 1,
2010 through June 30, 2010. The line labeled change shows kurtosis calculated
using non-overlapping time intervals. The line labeled mchange shows kurtosis
calculated using overlapping time intervals. The line labeled tchange is the
theoretical kurtosis based on mchange, calculated using a simple bootstrap.
The dashed lines show the 95% confidence interval.
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and assuming i.d.d. returns. So for example, the theoretical 10 minute kurtosis
κt10m is given by 3 + (κ5m − 3)/2 in which κ5m is the estimate of the 5 minute
kurtosis (and in this case based on overlapping returns).1

Clearly, the estimated kurtosis is a lot bigger than can be expected if we assume
i.d.d. returns. The daily (sample) kurtosis of KPN between January 1, 2010
through June 30, 2010 is estimated on 4.15. The daily (sample) kurtosis of
Pccw for the same date interval is 15.09.

These findings are in line with prior research. For example [Pictet et al., 1996]
report kurtoses of foreign exchange rate returns of some major currencies against
the USD. For 30 minutes intervals the kurtosis of the USD/CHF is 66.76 and for
6 hours and 24 hours intervals the kurtosis is 10.09 and 5.68. The used sample
runs from January 1, 1987 to June 30, 1996. This is a lot bigger than supposed
normality would suggest.

The kurtosis of Pccw plotted in figure 2.5 seems to explode for lower frequencies
up to one hour. Close look at the histogram for hourly returns shows extreme
movement on January 20, 2010, and in particular between 07:00 GMT and 08:00
GMT. Figure 2.6 shows this movement of 17.5 % in little less than one hour
and the sharp correction just after the start of trading the next day. Even on a
daily scale this outbreak of volatility is extreme.

If we omit all data on January 20 and January 21, we get a clearer picture of
the relation between frequency and kurtosis. Figure 2.7 shows this adjusted
sample. It exhibits the same pattern as can be seen for KPN in figure 2.4: for

1Let Xi be stochastic variables with zero mean. Let SN be a sum of N i.d.d. copies of Xi,
so SN =

∑N
i=1Xi. Let σ2

X be the unconditional variance and κX the unconditional kurtosis
of Xi.

The variance of SN is given by

E(S2
N ) = E((

N∑
i=1

Xi)
2) = E(

N∑
i=1

X2
i ) + E(

N∑
i=1

N∑
j=1,i 6=j

XiXj) = NE(X2
i ) = Nσ2

X (2.1)

in which the last part follows because of the independency of the copies. The kurtosis of
SN is given by E(S4

N )/E(S2
N )2. The first part is given by

E(S4
N ) =E((

N∑
i=1

Xi)
4) = E(

N∑
i=1

X4
i ) + E(3

N∑
i=1

N∑
j=1,i 6=j

X2
i X

2
j )+

E(4

N∑
i=1

N∑
j=1,i6=j

X3
i Xj) + E(6

N∑
i=1

N∑
j=1,i 6=j

N∑
k=1,k 6=i,k 6=j

X2
i XjXk)+

E(
N∑
i=1

N∑
j=1,i 6=j

N∑
k=1,k 6=i,k 6=j

N∑
l=1,l 6=i,l 6=j,l 6=k

XiXjXkXl)

=E(

N∑
i=1

X4
i ) + E(3

N∑
i=1

N∑
j=1,i 6=j

X2
i X

2
j ) = NE(X4

i ) + 3N(N − 1)σ4
X

(2.2)

. such that the kurtosis of SN , κS is given by

κS =
E(S4

N )

E(S2
N )2

=
NE(X4

i ) + 3N(N − 1)σ4
X

N2σ4
X

=
1

N
(κX − 3) + 3. (2.3)

See [Lau and Wingender, 1989] for a review of this so-called intervaling effect.
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Figure 2.6: Four days of tick data for Pccw. The data runs from January
19, 2010 through January 22, 2010. The extreme hourly movement (extreme
autocorrelation) in the last hour of trading on January 20 heavily influences the
kurtosis for frequencies up to one hour.

the highest frequencies the kurtosis is very high, for lower frequencies it first
decreases and then increases slightly and finally decreases slowly for the lowest
frequencies. In chapter 4 and 5 this behavior will be examined more closely.

After some ‘google-ing’, I found a post on a tech blog2 on January 20, 2010 that
reports of some rumors about the possible introduction of the Google Nexus
S smart phone on the Hong Kong market by Pccw. On January 21, Pccw
publishes a press release on its website3 its introduction of the first Android
powered smart phone in Hong Kong. The rumors might have triggered the
extreme movement on January 20 (and the correction on January 21).

Autocorrelations Intraday returns are almost uncorrelated and if they are,
it is mostly negative. There are two plausible explanations for the (small)
negative dependence: the bid-ask spread and relatively high trading costs for
high frequency trading. Largest negative dependence can be found for highest
frequency (tick-by-tick).

As an example, tick data for one day for the two individual stocks is plotted
in figure 2.8. The average tick size for these stocks over the period January
through June was for KPN 4.42 bps and for Pccw 45.5 bps. The average
bid-ask spread was for KPN 4.45 and for Pccw 45.5 bps.

Table 2.1 makes clear that tick size and bid-ask spread have a negative effect
on the autocorrelation (first lag), For Pccw the tick-by-tick returns are highly
negatively correlated. Others (e.g. [Lin et al., 1999]) find this relatively high
negative correlation for single stocks as well. They find for IBM and Intel

2see http://cn.engadget.com/2010/01/20/nexue-one-pccw-launch-rumor/
3see http://www.pccw.com/
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Figure 2.7: Kurtosis vs frequency for Pccw. The data runs from January
1, 2010 through June 30, 2010 and leaves out the data for January 20 and
January 21. The line labeled change shows kurtosis calculated using non-
overlapping time intervals. The line labeled mchange shows kurtosis calculated
using overlapping time intervals. The line labeled tchange is the theoretical
kurtosis based on mchange, calculated using a simple bootstrap. The dashed
lines show the 95% confidence interval.
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Figure 2.8: One day (March 11. 2010) of high frequency data for KPN (top)
and Pccw (bottom).

16
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autocorrelation of -0.27 and -0.48. For foreign exchange data and stock indices,
the autocorrelation is a lot smaller, almost negligible.

Table 2.1: First order autocorrelation of high frequency returns

Frequency (in s) KPN Pccw
15 -0.13920 -0.17466
30 -0.15471 -0.23268
45 -0.14926 -0.26607

60 (1 minute) -0.14227 -0.28761
90 -0.13088 -0.30851
120 -0.11637 -0.31895
150 -0.11528 -0.32669

300 (5 minutes) -0.09218 -0.31968
450 -0.08006 -0.29424
600 -0.08004 -0.29068
750 -0.07172 -0.27241

900 (15 minutes) -0.05544 -0.26538
1200 -0.04161 -0.23528
1500 -0.03278 -0.21580
1800 -0.03141 -0.19596
2700 -0.05640 -0.15744

3600 (1 hour) -0.06199 -0.10390

Intraday volatility As for low frequency returns there is substantial positive
dependence between absolute and squared returns for high frequencies. The
dependence for high frequencies even seems to be more persistent and reaches
out over multiple days. Table 2.2 shows this high dependency for KPN and
Pccw. It is very intuitive to assume that high tick size and bid-ask spread have
a positive effect on this dependancy.

The autocorrelation of absolute returns is not confined to first lags. Table 2.3
and 2.4 show the autocorrelation for multiple lags. Clearly, the dependency is
significant for many lags, even for lags that capture a number of days. This styl-
ized fact has been study by, amongst others, [Andersen and Bollerslev, 1997a],
[Andersen and Bollerslev, 1997b] and [Dacorogna et al., 1993]. They find signifi-
cant seasonal patterns for DM/$ absolute returns over thirty-minute and twenty
minute respectively. See figure 2.9 from [Chang and Taylor, 2003].

2.3 Intraday seasonality

Seasonality is found for intraday volatility as well. [Taylor, 2005] express these
finding in a fourth and fifth stylized fact.

4. The volatility depends on the time of day. This variation is significant.

5. There may be shot bursts of high volatility in intraday prices. These bursts
are (mainly) caused by major macroeconomic announcements.

17
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Table 2.2: First order autocorrelation of high frequency absolute returns

Frequency (in s) KPN Pccw
15 0.13677 0.11169
30 0.15385 0.13310
45 0.15970 0.14460

60 (1 minute) 0.16337 0.14951
90 0.16741 0.14894
120 0.17520 0.14854
150 0.18196 0.15390

300 (5 minutes) 0.18076 0.15092
450 0.17369 0.14798
600 0.17327 0.15657
750 0.17788 0.16552

900 (15 minutes) 0.17140 0.15966
1200 0.16426 0.16319
1500 0.15208 0.15693
1800 0.14964 0.16297
2700 0.13468 0.09954

3600 (1 hour) 0.12064 0.05775

Figure 2.9: Autocorrelation for DM/$ thirty-minute absolute returns, see
[Chang and Taylor, 2003].
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Following [Taylor and Xu, 1997b] the intraday volatility patterns are estimated
by assuming the periodic pattern repeats itself every day. Suppose the return
for day t, denoted by rt, is the sum of N intraday returns, rt,j , 1 ≤ j ≤ N . Let
the return from market close on day t − 1 to open on day t be given by rt,1.
The latent volatility for day t is σt, so

rt =

N∑
j=1

rt,j and var(rt|σt) = σ2
t (2.4)

Simple estimates of the variance proportions, if zero mean and uncorrelated
intraday returns are assumed, are given by

λ̂j =

∑
t r

2
t,j∑

t

∑N
k=1 r

2
t,k

and κ̂j =

∑
t r

2
t,j∑

t

∑N
k=2 r

2
t,k

(2.5)

for all day and market open volatility respectively.

Figure 2.10 illustrates this intraday volatility pattern for KPN and Pccw (time
zone is local time). It shows for both stocks a (clear) U-shaped pattern. For
KPN the mean (unscaled) absolute return is at its highest at the opening and
closing of the market and at its lowest around midday. In addition to that, there
are some spikes around 14:30,15:30 and 16:00, which are all due to the opening
of the US futures and stock markets and US news releases. For Pccw volatility
levels at the opening and closing of both trading sessions is higher than at the
middle of the trading sessions.

2.4 Filtering

All data contains aberrant outliers, some caused by human and some by techni-
cal errors (which are constructed by human hand). Most of these outliers have
a clear effect on data quality, see for example figures 2.1 and 2.11.

These errors need to be filtered before the data can be used for analysis. In
filtering, there exist two risks. First, the risk of underfiltering and not flagging
incorrect trades and quotes. Second, the risk of overfiltering and flagging to
many trades and quotes. Both risk may severely influence your analysis by
overstating or understating data quality.

Some authors regard data filtering vital for there research. For example, [Muller
et al., 1990] find in their analysis of high frequency foreign exchange data the
following types of high frequency foreign exchange specific errors.

1. The prices of our data source are quoted prices and not actual trading
prices.

2. The prices come from many contributors in an irregular sequence. The
market makers tend to publish new prices in order to attract traders in
the direction in which they want to trade.
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Figure 2.10: Intraday volatility for KPN (top) and Pccw (bottom). Time zone
is local time. Volatility is estimated by 15 seconds absolute returns.
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Figure 2.11: Traded prices of the common stock of M6-Metropole Tele-
vision, traded on Nov. 5 2010 on Euronext Paris. A clear spike at 10:25
severely influences the profile of this stock on that day.

3. The main local markets can have different trading habits (e.g., different
average volumes per transaction or bid-ask spreads) even if their active
periods overlap.

4. There are transmission delays varying from few seconds up to few minutes.

5. There are transmission breakdowns or other failures that cause database
holes.

6. Some very infrequent prices are completely aberrant (such as 100 times
the normal price). These outliers are due to human and technical errors
in the communication channels.

Many of these errors are very specific for the data and data sources that are
used. Moreover, high frequency trading has much increased over the years, both
in volume as in number of agents, i.e. trading specialists and trading strategies.
This has led to new and different types of errors. As an example, consider the
flash crash outliers of May 2010 due to human programming errors of ultrahigh
frequency trading strategies. See for this example figure 2.12.

In the flash crash of May 6, 2010, at 2:42 pm, ”the Dow Jones equity market
began to fall rapidly, dropping more than 600 points in 5 minutes for an almost
1000 point loss on the day by 2:47 pm. Twenty minutes later, by 3:07 pm, the
market had regained most of the 600 point drop. According to a report by the
CFTC and SEC4, the main cause of the crash was due to a failing computer
algorithm: against a backdrop of unusually high volatility and thinning liquidity
that day, a large fundamental trader (a mutual fund complex) initiated a sell

4Findings regarding the market events of may 6, 2010, report of the staffs of the CFTC
and SEC to the joint advisory committee on emerging regulatory issues. See http://www.

sec.gov/news/studies/2010/marketevents-report.pdf.
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Figure 2.12: Flash crash of May 6, 2010. E-Mini volume and price.

program to sell a total of 75,000 E-Mini contracts (valued at approximately $
4.1 billion) as a hedge to an existing equity position. The computer algorithm
was set to target an execution rate set to 9 % of the trading volume calculated
over the previous minute, but without regard to price or time.” 5

[Falkenberry, 2002] gives an overview of high frequency equity data errors and
filtering. In summary, bad high frequency data emerges from the asynchronous
and voluminous nature of financial data. Errors occur due to human mistakes,
both directly through trading as indirectly through designing and developing
the technical infrastructure. A filter should do the following.

1. Create a time series for historical research that eliminates outliers in the
trader’s base unit of analysis without introducing concept and techniques
that cannot be applied in realtime.

2. Not change the statistical properties of data relative to that which will be
used in real time.

3. Not introduce excessive delay due to computation time or the need for
excessive confirming data points, i.e. a suspected bad tick at time t being
confirmed by future prices generated at time t+ 1, t+ 2, et cetera.

4. Be adaptive across securities with different tick frequency profiles

5. Be adaptive across securities with different price levels

5See http://en.wikipedia.org/wiki/Flash_crash.
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He argues that

The primary objective in developing a set of tick filters is to
manage the overscrub/ underscrub tradeoff in such a fashion as to
produce a time series that removes false outliers in the trader’s base
unit of analysis that can support historical backtesting without re-
moving real-time properties of the data.

This kind of filter is more general and less dependent on the specific type of
analysis. However, these requirements are not complete. For example, if you
want to flag trades with a price of 0, which makes sense for normal securities
or futures contracts, obviously you cannot use this filter for calendar spread fu-
tures contracts, such as wheat - wheat futures for example, tradable as calendar
spreads on some exchanges. So being adaptive across securities is questionable.

In general, the ultimate goal must always be in mind when creating a correct
filter. It is an illusion to think that a filter will only flag errors and leave
the correct data totally intact. Consider this comparable with a physicist who
changes a quantum system by observing it. This is fundamentally inevitable.

In this thesis, I will use in house Transtrend data. This data is filtered using
a filter that is based on a two step approach.

1. Filter source specific, i.e. exchange and/or product/security specific, trades
and quotes which are labelled by the source to be fictitious, non represen-
tative or just wrong. These include, amongst others, trades that are re-
ported out-of-order or delayed, trades that are not single traded but part
of a bunched trade or spread trade, quotes that are part of a opening or
closing auction, et cetera. This includes cancelled trades as well. So, a
traded that is cancelled by an exchange, will be filtered in this part.

2. Filter non-source specific trades and quotes that are outliers compared to
trades and quotes in their direct proximity, in respect of time, level and
volatility, using both information from the past and the (nearby) future.
This means that in some cases, information that comes available after
the fact (such as price levels after some news announcement) is used to
filter. The boundaries implied by direct proximity will depend on profile,
so ‘normal’ activity and volatility.

The first part is obvious and mostly easy. Trades and quotes can be flagged
and deleted or adjusted. A concrete example of such a trade is a trade that is
transmitted at 11:01 but has a time stamp of 10:59. This time stamp is created
by the data vendor or even by the exchange. The trade is easily adjusted to
10:59, as long as there are no other trades or quotes after 10:59 and before 11:01.

Figures 2.13 and 2.14 show two examples of quotes that are indicative and not
usable for statistical analysis.

The second part involves more subjective rule-making. The base assumption
behind the rule-making is that any trade or quote could have been made by a
rational trader. So, for example, an offer below the prevailing best bid price is
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Figure 2.13: Traded prices and quotes of the common stock of AXA Asia
Pacific Holdings, traded on Nov. 5 2010 on Australian Securities Ex-
change. Quotes pre-hours and after-hours are part of a opening and closing
auction and are clearly wrong (bids are higher than offers). Even after the offi-
cial opening some quotes are given that are wrong and could influence analysis.

Figure 2.14: Traded prices and quotes of the common stock of Resona Hold-
ings, traded on Nov. 5 2010 on Tokyo SE. Quotes pre-hours and after-hours
are part of a opening and closing auction. The offers after the opening are wrong
(you could buy at this prices). The stock went limit-down some minutes after
the official opening.
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not rational. However, a trade very much off the market is not irrational per
se. It can be a trade by informed agents; this will only be clear after some
other quotes at the same new level. If the market returns to the old level within
certain time and range, the off-market trade will be deleted, as in retrospective
it was not a rational trade (for one of the involved parties at least).

The acceptance levels are based on prior market activity and volatility.

Table 2.5 shows the percentage of filtered trades for some (groups of) stocks.
In general between 0% (KRX Korea Exchange) and 20% (Tokyo SE) of
quotes and trades are filtered, mostly depending on exchange and relevant trad-
ing platform (all electronic, composite, partly open out-cry, opening/closing
auctions).

Table 2.5: Mean percentage of filtered trades and quotes per day between Oct
8, 2010 and Nov 5, 2010.

Stock part 1 (%) part 2 (%)
KPN 0.057 0.92
Pccw 5.9 0.13

Euronext AMS
(37 stocks) 0.15 2.1

Hong Kong SE
(222 stocks) 5.9 0.47
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Chapter 3

Stable distributions

3.1 Mandelbrot and the stable hypothesis

In his seminal work on The variation of certain speculative prices [Mandel-
brot, 1963] Mandelbrot critically reviews the work of Louis Bachelier on the
independence and normality of price changes of the price of a stock, or of a
unit of a commodity (see e.g. [Bachelier, 1900]). Bachelier argues that if the
price changes from transaction to transaction are independent, identically dis-
tributed, random variables with finite variance, and if the transactions take
place uniformly spaced through time, the central-limit theorem leads to price
changes across days, weeks or months that are normally distributed (as they are
sums of changes from transaction to transaction [Fama, 1963].

In more formal terms, Bachelier assumes that, if we let Z(t) be the price at the
end of time t, then the successive differences Z(t+ ∆t)−Z(t) are independent,
normally-distributed random variables wit zero mean and variance proportional
to the differencing interval ∆t. This process has become commonly known as
Brownian motion. According to Mandelbrot is has been known to empirical
economists since 1900 that price changes of most financial time series were too
peaked to be samples from Gaussian distributions. This is equivalent to stating
that histograms of price changes usually contain so many outliers that a normal
distribution fitted to the histogram of data price change series is much lower
and flatter than the distribution of the price changes themselves. Figure 3.1 is
reprinted from Mandelbrot’s work and shows a Bell curve fitted to histograms
of fifth and tenth price changes of wool between 1800-1937.

Mandelbrot finds that the tails of distributions of price changes are so extraor-
dinarily long that the second moment (variance) does not tend to any limit.
These observations lead to an approach which he warrants to be radically new.
He makes the following two assumptions: 1) the variances of empirical distri-
butions of price changes are infinite, and 2) the empirical distributions are best
described by a non-normal family of probability distributions first discovered by
Paul Lévy [Lévy, 1925], which he calls stable Paretian (I will call them stable
distributions).

The implications of these assumptions reach far. If the variance of price changes
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Figure 3.1: Two histograms illustrating departure from normality of the fifth
and tenth difference of monthly wool prices, 1890-1937. In each case, the con-
tinuous bell-shaped curve represents the Gaussian ”interpolate” based upon the
sample variance. See [Mandelbrot, 1963].

is infinite, sample variance is a meaningless measure of dispersion and with this
a meaningless measure of risk. Many modern statical tools in finance are based
or dependent on the assumption of finite variance, which is misleading if the
stable Paretian hypothesis holds.

See e.g. [Fama, 1963] for a comprehensive discussion of the theoretical and
empirical implications Mandelbrot’s findings. See [Fama, 1965] for Mandelbrot’s
ideas applied to US stock returns. This research finds fat tails and volatility
clustering.

3.2 Stable paretian distributions

The logarithm of the characteristic function of stable distributions1 is given by

log f(t) =

{
iδt− γα|t|α[1− iβ t

|t| tan(απ2 )] if α 6= 1

iδt− γ|t|[1 + iβ t
|t|

2
π log(γ|u|))] if α = 1.

(3.1)

(The case if α = 1 will be sometimes left out for convenience). The four param-
eters α, β, γ and δ are respectively called the index of peakedness (or stability
index or tail index ), index of skewness, scale parameter and the location param-
eter.

1There are actually many parametrizations, see e.g. [Nolan, 2010].
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The skewness index β determines the symmetry of the distribution. Its values
can be −1 ≤ β ≤ 1. If β = 0 the distribution is symmetric.

In review of extreme risks, so the tails of a distribution, the stability index α is
crucial. It determines the total probability contained in the tails.

The values of α are in the interval between 0 and 2. If we let α = 2, we get

log f(t) = iδt− γt2. (3.2)

which is the logarithm of the characteristic function of the Gaussian distribution.
When 0 < α < 2, the extreme tails are higher than for the normal distribution.
The variance only exists (i.e. is finite) is α = 2. The mean of stable distributions
exists as long as α > 1. Mandelbrot assumes that 1 < α < 2, so that the mean
of the distribution of price changes exists but that the variance is infinite. This
is in contrast to the Gaussian hypothesis which asserts α = 2, for which the
variance does exist.

It should be emphasized that although the population variance does not exist,
for finite samples the sample variance (and higher moments) can always be
calculated. The information contained in this is however very limited since the
sample moment does not converge to the population moment.

There are three important properties of stable distributions. First of all, stable
distributions are fat-tailed, or leptokurtic, so more probability mass is located
in the tails of the distribution than for the normal distribution. Secondly, stable
distributions are invariant under addition (this is actually called stability), this
means that the linear combination of two independent identically distributed
random variables has the same distributions as the two variable up to a loca-
tion and scale parameter. Thirdly, a generalized version of the Central Limit
Theorem states that sum of a large sum of independent, identically distributed
random variables has a stable distribution[Gnedenko and Kolmogorov, 1954].
So for distributions with finite variance this yields the Central Limit Theorem
with a limiting normal distribution for sums, and for distribution with infinite
variance this yields a limiting stable distribution for sums.

In terms of characteristic functions, a more precise definition of invariance under
addition is that the sum of i.i.d. stable variables is given by the logarithm of
the characteristic function

log

N∏
n=1

f(t) =

N∑
n=1

log f(t)

= i(Nδ)t− (Nγα)|t|α[1− iβ t

|t|
tan(α

π

2
)]

(3.3)

So the sum has the same distribution up to the scale, which is multiplied by
N

1
α , and the location parameter, which is multiplied by N . The skewness index

and the stability index are constant under addition.

In practice, this would mean that if daily price changes follow a stable distri-
bution, the sum of daily price changes, i.e. weekly, monthly or yearly price
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changes, would follow the same distribution with location and scale parameters
multiplied by 5, 21 or 250 (i.e. the number of weekdays in a week, month or
year).

It can be easily shown that the stability still holds when the N individual
members n of the sum have different location δn and scale γn parameters. The
logarithm of the characteristic function of the sum is then given by

log

N∏
n=1

fn(t) =

N∑
n=1

log fn(t)

= i(

N∑
n=1

δn)t− (

N∑
n=1

γαn )|t|α[1− iβ t

|t|
tan(α

π

2
)]

(3.4)

The parametrization of the distributions given above actually follows from the
definition of stability (see e.g. [Nolan, 2010]). A distribution X is called sta-
ble if the following holds. Let X,X1, X2, . . . , XN be independent, identically
distributed stable random variables, then

X1 +X2 + . . .+XN
d
= cNX + dN (3.5)

in which cN > 0 and dN are some constants. A distribution is called strictly
stable if dN = 0. Obviously the normal distribution is stable, as are the Cauchy
and Lévy distributions. The class of all stable laws that satisfy this property is
given by (3.1).

3.3 Tail approximation

Except for α = 2 , stable distributions have a asymptotic power-law (also called
Pareto or Zipf law) tails. For the right tail, x→∞

P (X > x) ∼ γαcα(1 + β)x−α (3.6a)

f(x) ∼ αγαcα(1 + β)x−(α+1) (3.6b)

in which cα = sin(πα2 )Γ(α)/π. Equivalently, for the left tail, x→ −∞

P (X < −x) ∼ γαcα(1− β)x−α (3.7a)

f(−x) ∼ αγαcα(1− β)x−(α+1). (3.7b)

If β = 1 (−1) the left (right) tail decays faster than any power.

See figure 3.2 below for some probability density plots. These plots have been
made using the algorithm described in [Chambers et al., 1976] and [Weron,
1996]. This algorithm works as follows:

32



Stable distributions

1. Generate a random variable U uniformly distributed on (−π/2, π/2), so
U ∼ U(−π/2, π/2).

2. Generate an independent exponential random variable E with mean 1, so
E ∼ exp(1).

3. For α 6= 1, the random variable X ∼ S(α, β, 1, 0) is given by

X = Sα,β
sin(α(U +Bα,β))

(cos(E))1/α

(
cos(U − α(U +Bα,β))

E

)(1−α)/α

(3.8)

in which

Sα,β =
(

1 + β2 tan2 πα

2

)1/(2α)
(3.9a)

Bα,β =
arctan(β tan πα

2 )

α
(3.9b)

For α = 1, X is given by

X =
2

π

[(π
2

+ βU
)

tanU − β log

(
E cosU
π
2 + βU

)]
(3.10)

4. Let Y ∼ S(α, β, σ, µ) given by

Y =

{
σX + µ if α 6= 1

σX + 2
πβσ log σ + µ if α = 1

(3.11)

3.4 The stability index

The stability index α thus essentially determines whether the stable or Gaussian
hypothesis holds. So testing these hypotheses and measuring the true value of
α is very important. However, the absence of analytic expressions for stable
distributions except the Gaussian (α = 2), the Cauchy (α = 1 and β = 0) and
the Lévy (α = 1/2 and β = 1) distributions, makes this very hard to do.

OLS If we take the logarithm of P (X > x) than logP (X > x) ∼ −α log(x)
for x→∞. A simple standard linear regression can be performed between (the
logarithm of) the data and the corresponding probabilities to obtain the OLS
estimator of α.

The advantage of such regression is that all aspects of least squares estimation
are very well known. This includes bias, consistency and asymptotic normal-
ity. An additional advantage is that least squares regression is very easy to
implement.
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Figure 3.2: Random samples from stable distributions for α = 1, 1.5, 1.9 and 2,
β = 0, γ = 1 and δ = 0. For the α < 2 plots the tails have been truncated at
|X| < 15. As a reference a fitted normal distribution is plotted as well.
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The main disadvantage of estimating α of this regression is that it is (asymp-
totically) valid for the far tails x→∞, x→ −∞. In practice there will be less
observations in the tails, so the outcome will very much rely on the starting
value of x. For high values (α > 1.5) the estimator will overestimate the true
value of α.

Hill Estimation A much more reliable and often used estimator is the Hill
estimator, proposed by [Hill, 1975]. It is based on the evaluation of the condi-
tional likelihood for the parameters describing the tail behavior (i.e. α) given
the extreme order statistics.

Let X(j) be the j-th order statistic of X, so let X(1) ≤ X(2) ≤ · · · ≤ X(N−j) ≤
· · · ≤ X(N) be the order statistics. Assuming i.d.d. data, the Hill estimator (for
the right tail) is given by

α̂ = [
1

k

k−1∑
i=0

logX(N−i) − logX(N−k)]−1 (3.12)

conditional on X(N−k) ≥ d in which d is some large enough threshold value.
The mean and variance of α̂ are given by

E(α̂|X(N−k) ≥ d) =
kα

k − 1
for k > 1 (3.13a)

Var(α̂|X(N−k) ≥ d) =
(kα)2

(k − 1)2(k − 2)
for k > 2 (3.13b)

The Hill estimator is proved to be asymptotically normally distributed, i.e.
k1/2(α̂−1−α−1) ∼ N(0, α−2) for large values ofN and k = k(N), see [Goldie and
Smith, 1987]. The left tail estimator is obtained by multiplying the observations
by −1 and rearranging the data in descending order.

As with linear regression the main drawback is that the estimation is very
dependent on the choice of k. The order k has to be small enough to capture
the tail of the distribution, and large enough to generate an appropriate sample
size. There are several, sophisticated models for the choice of k, see e.g. [Mittnik
and Paolella, 1999].

The Hill estimator is easy to implement and easy to interpret (see [Hill, 1975]).
2

In figure 3.3 the behavior of the Hill estimator is illustrated in a Hill-plot. A
random sample of a symmetric stable distribution is simulated with N = 100000
and α = 1.5. Obviously, the Hill estimator is very misleading for the true value
of α. Only for k/N < 0.1 the true value of α lies within the 95%-confidence
interval. A similar behavior is described in [Mittnik and Paolella, 1998].

2The Hill estimator is only valid for so-called Fréchet extreme value distributions. The
Fisher-Tippet(-Gnedenko) Theorem states that the standardized maximum (or minimum) of
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Figure 3.3: Hill-plot for N = 100000 and α = 1.5 including an upper and lower
band (±2 ·MSE)

Other methods Other methods to estimate the tail index are based on quan-
tile estimation, transformation of the characteristic function and maximum like-
lihood estimation.

a sample converges in distribution to one of three types of distributions: the Gumbel type,
the Fréchet type or the Weibull type. These types are all cases of the generalized extreme
value distribution and are defined as

F (x;µ, σ) = e−e
−(x−µ)/σ

Gumbel (3.14a)

F (x;µ, σ, α) =

{
0 if x ≤ µ
e−((x−µ)/σ)−α if x > µ

Fréchet (3.14b)

F (x;µ, σ, α) =

{
e−(−(x−µ)/σ)α if x < µ

1 if x ≥ µ
Weibull (3.14c)

in which x ∈ R. The Gumbel type domain of attraction contains thin tailed distributions,
such as the normal, log-normal, exponential and gamma distributions. The Fréchet type
contains fat tailed distributions like the Pareto, Cauchy and stable distributions. The Weibull
type contains distributions with bounded support, such as the uniform and beta distributions
([Zivot and Wang, 2006]).
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The tails of KPN and Pccw

In section 2.2 the tails of KPN and Pccw are discussed in terms of kurtosis.
The kurtosis of both stocks seems larger than normality would suggest and so
kurtosis does not seem to be an appropriate measure. In order to get a better
picture of the tails, I will focus on the asymptotic behavior of the stocks.

Moreover, I will assume that the appropriate distribution is stable and use the
theory as described in sections 3.3 and 3.4.

4.1 The tails of KPN

For both KPN and Pccw I used all prices recorded between opening hours
for all business dates excluding holidays from January 1, 2010 through June
30, 2010. I applied the filter as described in section 2.4 in order to clean the
data. In the below analysis I used normalized log-returns. Moreover, I used
overlapping returns (see figure 2.4). This means for example for the 15 second
intervals, that I calculated 15 returns, starting from second 1 through second
15 of trading, after which I do 15 times the needed analysis and then take the
median over the estimates.

First, I looked at the left tail of KPN. I applied two methods to estimate the tail
index: OLS and the Hill Estimator. For both methods I used the 10% lowest
returns.

Figures 4.1 and 4.2 show the tail index as a function of the frequency. Both
figures show an increasing tail index with increasing frequency and seem to
be mutually consistent with a small blip in highest frequency region. As the
frequency goes down (so the interval increases) the distribution changes to a
less fat-tailed distribution.

The stability of the estimators is shown in figures 4.3 and 4.4. Clearly, the
window size (so which percentage of lowest returns) is very important. In both
figures one can see that the mean estimate rises with frequency. The Hill esti-
mator seems to be very unstable. Since both estimator show the same tendency
of rising tail index with frequency and the OLS estimator seems to be more
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Figure 4.1: Tails index vs frequency for KPN estimated using the OLS method
for a window size of 10%.

Figure 4.2: Tails index vs frequency for KPN estimated using the Hill method
for a window size of 10% and a mean over all window sizes between 1% and
10%.
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stable, I prefer the OLS estimator, although this is quite subjective and mainly
motived by a preference for simplicity.

The choppy lines in figure 4.4 are due to the tick size, as the Hill estimator is
very sensitive to the window size and the order statistic X(N−k) in equation
3.12. To a lesser degree, the choppy lines are visible in figure 4.3 as well. The
OLS estimator is however less sensitive to tick size. Illiquidity (i.e. no price
change over an interval) may have a more significant influence, as this could
explain that the choppiness becomes less relevant as the frequency decreases.

Figure 4.3: Tails index vs window size (%) for KPN estimated using the OLS
method for different frequencies.

4.2 The tails of Pccw

The tails of Pccw are a little more extreme than for KPN. Figures 4.5 (OLS)
and 4.6 (Hill) show the tail index as a function of the frequency. I did not leave
out the data on January 20 and 21, 2010, since the OLS estimator and Hill
estimator are not sensitive to the high autocorrelation peak seen in figure 2.6.
This is due to the fact that the OLS and Hill estimator look at left tails only
and are not symmetrical as is the kurtosis.

The stability of both estimators are shown in figures 4.7 and 4.8.

The estimate of a tail index above 2 is not to be expected as it would imply a
thin(ner) tailed distribution. From both figures I conclude heuristically that for
the highest frequency the tails are very fat (or kurtosis very high) and becomes
less fat very fast with decreasing frequency towards normal tails.
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Figure 4.4: Tails index vs window size (%) for KPN estimated using the Hill
method for different frequencies.

Figure 4.5: Tails index vs frequency for Pccw estimated using the OLS method
for a window size of 10%.
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Figure 4.6: Tails index vs frequency for Pccw estimated using the Hill method
for a window size of 10% and a mean over all window sizes between 1% and
10%.

Both estimators show to same curve: they start at α ≈ 0.5 for the highest
frequencies, then rapidly rise to α � 2 and finally decrease to values of α
between 1.5 and 2.

The stability of both estimators is shown in figures 4.7 and 4.8. Again, notice
the the choppy behavior in figure 4.8, which is even more extreme than for KPN
in figure 4.4. This is because the tick size of Pccw is larger.

Stable distributions These findings lead to the conclusion that the distri-
bution of KPN and Pccw are certainly not stable. Especially for the higher
frequencies, the return distribution show very fat tails. For the lower frequen-
cies, the tail index seem to flatten against frequency. For the lowest frequencies
the tail index seems to be quite stable. Tick size and illiquidity both heavily
influence the stability and therefore reliability of the Hill and OLS estimators.
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Figure 4.7: Tails index vs window size (%) for Pccw estimated using the OLS
method for different frequencies.

Figure 4.8: Tails index vs window size (%) for Pccw estimated using the Hill
method for different frequencies.
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Simulation of the tails

The analysis of tail behavior of aggregated high frequency returns of both KPN
and Pccw give us some interesting insights.

First of all, it is very hard to get a good estimate of the fatness of the tails of a
distribution using a tail index. The estimates of α are quite unstable and not
very reliable. This counts for the Hill estimator in particular. However, both
the OLS estimator and Hill estimator are comparable if we look at the shape
and level of the curve of tail index vs frequency.

Illiquidity The shape of the curve of α against the level of aggregation (the
frequency) of KPN and Pccw show some commonalities. The highest frequen-
cies show very high kurtosis and low tail index, both implying very fat tails.
The reason for this is to be found not in the tails, but in the peaks of the distri-
butions. Specifically, kurtosis as a estimator of tails, is very sensitive to a large
number of 0 returns, and may not be appropriate to measure tails as such. This
is what I refer to as illiquidity. This means that the estimation time scale is too
small compared to the time scale of the pricing process.

The effect of illiquidity on kurtosis is the following.

1. Increasing or decreasing liquidity makes the distribution behave more re-
spectively less like a Bernoulli distribution.

The excess kurtosis of a Bernoulli distribution is given by

κB =
6p2 − 6p+ 1

p(1− p)
(5.1)

which increases with very high and very low values of p and reaches its
minimum at p = 1/2 for which κB = −2. This implies a platykurtic
distribution. However, as p increases or decreases, so does the kurtosis.

If the number of trades per second, minute, hour or day is increased, the
chance increases that the price change over some interval smaller than the
time between two prices, is zero (as there is no actual price update in that
interval). This may be modeled by an increasing chance p.
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Tick size The difference between the two stocks is that the curve of tail index
vs frequency of Pccw shows a high peak just after the highest frequencies. The
curve of KPN does not show such behavior. This is due to a different tick
size (relative to the price level) for these two stocks. The effect of tick size on
kurtosis is as follows.

2. Increasing or decreasing tick size makes the distribution behave more re-
spectively less behave like a Bernoulli distribution as well. Higher tick size
is the equivalent of increasing p > 1/2 in which p models the chance that
price Pt rounds at price Pt−1, i.e. p models the chance that the return is
zero.

In order to get a clear picture of the effect of tick size and illiquidity on the tails
(and proof of the above hypotheses), I use simulation and create a dataset of
high frequency returns.

5.1 Simulation in detail

The simulation is aimed to create a dataset that has approximately the same
properties as the high frequency data of Pccw from January 1, 2010 through
June 30, 2010. The algorithm is as follows.

1. Generate an equally spaced random time series St with t in seconds. St
models the quasi-continuous price process. Let S0 = 1 and St be a random
walk given by

logSt = st = logSt−1 + εt (5.2)

in which the shocks εt are normally distributed, i.e. εt ∼ N(0, σ2) with
σ2 = 0.0001. The variance σ2 is chosen such that it approximately matches
the unconditional variance of all log price-to-price changes of Pccw be-
tween January 1, 2010 through June 30, 2010, linearly adjusted to per-
second price changes. The value of t runs from 0 through to 120 (days)
x 4 (hours) x 60 (minutes) x 60 (seconds) which matches half a year of
market hours of Pccw.

2. Let Pt model the price realization process (ignoring the tick size). Pt is up-
dated with a snapshot (copy) of St, taken approximately every x seconds.
The value of x is chosen to be x = 45 which matches the unconditional
average time between two consecutive prices of Pccw between January
1. 2010 through June 30, 2010. This parameter models the liquidity of
the stock. A trade takes place every second t that some random uniformly
distributed variable u ∼ U(0, 1) is smaller than 1/x. Consequently, the
time series Pt is unevenly space through time just as real high frequency
data.
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3. Let P̃t be the price Pt rounded to the nearest tick below or above Pt. The
tick size is set to 0.01 and matches the tick size of Pccw. The price is
rounded to the nearest tick below if some random uniformly distributed
variable v ∼ U(0, 1) is smaller than a threshold τ = (Pu − Pt)/(Pu − Pl)
in which Pu and Pl are the price Pt rounded to the nearest tick above
respectively below Pt. This implies that the chance that Pt is rounded
to a tick above, increases when Pt is closer to the price rounded to a tick
above. This models the fact that buyers (sellers) are probably more (less)
willing to pay a tick if the underlying (real) price is closer to that tick.
The series P̃t models the actual trades.

4. Calculate m second interval log returns rm,t and r̃m,t from the price series

Pt and P̃t. If there is no price Pt (or P̃t) at time t = m, use the latest
available price. To make the analysis comparable with the analysis of the
real tick data of KPN and Pccw, let m run from 15 through 3600 and
start the intervals at t = 0, (1/3)m, (2/3)m.

5. Calculate the kurtosis and tail index (using the Hill estimator and the
OLS estimator).

6. Repeat the previous steps N = 25 times and calculate the mean and
standard deviation of the estimates. The number N = 25 is not that
big, but given the size of one run of the simulation (≈ 2M observations),
larger would be impractical as regards to computer memory, disk space
and computing time. It is large enough to give a good impression and
make qualitative statements about the results.

5.2 Results

Figure 5.1 shows a realization of the price series Pt and P̃t for 0 ≤ t ≤ 4× 3600
(4 hours or 1 business day). To illustrate that this is quite comparable with one
business day of Pccw, see figure 2.8.

Kurtosis Figure 5.3 shows the kurtosis vs frequency of both the unrounded
and rounded log returns. Both curves differ significantly in level but not in
shape. Tick size does influence the kurtosis estimates as it lowers the level of
the curve and makes the return distribution less fat tailed. This becomes more
clear if we look at figure 5.2.

To answer the question why the bottom distribution is less fat tailed than the
top distribution, we gave to consider kurtosis actually is. [Taylor and Xu, 1997a]
tell us that kurtosis basically represents a movement of (probability) mass in the
distribution that does not affect variance. If mass is moved from the shoulders of
a distribution to the tails, the distribution will not have more positive kurtosis
per se. This movement will simply increase the variance. The kurtosis will
increase however, as mass is moved from the shoulders to the center as well.

If we start with the bottom distribution in figure 5.2 and move mass from the
shoulders (which in this distribution are almost identical to the tails) to the tails
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Figure 5.1: Four hours of simulated tick data. The series labelled p in red is the
unrounded price realization process Pt and the series labelled rp in blue is the
rounded price realization process P̃t.

and the center, we will get the top distribution in that figure. This distribution
will have a larger kurtosis.

The theoretical kurtosis, based on the assumption of i.d.d. returns, clearly
explains the shape of both curves. This is expected as the price process St
underlying Pt is a random walk and the log returns are i.i.d..

Tail index Figure 5.4 shows the tail index vs frequency of both the unrounded
and rounded log returns, estimated using the OLS method. The curve of the
unrounded prices series tells a similar story as the curve of the kurtosis in figure
5.3: for the highest frequency the tail index is at its lowest, so the tails are at its
fattest, for lower frequencies the tail index increases and finally, for the lowest
frequencies, the curve flattens at α ≈ 2.

The curve of the rounded price series tells a different story: for the highest
frequency the tail index is at its lowest, but rapidly increases for the middle
frequencies and for the lower frequencies, the tail index decreases and finally,
for the lowest frequencies, the curve flattens below 2. This can be explained by
noting that for the highest frequencies (< 45s) illiquidity is predominant, which
means that there is a high peak at 0 return. As the frequency decreases, the tick
size gets more dominant and makes the distribution look more like a Bernoulli
distribution with a very low kurtosis. This peak at frequencies just after the
highest frequencies is exactly what is seen for Pccw in figure 4.5 and 4.6.

Figure 5.5 shows the tail index vs frequency, estimated using the Hill estimator.
The curves are very comparable to the curves estimated using OLS in figure 5.4,
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Simulation of the tails

Figure 5.2: Simulated return distributions of a unrounded price series (top)
and a rounded price series (bottom) for one 15 second intervals. The bottom
distribution is less fat tailed than the top distribution.
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Figure 5.3: Kurtosis vs frequency of simulated tick data. The series labelled
Kurt, High and Low show the kurtosis with upper and lower band of the
unrounded log returns series rt. The series labelled Rkurt, Rhigh and Rlow
show the kurtosis with upper and lower band of the rounded log returns series
r̃t. The series labelled Tkurt and Rtkurt are the theoretical kurtoses based
on the assumption of i.id. log returns.
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Simulation of the tails

Figure 5.4: Tail index vs frequency of simulated tick data estimated using the
OLS method for a window of 10%. The series labelled Estalpha shows the tail
index of the unrounded log returns series rt. The series labelled Testalpha
shows the tail index of the rounded log returns series r̃t.

although the peak in the tail index is a little higher with the Hill estimator.

Real high frequency data Simulation shows that tick size and illiquidity are
partly able to explain tail behavior under temporal aggregation seen in real high
frequency data. The fat tails (high kurtosis, low tail index) at the highest fre-
quencies, the decreasing kurtosis (increasing tail index) at the lower frequencies
and the high tail index peak at the frequencies just after the highest frequencies.
Simulation does not explain the relatively high kurtosis at the lowest frequencies
seen in figure 2.4 and 2.7 which is probably due to autocorrelation effects which
are not considered in this simulation.
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Figure 5.5: Tail index vs frequency of simulated tick data estimated using the
Hill estimator for a window size of 10% and a mean over all window sizes between
1% and 10%.The series labelled Estalpha (window of 10%) and Mestalpha
(mean over the windows) show the tail index of the unrounded log returns series
rt. The series labelled Testalpha and Mtestalpha show the tail index of the
rounded log returns series r̃t.
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Conclusion

In this thesis, the research objective was to write a financial case study of
the high frequency return distributions of two comparable but different stocks,
Dutch KPN and Hong Kong’s Pccw, both telecommunication firms traded on
developed market places, Euronext Amsterdam and Hong Kong Stock
Exchange. First of all, I elaborately analyzed the high frequency data and
discussed data quality and filtering. Secondly, I looked at the (left) tail be-
havior under temporal aggregation, using simple kurtosis and the tail index of
stable distributions. Finally, I used simulation to show that the basic assump-
tions about market microstructure largely explain tail behavior under temporal
aggregation for high frequency data.

High frequency data quality and filtering High frequency data has been
hot in econometric research ever since the (real) rise of the computer. Many
practitioners use high frequency data to speculate. Many researchers have used
high frequency data as a source of information and for purpose of lower frequency
applications.

I discussed the difficulties that arise with high frequency data in the first part of
this thesis. I addressed data quality and filtering and stylized facts of two high
frequency datasets. Rigorous data analysis is a prerequisite for proper research.

Tail behavior under temporal aggregation In the second part of this
thesis, I examined the tail behavior of the high frequency return distribution of
the two stocks. The importance of tail behavior, and other aspects of return
distributions, under temporal aggregation lies in the heart of the hypothesis of
scalable markets. As a ‘measure’ of tails, I used kurtosis and tail index which
arises with stable distributions. In effect, I put the CLT vs the Generalized
CLT.

Kurtosis and (fat tailed) stable distributions are mutually exclusive. The kur-
tosis of stable distributions is only defined (and zero) if the tail index α is 2.
This is equivalent to a normal distribution. Another important difference is
that kurtosis is a measure of both right and left tail, and the tail index is only
for the right or the left tail. In this thesis I used both kurtosis and tail index to
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estimate the (left) tails. It was not a priori clear whether the kurtosis is defined
and the return distribution is stable.

First, I measured the tail behavior under temporal aggregation using (sample)
excess kurtosis as an estimator of the curve of tails vs measurement frequency.
At the highest frequencies this results in a very high kurtosis, which decreases
with decreasing frequency. If the tail index is used as an estimator, the results
are similar for the highest frequencies.

However, the kurtosis for lower frequencies is relatively and absolutely higher
than a normal distribution and the CLT suggest. The curves of kurtosis vs
frequency for KPN and Pccw are shown in figures 2.4 and 2.7. The theoretical
lines in these figures are only valid if finite variance is assumed. The fact that
the theoretical curve does not explain the empirical curves, suggests that the
variance is in fact not finite and that the high frequency return distributions are
not in the domain of attraction of the normal distribution (which is what the
CLT tells us). As an alternative one could assume a fat tailed distribution such
as the stable distribution. Anyway, the tail index can be used as an measure of
the tails.

The tail index is estimated using the Hill estimator and the OLS estimator. Both
estimators show unstable results, especially for the lowest frequencies where the
samples are too small to yield reliable results. Nevertheless, the curve that
describes the relation between measurement frequency and the tail index show
a corresponding shape: low tail index at the highest frequencies, followed by an
increasing tail index with decreasing frequency. For Pccw we see an sharp peak
in the tail index for the frequencies just below the highest frequencies (15-30
seconds).

I reject the stable hypothesis for both return distributions, because if the hy-
pothesis would hold, it would imply a flat curve of tail index vs frequency. This
is not observed. These findings are in contrast with prior research, such as by
[Pictet et al., 1996]. They find stable tail indices (>> 2) for foreign exchange
markets and interbank markets of cash interest rates for frequencies between
30 minutes and 6 hours. The markets in this thesis however showed even for
the lower frequencies (> 30 minutes) unstable tail indices. The main difference
between that research and my research, is that they looked at 30 minute to 6
hour intervals, which is considerably longer that 15 seconds to 1 hour intervals.
Rejection of the stable hypothesis implies that many risk models amongst others
cannot be used to scale high frequency data to daily, monthly or yearly data.

For most frequencies, except for the the middle frequencies of Pccw, I find a
tail index below 2. This indicates infinite variance. Amongst others, infinite
variance implies that many popular regression models cannot be used as they
require finite variance.

An alternative for the stable hypothesis, i.e. a flat tail index vs frequency
curve, one could consider a parametric model for the tail index depending on
frequency. You should always bear in mind however that tick size, illiquidity
and other market microstructure characteristics heavily influence the analysis.
This would require further research.
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Illiquidity and tick size In the last part of this thesis, I used simulation
to show that the market microstructure in terms of illiquidity (or inactivity)
and tick size (or bid-ask spread) can largely explain the curve of tail index (and
kurtosis) vs measurement frequency. I showed that the high tick size of Pccw
explains the high peak in the tail index at the frequencies just below the highest
frequencies. I made clear that leptokurtosis is as much about the peak as it is
about the tails. Since kurtosis is symmetric in the tails and the tail index is
not, kurtosis may give contra-dictionary results.

Further research Knowledge of and expertise in high frequency data may
help any professional investor in understanding financial markets. Besides know-
ing what to do, is knowing what not to do as much important. Scaling markets
is one such thing. Transtrend may use this research a starting point of more
advanced data filtering and trading algorithms.
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