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Abstract

This paper proposes a new risk management strategy that uses combinations of two different
models to estimate VaR by conditioning the model choice on the prediction of bull and bear
markets. The main goal of this research is to trigger financial risk managers to take a critical
look at their internal risk model(s). They should ask themselves whether there is room for further
minimization of the capital charges, by conditioning their risk model choice on the prediction of
the market condition. We describe various risk models and a pragmatic strategy to predict bull
and bear markets, using a binomial logit model. Using a parametric linear Student t model with
EWMA volatility with an optimized λ leads to the best results for VaR estimation, looking at the
number of violations and the average minimum required capital. For the prediction of bull and
bear markets, using the Schwarz Information Criterium for variable selection leads to an out-of-
sample hitrate of more than 85%. No combinations of two different models are found, that lead
to a significant decrease in the average minimum required capital.

Keywords and phrases: Value-at-risk (VaR), parametric linear models, historical simulation models,
Monte Carlo simulation models, bull and bear markets, combination of risk models, optimizing strat-
egy.
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1 INTRODUCTION

1 Introduction

Financial risk management is driven internally by the need for optimal returns on risk-based capital
and, ultimately, by the survival of the firm. External drivers include clients and industry regulators,
whose objectives are to protect investors and to promote competition, despite their ultimate concern
for financial stability in the global economy. In recent years market volatility has been rising as trading
activity increasingly utilizes complex instruments whose risks are relatively difficult to assess.

The Basel II Accord (Basel Committee on Banking Supervision, 2006) requires that banks (and
other Authorized Deposit-taking Institutions) communicate their risk forecasts to the appropriate mon-
etary authorities at the beginning of each trading day, using one or more risk models to measure
Value-at-Risk (VaR). Risk estimates of these models are used to determine capital requirements and
associated capital costs of banks, depending in part on the number of previous violations, whereby
realized losses exceed the estimated VaR.

Banks are permitted (and encouraged) to use internal models to forecast VaR. In case internal
models lead to more violations than could be expected (3 violations per financial year when using a
99% confidence level), a bank is required to hold a higher level of capital. If a bank’s VaR forecasts
are violated more than 10 times in any financial year, they may be required to use a ’Standardized’
approach, instead of their own internal model(s). Such a penalty will not only cause higher capital
charges, but it will also damage a bank’s reputation. That is why financial risk managers tend to prefer
following strategies that are passive and conservative. However, excessive conservatism can have a
negative impact on the profitability of a bank as higher capital charges are subsequently required. A
bank should seek a strategy, which minimizes the daily capital charges and has less than 10 violations
per year.

In this paper we seek such a strategy by choosing sensibly from a variety of risk models, i.e. para-
metric linear, historical and Monte Carlo risk models, with a separate section devoted to Monte Carlo
risk models with copula dependence. A new approach to model selection for predicting VaR is pro-
posed, namely conditioning the model choice on the prediction of bull and bear markets. When
dividing the stock market into bull and bear markets, a bear market is likely to capture more extreme
events and its return distribution will have thicker tails. Therefore, it is unlikely for one single risk
model to perform best in all conditions. During bear markets, it can be optimal to use a different risk
model than during bull markets.

The main goal of this research is to trigger financial risk managers to take a critical look at their
internal risk model(s). They should ask themselves whether there is room for further minimization of
the capital charges, by conditioning their risk model choice on the predicted market condition.

We find that a parametric linear Student t model with EWMA volatility with an optimized λ leads
to the best results for VaR estimation, looking at the number of violations and the average minimum
required capital. This model and a filtered historical simulation model with GARCH volatility are the
only models that have less than 10 violations per year over the whole testing period. With the Schwarz
Information Criterium used for variable selection we score highest on statistical accuracy for the
prediction of bull and bear markets, namely an out-of-sample hitrate of more than 85%. Unfortunately,
no combinations of two different models are found, that lead to a significant decrease in the average
minimum required capital. The main reasons for this result are the low number of bear months (only
19% of the whole testing period) and the fact that the best performing models incurred their largest
number of violations just before the beginning of these bear months.

The paper proceeds as follows. Section 2 presents the basic methodology applied for the esti-
mation of VaR. In sections 3 to 6 we discuss the methodology of the parametric linear, historical and
Monte Carlo risk models respectively, with section 6 devoted to Monte Carlo simulation with copulas.
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2 METHODOLOGY FOR ESTIMATING VALUE-AT-RISK

Section 7 presents a series of backtests to determine the accuracy of every risk model. Section 8 gives
an outline of the methods used to predict bull and bear markets. Empirical results are provided in
section 9. Finally, concluding remarks are offered in Section 10.

2 Methodology for Estimating Value-at-Risk

The most used measure of financial risk is the Value-at-Risk (VaR). The widespread popularity of VaR
(see Jorion, 2000) is due to the adoption of the "1st pillar" in the Basel II agreement. It is defined as
"the loss we are fairly sure will not be exceeded if the current portfolio is held over some period of
time". If the 1% 1-day VaR = $2 million, this means that we are 99% confident that we would lose no
more than $2 million from holding the portfolio for 1 day.

Despite its widespread use and simplicity, Value-at-Risk is highly criticized among academics.
It has the disadvantage that it is not a coherent risk measure, i.e. it may not be sub-additive (see
Artzner et al., 1999, for details). Moreover, VaR provides no information about the expected size of
the loss if a tail event occurs. On the other hand, Expected Shortfall, which is defined as the expected
loss given that VaR is exceeded, is coherent and provides information about the size of tail events.

VaR is defined on two parameters, i.e. a holding period, which is the period of time over which
we measure our portfolio profit or loss, denoted h, which is traditionally measured in trading days
rather than calendar days; and a significance level α (or confidence level 1−α), which indicates the
likelihood that we will get an outcome worse than VaR.

Regulators that review the regulatory capital of banks usually allow this capital to be assessed
using an internal VaR model, provided they have approved the model and that certain qualitative
requirements have also been met. In this case a 99% confidence level must be applied in the VaR
model to assess potential losses over a 2-week risk horizon, i.e. a 99% 10-day VaR. This figure is then
multiplied by a factor of between 3 and 4 to obtain the minimum required capital1.

We estimate VaR for portfolio returns from a banking perspective, although it is not a bank’s
core business to seek profits through enhanced returns on investments: this is the role of portfolio
management. Where banks are required by regulators to measure their risks as accurately as possible,
every day, and to hold capital in proportion to these risks, there are no such regulations for the fund
management industry. The fund manager does have a responsibility to report risks accurately, but
only to his clients. Their confidence level and risk horizon are not set by regulators and thus are likely
to be different among different fund management companies. However, all models discussed in this
report can be adjusted to every confidence level and risk horizon we like, since they are defined as
input parameters.

Investing in a portfolio leaves the choice of the risk/return profile of the investment. The return
distribution of a high risk portfolio is likely to capture more extreme events than that of a low risk
portfolio. Finding a good risk measure can therefore also depend on the risk-return profile of a port-
folio. We create three testing portfolios with different risk/return profiles from x% equity index and
y% bond index:

1. 80% equity index and 20% bond index (high-risk portfolio).

2. 50% equity index and 50% bond index (moderate risk portfolio).

3. 20% equity index and 80% bond index (low-risk portfolio).

1Section 7.1 provides more information on the calculation of the minimum required capital.
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3 PARAMETRIC LINEAR MODELS

Note that we want to keep the portfolio weights constant over the whole sample period. This means
that we assume that all the holdings are rebalanced whenever the price of one asset changes. This
assumption implies that the same risks are faced every trading day during our 10-day risk horizon.
This makes it relatively easy to scale a 1-day VaR to a 10-day VaR.

2.1 Data

This paper focuses on the US market and investigates its stock returns and bond returns using the
daily returns on the S&P500 Price Index and the Barclays Capital US Aggregate Bond Index from
January 1, 1978 to December 31, 2010. The Barclays Capital US Aggregate Bond Index (formerly the
Lehman Aggregate Bond Index) was created in 1986, with backdated history going back to 1976. The
S&P500 Price Index is obtained from Yahoo! Finance, Barclays Capital US Aggregate Bond Index is
obtained from Thompson Datastream.

Every trading day, starting at January 1, 1981, we estimate a 10-day VaR, using a moving window
of three years, which contains the 750 most recent daily returns. We use a log approximation to the
daily returns. To be more specific, we let

rt =
Pt −Pt−1

Pt
≈ ln

(
Pt

Pt−1

)
, (2.1)

where Pt denotes the portfolio price at time t. We use log returns, because we want to calculate a
10-day VaR. The 10-day log return is the sum of 10 consecutive daily returns, and therefore these are
more convenient than portfolio returns. Although the log returns are not exactly equal to the portfolio
returns calculated as Pt−Pt−1

Pt
, for daily returns they will be fairly close.

3 Parametric linear models

A parametric linear model calculates VaR using analytic formulae that are based on an assumed para-
metric distribution for the asset returns, when the portfolio value is a linear function of its underlying
asset returns. The most basic assumption is that the returns on the portfolio are independent and
identically distributed with a normal distribution. Unfortunately this assumption is very unrealistic,
even for linear portfolios. Therefore, we extend this assumption so that we can incorporate volatility
clustering in our model. We calculate VaR estimates of a linear portfolio under this assumption and
also when portfolio returns are assumed to have a Student t distribution or a mixture of two normal
distributions.

3.1 Volatility estimation

3.1.1 Unconditional volatility

The easiest way to measure volatility is to base the historical volatility estimates on the equally
weighted unconditional variance estimate. For instance, denoting the portfolio return at time t by
rt and assuming these returns are i.i.d., the unbiased sample variance estimate based on the most
recent T returns is

σ̂2
t =

1
T −1

T

∑
k=1

(rt−k − r̄)2 (3.1)

where r̄ denotes the average daily return over the previous T days.

3



3 PARAMETRIC LINEAR MODELS

3.1.2 Volatility clustering

Unconditional volatility is useful for estimating VaR over a long term risk horizon, but it has limited
use for estimating VaR over a short term horizon. For instance, if we use three years of data to estimate
volatility, the unconditional volatility estimate represents the average sample volatility over the last
three years. This may be fine for long term VaR estimation, but short-term VaR estimates are supposed
to reflect the current market conditions, and not the average conditions of the past three years. For
this we need a forecast of the conditional volatility, or a time-varying estimate of the unconditional
volatility.

Exponentially Weighted Moving Average (EWMA) volatilities are more risk sensitive than equally
weighted average estimates of the same parameters in a way that they should respond more rapidly to
changing market circumstances.

We define two different ways to estimate the EWMA volatility:

• σ̂t equal to the EWMA volatility with λ = 0.94 (RiskMetricsTM).

In this case, no estimation is necessary, which is a huge advantage in large portfolios. The
EWMA variance estimate at time t is then defined as

σ̂2
t = (1−λ)r2

t−1 +λσ̂2
t−1, t = 2, . . . ,T λ = 0.94, (3.2)

which is a function of the previous squared return and the previous variance.

On the other hand, a predefined value for λ does not have to be the optimal value for every return
series. Therefore, we also optimize λ by using Maximum Likelihood Estimation:

• σ̂t equal to the EWMA volatility with an optimized λ.

Here, the EWMA variance estimate at time t is defined as

σ̂2
t = (1−λ)r2

t−1 +λσ̂2
t−1, t = 2, . . . ,T 0 < λ < 1. (3.3)

The term (1− λ)r2
t−1 determines the intensity of reaction of volatility to market events: the

smaller is λ the more the volatility reacts to the market information in yesterday’s return. The
term λσ̂2

t−1 determines the persistence in volatility: irrespective of what happens in the market,
if volatility was high yesterday it will be still high today. The closer λ is to 1, the more persistent
is volatility following a market shock.

3.2 Calculation of linear VaR

In this section we define the formulae to calculate the parametric linear VaR, when these estimates are
based on the assumption that returns are normally distributed, Student t distributed or follow a normal
mixture distribution. We also discuss the rules for scaling normal linear VaR under both i.i.d. and
autocorrelated returns.

3.2.1 Normal linear VaR

When normal linear VaR estimates are based on daily returns to the portfolio, we obtain a 1-day VaR
estimate using the daily mean estimate at time t, µ̂1,t , and the daily volatility estimate at time t, σ̂1,t .
This 1-day VaR estimate should then be scaled to a 10-day VaR estimate. Under the assumption that

4



3 PARAMETRIC LINEAR MODELS

our daily returns are i.i.d., it follows by the square-root-of-time rule that the 100(1−α)% 10-day VaR
at time t is defined as:

VaR10,t,α = Φ−1(α) ·
√

hσ̂1,t +hµ̂1,t (3.4)

with

Φ−1(α) = The z-value such that, with probability α, a standard normal random variable

takes on a value that is less than or equal to z

σ̂1,t = The estimated daily return volatility at time t

µ̂1,t = The average daily return at time t

h = The risk horizon in days = 10.

This 10-day VaR estimate is based on the assumption that returns are not only normally distributed
but also generated by an i.i.d. process, which is simply not justified for most financial returns. Even
when returns are not autocorrelated, the volatility clustering effect we see in most markets can cause
the squared returns to be autocorrelated. An EWMA volatility estimate is a constant, in the sense that
it is equal for all time horizons. The EWMA model gives time-varying estimates of the unconditional
volatility and therefore it will estimate the same average volatility for all time horizons, whether the
forecast is over the next day or over the next 10 days. Hence, we can also use (3.4) to calculate a
10-day VaR, with σ̂1,t equal to the daily EWMA volatility estimate.

In the standard parametric linear VaR model we cannot calculate a 10-day volatility estimate using
a GARCH model, which has time-varying conditional volatility estimates. The problem is that when
a return follows a GARCH process we do not know the exact price distribution 10 days from now. We
know this distribution when the returns are i.i.d., because it is the same as the distribution we have
estimated over a historical sample. However, the 10-day return in a GARCH model is the sum of
10 consecutive daily returns and, due to the volatility clustering it is the sum of non-i.i.d. variables.
Instead, we could apply a GARCH model to simulate daily returns over the risk horizon by imposing
path dependence, as explained in Sections 4.3 and 5.2.2.

Alexander (2008) proves that when returns are autocorrelated with first order autocorrelation co-
efficient ρ, then the scaling factor for standard deviation is not

√
h but

√
h̃, where

h̃ = h+2
ρ

(1−ρ)2

[
(h−1)(1−ρ)−ρ

(
1−ρh−1

)]
. (3.5)

Hence, we should scale our normal linear VaR as

VaRh,t,α = Φ−1(α) ·
√

h̃σ̂1,t −hµ̂1,t . (3.6)

3.2.2 Student t distributed linear VaR

One of the basic stylized facts of (daily) asset returns is that their distribution is not normal (see
Taylor, 2005, Chapter 4). Often excess kurtosis and negative skewness are apparent in these data
series. With excess kurtosis and negative skewness in return distributions the normal linear VaR
formula, as described in section 3.2.1, is likely to underestimate the VaR at high confidence levels.

The daily log returns of the S&P500 Index in our sample (January 1, 1978 - December 31, 2010)
have mean equal to 7.75 percent (expressed in annualized percent) and a volatility (=annualized stan-
dard deviation) of 17.83 percent. Skewness is negative at -1.202, suggesting that large negative returns
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3 PARAMETRIC LINEAR MODELS

occur more often than large positive returns. Kurtosis is equal to 31.371, which is substantially higher
than the normal value of 3, suggesting the presence of a high peak and fat tails in the empirical distri-
bution of returns. Both are confirmed by the histogram that is shown Figure 1, together with a normal
density with the same mean and variance. The Jarque-Bera test statistic takes a value of 281,269.7,
with a p-value of 0.000 such that normality is convincingly rejected. If we omit the daily return on
October 19, 1987, the skewness and kurtosis change to -0.214 and 11.986, respectively. In this case
normality is still convincingly rejected, with a Jarque-Bera test statistic of 28,074.2, and a p-value of
0.000.

Figure 1: Histogram and theoretical normal density of daily S&P500 returns, Jan 1st, 1978 - Dec 31st,
2010.
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Student t distributions are the most well known leptokurtic distributions. When significant positive
excess kurtosis is found in empirical financial daily return distributions, the Student t distribution is
likely to produce VaR estimates that are more representative of historical behaviour than normal linear
VaR. When h is small, a approximate formula2 for the 100(1−α)% h-day VaR is

Student t VaRh,t,α,ν =

√
ν−1(ν−2)h̃t−1

ν (α)σ1,t +hµ1,t . (3.7)

with t−1
ν (α) the α quantile and ν the number of degrees of freedom of the standard Student t distribu-

tion.
The Student t distribution is not a stable distribution and by the central limit theorem the sum of

i.i.d. Student t variables converges to a normal variable as the number of terms in the sum increases.
With a risk horizon of 10 days, we cannot say beforehand whether the normal linear VaR estimate

2The square-root-of-time rule for scaling the standard deviation used in (3.7) does not apply to Student t distributed
returns, so this formula is only an approximation.
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4 HISTORICAL SIMULATION MODELS

will be sufficiently accurate or that the Student t VaR estimate is a significant improvement over the
normal linear VaR estimate.

The Student t linear VaR model provides a more accurate representation of most financial asset
returns, but a potentially significant source of model risk arises from assuming the return distribution
is symmetric. By far the easiest way to extend the parametric linear VaR model to accommodate the
skewness that is so often evident in financial asset returns is to use the mixture linear VaR model,
which is explained in the next section.

3.2.3 Normal mixture linear VaR

A mixture model is designed to capture different market regimes. In a mixture of two normal distri-
butions, there are two regimes for our daily returns: one regime where the daily returns have mean
µ1 and variance σ2

1 and another regime where the daily returns have mean µ2 and variance σ2
2. The

parameter π defines the probability of occurrence of regime 1, so regime 2 occurs with probability
1−π.

The estimation of the mixture parameters from historical data is best performed using the EM
algorithm, although with only a few parameters they could also be obtained by using a Method of
Moments estimation. Then, the distribution function of a mixture of two distributions is defined as:

G(x) = πF1(x;µ1,σ1)+(1−π)F2(x;µ2,σ2), 0 < π < 1, (3.8)

which is a probability weighted sum of each of the two distribution functions, where Fi(x;µi,σi)
denotes the normal distribution function of the returns in regime i.

We have

P(X < xα) = G(xα) = πF1(xα;µ1,σ1)+(1−π)F2(xα;µ2,σ2), 0 < π < 1, (3.9)

and when P(X < xα) = α, then xα is the α quantile of the mixture distribution. Let Xi be the random
variable with distribution function Fi(x;µi,σi). Then

Fi(xα;µi,σi) = P(Xi < xα) = P
(

Xi −µi

σi
<

xα −µi

σi

)
,

with Xi−µi
σi

= Yi = Zi, where Zi is a standard normal variable. Hence,

πP
(

Y1 <
xα −µ1

σ1

)
+(1−π)P

(
Y2 <

xα −µ2

σ2

)
= α. (3.10)

The 1-day VaR estimate is equal to xα, which can be backed out from (3.10). To calculate the
10-day VaR estimate, we simply back out xα from the following equation:

πP
(

Y1 <
xα −10µ1√

10σ1

)
+(1−π)P

(
Y2 <

xα −10µ2√
10σ2

)
= α. (3.11)

4 Historical Simulation models

Historical simulation as a method for estimating VaR was introduced by Hendricks (1996) and is by
far the most popular VaR method amongst banks. Perignon and Smith (2010) show that 73 percent of
banks that disclosed their VaR method reported using historical simulation. The main advantage of
using historical simulation to calculate VaR is that it does not assume any distribution on the portfolio

7



4 HISTORICAL SIMULATION MODELS

returns and it is relatively easy to implement. However, historical simulation assumes that all possible
future variation has been experienced in the past. To ensure enough points in the lower tail of the
distribution, the sample size needs to be sufficiently large.

For historical simulation, we rank our daily portfolio returns and pick the worst 1% return, ac-
cording to their weight.3 This value is the 99% 1-day VaR estimate. We scale the 1-day VaR estimate
to a 10-day horizon. In Section 3.2.1 we stated that for linear VaR the 10-day VaR is equal to the
square root of 10 times the 1-day VaR. This square-root-of-time rule applies to linear VaR because
it obeys the same rules as standard deviation. However, in the historical simulation model the VaR
estimate corresponds to a quantile of some unspecified empirical distribution and quantiles do not
obey a square-root-of-time rule, except when the returns are i.i.d. and normally distributed.

Scaling VaR using a historical simulation model can therefore only be performed by making cer-
tain assumptions about the distribution. In this case we only have to assume that our portfolio returns
have a stable distribution. When a distribution is stable with scale parameter ξ then the whole dis-
tribution, including the quantiles, scales as h1/ξ. For instance, in a normal distribution ξ = 2 and the
scale exponent is ξ−1 = 1

2 .
Let xh,α denote the α quantile of the h-day log returns. We seek ξ such that

xh,α = h1/ξx1,α. (4.1)

In other words, taking logs of the above,

ξ =
ln(h)

ln(xh,α)− ln(x1,α)
. (4.2)

Then, to estimate the 10-day VaR we take 101/ξ times the 1-day VaR.

4.1 Equal weights to returns

Equal weighting of historical data was the first statistical method for forecasting volatility of financial
asset returns to be widely accepted. For many years, it was the market standard to forecast average
volatility over the next h days by taking an equally weighted average of squared returns over the
previous h days. The weight of the t-th return is defined as

wt = 1/T, (4.3)

where

T = The number of daily returns in our sample = 750.

In the parametric linear and Monte Carlo VaR models the volatility over the risk horizon can be
estimated using an exponentially weighted moving average model. In these cases, previous returns
have an exponentially declining effect on the volatility forecast and therefore also on the VaR estimate.
In the next section, we describe two different ways of weighting returns for historical simulation
models: exponentially declining weights to returns and filtered historical simulation.

3In sections 4.1 to 4.3 we discuss several weighting methods.
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4 HISTORICAL SIMULATION MODELS

4.2 Exponentially declining weights to returns

A major problem with all equally weighted risk measure estimates is that extreme market events can
influence the risk measure estimate for a considerable period of time. In historical simulation with
equally weighted returns, this happens even if the events occurred long ago, since the ordering of
observations is irrelevant.

Weighting the returns equally is inconsistent with the nature where there is diminishing pre-
dictability of data that are further away from the present. To overcome this, we also use models
which apply exponentially declining weights to returns that are further away from the present. That
is, as extreme returns move further into the past when the data window moves, they become less im-
portant in the average. For this reason exponentially weighting forecasts do not suffer from the ’ghost
features’ that we find in equally weighted moving averages.

If we assign an exponentially declining weight to the probability of each return in its distribution,
the weight of the t-th return is defined as

wt =
λT−t(1−λ)
(1−λT )

, (4.4)

where

T = The number of daily returns in our sample = 750

λ = Decay factor = 0.94

Then, we use these probability weights to find the cumulative probability associated with the
returns when they are put in increasing order of magnitude. That is, we order the returns, starting at the
smallest return, and record its associated probability weight. To this we add the weight associated with
the next smallest return, and so on until we reach a cumulative probability of 100α%, the significance
level for the VaR calculation. To obtain the 100(1−α)% historical VaR, we interpolate between the
last return that was taken into the sum and the next smallest return after this last return.

4.3 Filtered Historical Simulation

One problem with using data that span a very long historical period is that market circumstances
change over time. Since historical simulation requires a very large sample, the question is how best
to employ data, possibly from a long time ago when the market was in a different regime. As a
simple example, consider an equity market that has been stable and trending for one or two years,
but previously experienced a long period of high volatility. We have little option but to use a long
historical sample period for the historical VaR estimate, but we would like to adjust the returns from
the volatile regime so that their volatility is lower. Otherwise the current historical VaR estimate will
be too high. Conversely, if markets are particularly volatile at the moment but were previously stable
for many years, an equally weighted historical estimate will tend to underestimate the current VaR,
unless we scale up the volatility of the returns from the previous, tranquil period.

Filtered historical simulation, as introduced by Barone-Adesi et al. (1998), is an extension the
idea of volatility adjustment to multi-step historical simulation. A distinct advantage of the filtered
historical simulation approach over standard historical simulation is that it combines Monte Carlo
simulation based on volatility clustering with the empirical return distribution that has occurred in the
past.

9



5 MONTE CARLO SIMULATION MODELS

The idea is to use a parametric dynamic model of returns volatility, such as a GARCH(1,1) model4,
to simulate log returns on each day over the risk horizon. For instance, suppose we have estimated a
symmetric GARCH(1,1) model on the historical portfolio returns rt , obtaining the estimated model

σ̂2
t = ω̂+ α̂r2

t−1 + β̂σ̂2
t−1. (4.5)

The filtered historical simulation model assumes that the GARCH innovations are drawn from the
standardized empirical return distribution. That is, we assume the standardized innovations are

εt =
rt

σ̂t
, (4.6)

where rt is the historical portfolio return at time t and σ̂t is the estimated GARCH daily standard
deviation at time t. To start the one step simulation we set σ̂0 to be equal to the estimated daily
GARCH standard deviation on the last day of the historical sample, when the VaR is estimated, and
also set r0 to be the last daily return of the historical sample. Then we compute the GARCH daily
variance on day 1 of the risk horizon as

σ̂2
1 = ω̂+ α̂r2

0 + β̂σ̂2
0,

Now the simulated return on the first day of the risk horizon is r̂1 = ε1σ̂1 where a value for ε1
is simulated from our historical sample of standardized innovations (4.6). This is achieved using a
statistical bootstrap. Thereupon we iterate in the same way, on each day of the risk horizon setting

σ̂2
t+1 = ω̂+ α̂r2

t + β̂σ̂2
t , with rt = εt σ̂t for t = 1, . . . ,h,

where εt is drawn independently of εt−1 in the bootstrap. Then the simulated log return over a risk
horizon of 10 days is the sum r̂1 + r̂2 + . . .+ r̂10. Repeating this for 1000 simulations produces a
simulated return distribution, and the 100(1−α)% 10-day VaR is obtained as the α quantile of this
distribution.

5 Monte Carlo Simulation models

The process for computing VaR with Monte Carlo simulation models is complete analogous to the
estimation of VaR using historical simulation, only now we use Monte Carlo simulations instead of
historical simulations. That is, we simulate a distribution for the portfolio’s 10-day returns, and the
100(1−α)% 10-day VaR is estimated empirically as α quantile of this distribution.

The main advantage of Monte Carlo simulation over historical simulation is the absence of restric-
tions on historical sample size. The calibration of the parametric distributions for asset returns can be
based on very little historical data, indeed we could just use scenario values for the parameters of the
distributions. And if the parameters are calibrated on only very recent history, the Monte Carlo VaR
estimates will naturally reflect these market circumstances.

The advantage of Monte Carlo VaR compared to parametric VaR estimates for linear portfolios is
the large number of alternative asset return distributions that can be assumed. However, it is important
to apply simulations to a dynamic model of returns that captures path-dependent behavior, such as
volatility clustering, as well as the essential non-normal features of their conditional distribution.
Without such a model, filtered historical simulation (see section 4.3) may be the better alternative.

4Using a GARCH model to estimate σ̂t is described in more detail in section 5.2.2
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5.1 Unconditional volatility

To simulate 10-day portfolio returns, we need to capture the characteristics of daily returns in the
simulation model. For this we need to use a multi-step Monte Carlo framework. For our linear
portfolio, this consists of simulating a 10-day log return by summing 10 consecutive daily log returns
and then just evaluating the portfolio once, 10 days ahead.

We perform N=1000 simulations5 based on the assumption of i.i.d. lognormally distributed re-
turns. We use log returns to simulate the price of our portfolio on each day over the risk horizon,
starting from the current price, St , and ending in 10 days’ time with 1000 simulated prices. Hence, we
simulate 1000 paths for the daily log returns over the next 10 days. The simulated price in 10 days’
time based on one-step Monte Carlo is

St+h = St exp
(

hµ̂1,t + σ̂1,t
√

hZ̃t

)
, (5.1)

where

St = Current price

µ̂t = Average daily return at time t

h = Risk horizon in days = 10

σ̂t = Daily return volatility at time t

Z̃t = Generated standard normal random number.

As described in section 3, the assumption of normally distributed portfolio returns is very unre-
alistic. Therefore we can also base our Monte Carlo simulation on generated standardized Student t
distributed random numbers. The simulated price in 10 days’ time is then

St+h = St exp
(

hµ̂1,t + σ̂1,t
√

hT̃t

)
, (5.2)

where T̃t is a generated standardized Student t random number. This number can be obtained by
multiplying a standard Student t random number by

√
ν−1(ν−2), with ν the number of degrees of

freedom.
After obtaining 1000 random prices for time t+10 we calculate 1000 daily returns from the current

and the simulated prices. By sorting these returns, we can calculate the VaR by taking the worst
100α% return.

The historical volatility estimate, σ̂t in (5.1) and (5.2), is based on the equally weighted uncondi-
tional variance estimate. For instance, denoting the portfolio return at time t by rt and assuming these
returns are i.i.d., the equally weighted sample variance based on the most recent T returns is

σ̂2
t =

1
T −1

T

∑
k=1

(rt−k − r̄)2 , (5.3)

where r̄ denotes the average daily return over the previous T days.

5.2 Volatility clustering

One of the most important features of daily returns on equity portfolios is that volatility tends to
come in clusters. Certainly at the daily frequency, large returns tend to follow large returns of ei-
ther sign. Whilst returns themselves may show little or no autocorrelation, there is a strong positive

5Performing more than 1000 simulations becomes computationally too intensive.
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autocorrelation in squared returns. We refer to this feature as volatility clustering, as markets pass
through periods with low and high volatility. A tremendous amount of research has been conducted
on volatility clustering, started by Mandelbrot (1963).

In this section we discuss various models to capture this volatility clustering, by using multi-step
Monte Carlo simulation. We simulate the price of our portfolio on each day over the risk horizon,
starting from the current price, St , and ending in 10 days’ time with 1000 simulated prices. Hence,
we simulate 1000 paths for the daily log returns over the next 10 days. This means that, when we
are estimating the risk of a portfolio, the simulated daily log returns can be used to calculate the price
tomorrow, the price in 2 days’ time, and so on up to the risk horizon of 10 days.

5.2.1 EWMA volatility

The method used to estimate σ̂t in (5.1) and (5.2) equal to the EWMA volatility is already described
in detail in section 3.1.2. When based on multi-step Monte Carlo simulations, the EWMA variance
estimate σ̂2

t at time t is computed using the recurrence

σ̂2
t = (1−λ)r2

t−1 +λσ̂2
t−1, (5.4)

where λ is a constant called the smoothing constant, and rt−1 is the simulated log return in the previous
simulation.

In the EWMA model for simulating log returns we set r̂t = σ̂t Z̃t or r̂t = σ̂t T̃t where Z̃t and T̃t are
respectively simulations from a standard normal variable and a standardized Student t variable and σ̂t

is computed using (5.4). Hence, the simulated log return over a risk horizon of 10 days is the sum
r̂1 + r̂2 + . . .+ r̂10. Repeating this for 1000 simulations produces a simulated return distribution, and
the 100(1−α)% 10-day VaR is obtained as the α quantile of this distribution.

An EWMA volatility estimate is a constant, in the sense that it is equal for all time horizons. The
EWMA model will estimate the same average volatility for all time horizons, whether the forecast is
over the next day or over the next 10 days. For a risk horizon of 10 days, this doesn’t seem as a very
good risk model. For this reason we also base our forecasts on a GARCH model, which is described
in the next section.

5.2.2 GARCH volatility

In this section we show how to estimate σ̂t by using a GARCH(1,1) model (Bollerslev, 1986). The
dynamic behaviour of the conditional variance is given by the following equation:

σ̂2
t = ω+αr2

t−1 +βσ̂2
t−1, t = 2, . . . ,T, (5.5)

which is a function of the weighted long run variance, the previous squared return and the previous
variance. Compared to the EWMA model it has an additional term for mean reversion (ω). Therefore
the forecasts that are made from this model are not equal the current estimate. Instead volatility can
be lower or higher than average on short term, but it will converge to the long term volatility as the
risk horizon increases. The GARCH error parameter α measures the reaction of conditional volatility
to market shocks. When α is relatively large (e.g. above 0.1) then volatility is very sensitive to market
events. The GARCH lag parameter β measures the persistence in conditional volatility irrespective of
anything happening in the market. When β is relatively large (e.g. above 0.9) then volatility takes a
long time to die out following a crisis in the market. The sum α+β determines the rate of convergence
of the conditional volatility to the long term average level. When α+β is relatively large (e.g. above
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6 MONTE CARLO SIMULATION WITH COPULAS

0.99) then the terms structure of volatility forecasts from the GARCH model is relatively flat. The
GARCH constant parameter ω, together with the sum α+ β, determines the level of the long term
average volatility, i.e. the unconditional volatility in the GARCH model. When ω/(1−α− β) is
relatively large (compared to the squared returns) then long term volatility in the market is relatively
high.

We use Monte Carlo simulation to simulate a time series of returns that follow a GARCH process.
We first fix the parameters of the GARCH model, by assuming that the conditional distribution is
normal or Student t. Next, we simulate a path for the daily log returns over the next 10 days by using
the recurrence in (5.5). We set r̂t = σ̂t Z̃t or r̂t = σ̂t T̃t where Z̃t and T̃t are respectively simulations
from a standard normal variable and a standardized Student t variable and σ̂t is computed using (5.5).
Hence, the simulated log return over a risk horizon of 10 days is the sum r̂1+ r̂2+ . . .+ r̂10. Repeating
this for 1000 simulations produces a simulated return distribution, and the 100(1−α)% 10-day VaR
is obtained as the α quantile of this distribution.

5.2.3 EGARCH volatility

In the symmetric GARCH model, the effects of upward movements in daily returns on the conditional
variance are assumed to be the same as the downward movements in daily returns. However, Black
(1976) and many others have pointed out that there appears to be an asymmetry in stock market
data: negative innovations to stock returns tend to increase volatility more than positive innovations
of the same magnitude. A model that captures asymmetric behavior in the conditional variance is
the Exponential GARCH model, or EGARCH model. The EGARCH(1,1) model, as introduced by
Nelson (1991), is defined as:

ln σ̂2
t = ω+α

∣∣∣∣ rt−1

σ̂t−1

∣∣∣∣+ γ
rt−1

σ̂t−1
+β ln σ̂2

t−1, t = 2, . . . ,T, (5.6)

where the coefficients α and γ show the asymmetry in response to positive and negative rt−1. This
model is appealing because it uses logged conditional variance to relax the positiveness constraint of
model coefficients. A 10-day VaR can be estimated by using the algorithm described in section 5.2.2,
where the GARCH model is replaced by the EGARCH model.

6 Monte Carlo Simulation with Copulas

Copulas are multivariate distributions with uniform marginals that may be used to construct a huge va-
riety of risk factor return distributions. The copula only models dependence; the marginal distribution
of each of the asset returns may be anything we like.

In this section we show how to estimate VaR based on simulated returns for the equity and bond
returns, with a dependency structure modeled by copulas. The normal and Student t copulas have a de-
pendency structure that is captured by a correlation matrix, and this makes simulation based on these
copulas very easy. We impose the dependency structure by using the Cholesky matrix of the correla-
tion matrix. For Clayton copulas we simulate draws from this copula by using a conditional approach,
i.e. conditional sampling. For all four different copulas we can choose the marginal distributions,
i.e. normal marginals or Student t marginals. In the following sections we provide a step-by-step plan
how to estimate VaR based on the different copulas.
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6 MONTE CARLO SIMULATION WITH COPULAS

6.1 Elliptical copulas

In this section we will discuss the step-by-step approach of the elliptical copulas (i.e. normal and
Student t copulas), inspired by Alexander (2008), that are based on the Cholesky matrix to impose the
dependency structure.

6.1.1 Normal copulas

The steps we perform for estimating the VaR based on simulation from a normal copula are the
following:

1. Simulate two columns of 1000 independent standard uniform random numbers.

2. Transform these numbers into independent standard normal returns, by using the inverse stan-
dard normal distribution function.

3. Transform these independent standard normal returns into correlated bivariate standard normal
returns, using the Cholesky matrix of the correlation matrix.

4. Apply the standard normal distribution function to the bivariate returns to obtain uniform marginals
that have dependence defined by a normal copula.

Then we can impose any marginals we like upon these simulations to obtain simulated returns on
financial assets that have these marginals and dependence defined by the normal copula.

6.1.2 Student t copulas

The steps we perform for estimating the VaR based on simulation from a Student t copula are the
following:

1. Simulate two columns of 1000 independent standard uniform random numbers.

2. Transform these numbers into independent Student t returns, by using the inverse t distribution
function with νc degrees of freedom, with νc the number of degrees of freedom of the copula
distribution.

3. Transform these independent Student t returns into correlated bivariate Student t returns, using
the Cholesky matrix of the correlation matrix.

4. Apply the Student t distribution function with νc degrees of freedom to the bivariate returns to
obtain uniform marginals that have dependence defined by a Student t copula with νc degrees
of freedom.

Then we can impose any marginals we like upon these simulations to obtain simulated returns on
financial assets that have these marginals and dependence defined by the Student t copula.

6.2 Archimedean copulas

To apply Archimedean copulas in simulation we generally require a combination of the conditional
copula distribution and the marginal distributions of the random variables. Quantile curves are a
means of depicting these. In this section we define expressions for the conditional distributions and q
quantile curves for the bivariate Clayton copula.
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6.2.1 Clayton copulas

In the bivariate Clayton copula (Clayton, 1978) the conditional distribution of u2 given u1 is

C2|1(u2|u1;δ) =
∂

∂u1
(u−δ

1 +u−δ
2 −1)−1/δ = u−(1+δ)

1 (u−δ
1 +u−δ

2 −1)−(1+δ)/δ, (6.1)

where δ is the dependence parameter.
The q quantile curve of the Clayton copula may thus be written in explicit form, setting (6.1) equal

to the fixed probability q and solve for u2, giving the q quantile curve of the Clayton copula as

u2 = C−1
2|1 (v|u1) = (1+u−δ

1 (q−δ/(1+δ)−1))−1/δ. (6.2)

The steps we perform for estimating the VaR based on simulation from a bivariate Clayton copula
are then the following6:

1. Simulate two columns of 1000 independent standard uniform random numbers, v1 and v2

2. Set u1 = v1

3. Set u2 = (1+ v−δ
1 (v−δ/(1+δ)

2 −1))−1/δ.

The resulting series, u1 and u2, are standard uniform random numbers with Clayton copula de-
pendence. Then we can impose any marginals we like upon these simulations to obtain simulated
returns on financial assets that have these marginals and dependence defined by the Clayton copula.
A Clayton copula has positive lower tail dependence and zero upper tail dependence.

6.3 Calculation of VaR

In this section we describe the strategy to transform the simulated asset return series from the previous
section into 10-day portfolio returns. We impose the characteristics of the daily return series by using
unconditional volatility estimates and GARCH or EGARCH volatility estimates.

6.3.1 Unconditional volatility estimates

After simulating the two financial asset returns series, we use the 10-day mean and standard deviation
to transform the observations into simulations with 10-day asset returns. Next, we apply the portfolio
weights to these simulations and estimate the empirical α quantile of the simulated portfolio return
distribution. This gives the 100(1−α)% 10-day VaR as a percentage of the portfolio value.

6.3.2 GARCH/EGARCH volatility estimates

The estimation of VaR and ES with unconditional volatility estimates is based on the underlying
assumption of i.i.d. returns. As already described in section 3, this is a very unrealistic assumption,
as markets pass through periods with low and high volatility. To capture volatility clustering, we use
Monte Carlo simulation to simulate a time series of returns with copula dependence that follow a
GARCH process. We first fix the parameters of the GARCH or EGARCH model, by assuming that
the conditional distribution is normal or Student t. Next, we simulate a path for the daily log returns
of the two asset returns separately over the next 10 days by using the recurrence in (5.5) or (5.6)

6See Cherubini et al. (2004), Chapter 6, for more details.
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when using GARCH or EGARCH respectively. We set r̂t = σ̂t Z̃t,c or r̂t = σ̂t T̃t,c where Z̃t,c and T̃t,c are
respectively simulations from standard normal marginals with copula dependence and a standardized
Student t marginals with copula dependence and σ̂t is computed using (5.5) or (5.6).

Hence, the simulated log return for each asset over a risk horizon of 10 days is the sum r̂1 + r̂2 +
. . .+ r̂10. Repeating this for 1000 simulations produces a simulated return distribution for each asset,
and we apply the portfolio weights to these simulated 10-day asset returns and construct the simulated
portfolio return distribution. Finally, the 100(1−α)% 10-day VaR is obtained as the α quantile of this
distribution.

7 Backtesting Methodology

Banking supervisors will only allow internal models to be used for regulatory capital calculation if
they provide satisfactory results in backtests. The 1996 Amendment to the 1988 Basel Accord (see
Basel Committee on Banking Supervision, 1996) contains a detailed description of the backtests that
supervisors will review. The backtests to be applied compare whether the observed percentage of
outcomes covered by the risk measure is consistent with a 99% level of confidence. That is, they
attempt to determine if a bank’s 99th percentile risk measures truly cover 99% of the firm’s trading
outcomes. The Basel Committee recommends a very simple type of backtest, which is based on a
99% VaR estimate and where the number of violations over the previous twelve months (250 trading
days) of data is calculated. Hence, the expected number of violations over these twelve months is 2.5.
Regulators wish to guard against VaR models whose estimates are too low.

Most backtests on 1-day VaR estimates are based on the assumption that the returns are generated
by an i.i.d. Bernoulli process. A Bernoulli variable may take only two values, which could be labelled
1 and 0, or ’success’ and ’failure’. In our context, we would call ’success’ a violation of the VaR by
the return, and further assign this the value 1. Thus we may define an indicator function Iα,t+1 on the
time series of daily returns relative to the 100(1−α)% 1-day VaR by

Iα,t+1 =

{
1 if rt+1 < VaR1,α,t
0 otherwise ,

(7.1)

where rt+1 is the realized daily portfolio return at time t + 1 and VaR1,α,t is the 100(1−α)% 1-day
VaR estimate at time t.

It is more difficult to perform backtests on 10-day VaR estimates instead of 1-day VaR estimates.
The reason for this is that 10-day VaR estimates are based on overlapping samples, since we estimate
the 10-day VaR every day. Hence, in that case we can not use our standard assumption that violations
follow an i.i.d. Bernoulli process. Violations would be positively autocorrelated (for instance, one
extremely large daily loss would have impact on ten consecutive 10-day returns). For this reason, the
backtesting framework described by the Basel Committee involves the use of risk measures calibrated
to a 1-day holding period. Banks are thus required to perform the backtests described in the next
sections on their 1-day VaR estimates instead of their 10-day VaR estimates.

7.1 Minimum Required Capital

For banks that use an internal VaR model to estimate the Minimum Required Capital (MRC) the
general risk charge is calculated as k times the average of the 99% 10-day VaR over last 60 days, or
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yesterday’s VaR on the current portfolio, if this is greater:

MRCt =−max

(
k

60

60

∑
i=1

VaR10,0.01,t−i,VaR10,0.01,t−1

)
. (7.2)

To determine the minimum required capital, most regulators allow banks to base this value on 1-
day VaR estimates and then scale these estimate up by using a square-root-of-time rule. But this rule is
only valid for linear portfolios with i.i.d. normally distributed returns, and since most portfolios have
non-normally distributed returns that are not i.i.d., we do not expect this rule to be an accurate scaling
method. Therefore, we base our calculations of the minimum required using different risk models on
the 99% 10-day VaR estimates, for which we already described more reliable scaling methods.

The multiplier k takes a value between 3 and 4 depending on the model’s backtesting results. If
backtests reveal statistical inaccuracies in the VaR estimates, k takes a higher value or the VaR model
may be disallowed. Table 1 show the value of k for several possible numbers of violations over the
previous 250 trading days, set by the Basel Committee. Since these values are based on violations
for 1-day VaR estimates, we should not base this test on our 10-day VaR estimates, but on 1-day VaR
estimates. Unfortunately this may cause inaccurate risk models to pass the regulatory backtest.

Regulators wish to guard against VaR models whose estimates are too low. Since they are very
conservative they will only consider that models having 4 exceptions or less as sufficiently accurate.
These so-called green zone models have a multiplier of 3, which corresponds to backtesting results
that do not themselves suggest a problem with the quality or accuracy of a bank’s model. If there are
between 5 and 9 exceptions, the model is yellow zone, which means it is admissible for regulatory
capital calculations but the multiplier is increased and will lie between 3 and 4. A red zone model
means there are 10 or more exceptions. Then the multiplier takes its maximum of value 4, or the VaR
model is disallowed. This backtesting framework should be performed on a quarterly basis, so every
quarter the multiplier is updated, based on the number of violations over the previous 250 trading
days.

Table 1: Basel Accord Penalty Zones
Zone Number of Violations k

Green 0 to 4 3.00

5 3.40
6 3.50

Yellow 7 3.65
8 3.75
9 3.85

Red 10 or more 4.00

Note: The number of violations is given for 250 trading days. The penalty structure under the Basel II Accord is specified

for the number of violations and not their magnitude, either individually or cumulatively.

7.2 Coverage Tests

Unconditional coverage tests, introduced by Kupiec (1995), test if the fraction of violations obtained
for a particular risk model, call it π, is significantly different from the promised fraction, α. They may
be regarded as a more sophisticated and flexible version of the banking regulators’ backtesting rules
described above. The idea was both formalized and generalized by Christoffersen (1998) to include
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tests on the independence of violations (i.e. whether violations come in clusters) and conditional
coverage tests (which combine unconditional coverage and independence into one test).

7.2.1 Unconditional Coverage Test

An unconditional coverage test is a test of the null hypothesis that the indicator function in (7.1),
which is assumed to follow an i.i.d. Bernoulli process, has a constant ’success’ probability equal to
the significance level of the VaR, α. We call this the unconditional coverage hypothesis. In other
words, the number of violations should be sufficiently close to the number of expected violations. In
order to test this we define the likelihood function

L(π) = (1−π)n0πn1 , (7.3)

where n1 and n0 is the number of violations and non-violations respectively, (n0 +n1 = n).
We can easily estimate π using the observed proportion of violations, πobs =

n1
n . Plugging the ML

estimates back into the likelihood function gives the optimized likelihood as

L(πobs) = (1−πobs)
n0πn1

obs. (7.4)

Under the unconditional coverage null hypothesis that πexp = πobs , where πexp is equal to α, the
expected proportion of violations, we have the likelihood

L(πexp) = (1−πexp)
n0πn1

exp. (7.5)

The test statistic of the unconditional coverage hypothesis is a likelihood ratio statistic given by

LRuc =−2ln
[

L(πexp)

L(πobs)

]
=

(1−πexp)
n0πn1

exp

(1−πobs)n0πn1
obs

∼ χ2
1. (7.6)

7.2.2 Independence Test

Even if the number of observed VaR violations is fairly close to the expected number of violations,
we do not want those violations to occur around the same time. For example, if the 99% VaR gave
exactly 1% violations but all of these violations came during a one-week period, then the risk of
bankruptcy would be much higher than if the violations came scattered randomly through time. We
therefore would very much like to reject VaR models which imply violations that are clustered in
time. Clustering of violations indicates that the VaR model is not sufficiently responsive to changing
market circumstances. Some of our models do not account for the volatility clustering that we know
is prevalent in many markets. Even if these models pass the unconditional coverage test, we could
still reject the VaR model if the violations are not independent.

If the VaR violations are clustered then we can essentially predict that if today is a violation, then
tomorrow a violation will occur with a probability larger than 100α%. This is clearly not satisfactory.
In such a situation we should increase the VaR in order to lower the conditional probability of a
violation to the promised α.

A test for independence of violations is based on the formalization of the notion that when vio-
lations are not independent the probability of a violation tomorrow, given there has been a violation
today, is no longer equal to α. As in the unconditional coverage test, we define n1 and n0 as the
number of violations and non-violations respectively, (n0 + n1 = n). Further, we define ni j to be the
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number of returns with indicator value i followed by indicator value j. For example, n01 is the number
of non-violations followed by a violation. It follows that n1 = n11 +n01 and n0 = n10 +n00.

We assume that the sequence of violations is dependent over time and that it can be described as
a so-called first-order Markov sequence with transition probability matrix

Π1 =

[
1−π01 π01
1−π11 π11

]
(7.7)

where π01 is the proportion of violations, given that the last return was a non-violation, and π11 is
the proportion of violations, given that the last return was a violation. We can write the likelihood
function of the first-order Markov process as

L(Π1) = (1−π01)
n00πn01

01 (1−π11)
n10πn11

11 . (7.8)

Taking first derivatives with respect to π01 and π11 and setting these derivatives to zero, one can solve
for the Maximum Likelihood estimates

π̂01 =
n01

n00 +n01
and π̂11 =

n11

n10 +n11
, (7.9)

which leads to the matrix of estimated transition probabilities

Π̂1 ≡
[

π̂00 π̂01
π̂10 π̂11

]
=

[
1− π̂01 π̂01
1− π̂11 π̂11

]
=

[
n00

n00+n01

n01
n00+n01

n10
n10+n11

n11
n10+n11

]
. (7.10)

If the violations are independent over time, then the probability of a violation tomorrow does not
depend on today being a violation or not and we write π01 = π11 = π. Under independence the
transition matrix is thus

Π̂ =

[
1− π̂ π̂
1− π̂ π̂

]
. (7.11)

Now we can state the independence test statistic, derived by Christoffersen (1998), as

LRind =−2ln
[

L(π̂)
L(Π1)

]
=

(1−πobs)
n0πn1

obs
(1−π01)n00πn01

01 (1−π11)n10πn11
11

∼ χ2
1. (7.12)

7.2.3 Conditional Coverage Test

Ultimately, we care about simultaneously testing if the VaR violations are independent and the average
number of violations is correct. We can test jointly for independence and correct coverage using the
conditional coverage test

LRcc =−2ln
[

L(πexp)

L(Π1)

]
=

(1−πexp)
n0πn1

exp

(1−π01)n00πn01
01 (1−π11)n10πn11

11
∼ χ2

2. (7.13)

8 Prediction of bull and bear markets

In this section we propose a method for identifying and predicting bull and bear periods. We compare
three different criteria for selecting the optimal set of predicting variables. First, we examine the
identification of bull and bear periods, based on the S&P500 Index. Then, by using a logit model,
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we investigate which variable selection criterium leads to the highest out-of-sample hitrate. Since we
want to base the choice of a risk model on the prediction of the market condition, we have to make
sure we can predict this market condition reasonably well. We show that a pragmatic and relatively
simple model can be very effective in predicting bull and bear markets.

8.1 Predicting variables

We consider macro-economic and financial variables to predict whether the next month will be a bull
month or a bear month. All variables were measured at monthly frequencies over the period 1961M1
to 2010M12, and stock prices were measured by the S&P500 Index at close on the last trading day of
each month, obtained from Yahoo! Finance.

Motivated by prior studies (e.g., Pesaran and Timmermann, 1995; Rapach et al., 2005; Chen,
2009; Kole and Van Dijk, 2010) we establish a set of predicting variables over which the search for a
"satisfactory" prediction model could be conducted. The set consists of a constant, which is always
included in the model, as well as 10 predicting variables, namely inflation rates (consumer prices),
narrow money stock (M1), broad money stock (M2), aggregate output (industrial production), unem-
ployment rates, trade weighted exchange rates, 3-month T-Bill rate, yield spreads (difference between
the 10-year government bond yield and the 3-month treasury bill rate), credit spread (difference be-
tween Moody’s BAA and AAA corporate bond yields) from the FRED database of the Federal Reserve
Bank of St. Louis and the dividend yield, obtained from Thompson Datastream.

For all the variables mentioned above, unit root tests were conducted to investigate whether these
series were stationary. The results are provided in the third column of Table 2. Some of the variables
exhibit a unit root, but this does not have to be problematic. Park and Phillips (2000) show that logit
models with non-stationary explanatory variables will provide consistent maximum likelihood (ML)
estimators but a new phenomenon arises in its limit distribution theory. The estimator consists of a
mixture of two components, one of which is parallel to and the other orthogonal to the direction of
the true parameter vector, with the latter being the principal component. The ML estimator is shown
to converge at a rate of n3/4 along its principal component but has the slower rate of n1/4 convergence
in all other directions.

Nevertheless, we transform some of the predictive variables to ensure stationarity, which is shown
in the last column of Table 2. For the T-Bill rate, the trade weighted exchange rate and the dividend
yield we construct a stationary series by subtracting 12-month backward-looking average from each
observation, used more often in forecasting (see e.g., Campbell, 1991; Rapach et al., 2005). For the
unemployment rate we construct yearly differences. We transform the industrial production series
to yearly growth rates. For the narrow and broad money growth we take the first difference in the
loglevels of the defined money stocks (see Rapach et al., 2005). We do not transform the inflation
rate, the yield spread or the credit spread series.

The early studies of stock returns are not always clear on what they consider to be the appropri-
ate time lags between the changes in the business cycle variables and stock returns. Here, following
Pesaran and Timmermann (1995), we decide to include the most recently available values of the vari-
ables in the base set of regressors. The lag associated with the publication of macroeconomic indica-
tors means that these variables must be included in the base set with a 2-month time lag. The financial
variables are included with a 1-month time leg.

The recursive model selection and estimation strategy is based on monthly observations over the
period 1961M1 to 2010M12. Every month we update the model parameters, using an moving window
of 20 years (240 monthly observations).
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Table 2: Characteristics of predicting variables

AR(1) ADF Transformation

Inflation rate 0.825 -3.15
Narrow money stock 1.001 -0.86 First difference in log-levels
Broad money stock 1.001 -2.05 First difference in log-levels
Industrial production 1.002 -0.56 Yearly growth rate
Unemployment rate 1.001 -2.79 Yearly change
Exchange rate 1.001 -1.33 Difference with a 12-month moving average
3-month T-Bill rate 0.997 -2.64 Difference with a 12-month moving average
Yield spread 0.983 -3.36
Credit spread 0.995 -2.89
Dividend yield 0.999 -1.12 Difference with a 12-month moving average

Notes: This table shows the set of predicting variables for which we conduct an adjusted Dickey-Fuller test. AR(1) is the

first order autocorrelation coefficient, ADF is the Augmented Dickey-Fuller test statistic. In each test, the null hypothesis

is that the series has a unit root. Test critical values for ADF are -3.44 (1%), -2.87 (5%) and -2.57 (10%). Lags in ADF

test are chosen by the Modified Akaike Information Criterion. If this hypothesis is not rejected, the last column shows the

transformation that is applied to the variable. The series run from January 1981 until December 2010.

8.2 Identification of bull and bear markets

An important aspect of bull and bear markets is that they describe the long-term trend, not short
term changes. In other words, within a bear (bull) market there has to be room for small positive
(negative) returns. Lunde and Timmermann (2004) define a stock market switch from a bull state to a
bear state if stock prices have declined by a certain percentage since their previous (local) peak within
that bull state. Likewise, a switch from a bear state to a bull state occurs if stock prices experience
a similar percentage increase since their local minimum within that state. This definition does not
rule out sequences of negative (positive) price movements in stock prices during a bull (bear) market
as long as their cumulative value does not exceed a certain threshold. By abstracting from the small
unsystematic price movements that dominate time series as noisy as daily price changes, this definition
is designed to capture long-run dependencies in the underlying drift in stock prices.

We define λ1 as the threshold of movements in stock price that trigger a switch from a bear market
to a bull market, λ2 as the threshold for a switch from a bull market to a bear market. The choice of
the values for λ1 and λ2 should be chosen wisely. The smaller the values at which these parameters
are set, the more bull and bear market spells we expect to see. However, there are also limits to
how low λ1 and λ2 can be set because too-small values will lead our analysis to capture short-term
dynamics in stock price movements. Setting λ1 > λ2 provides a way to account for the upward drift in
stock prices. In our research, finding optimal values for λ1 and λ2 is of less importance, so we follow
Lunde and Timmermann (2004) by setting λ1 to 20% and λ2 to 15%.

After identifying the bull and bear markets, we obtain a binary variable:

yt =

{
1 if bull market at time t
0 if bear market at time t

Insight into how the definition described above partitions stock prices into bull and bear periods is
provided by Figure 2, which uses the stock price index to show the sequence of consecutive bull and
bear markets over the full sample period 1961-2010. Table 3 presents descriptive statistics for bull and
bear market durations, which are reported in months. The 20/15 filter splits the sample into 23 bull
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and bear markets. Many of the bull markets are very long compared to the length of the bear markets,
with the longest lasting from 1990 to 1998 (92 months). The longest bear market, which started in
2000 by the burst of the dot-com bubble, lasted for more than two years.

Figure 2: Identification of bull and bear markets.
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Notes: This figure shows the identification of bull and bear periods for the US for the period January 1, 1961 to December

31, 2010, based on the S&P500 Stock Price Index. The red line shows the S&P500 Stock Price Index (on log-scale) and the

grey shadings track the bear markets derived from this index.

Table 3: Summary Statistics for Bull and Bear Market Durations
Bull Bear

Durations Mean Median Min. Max. Durations Mean Median Min. Max.

12 38.42 30 12 92 11 12.64 14 2 25

Notes: This table presents descriptive statistics for the distribution of bull and bear market durations for the US for the

period January 1, 1961 to December 31, 2010, based on the S&P500 Stock Price Index.

8.3 Methodology

The next step is to relate the resulting series of bull and bear states to a set of explanatory variables.
At each point in time, t, Pesaran and Timmermann (1995) search over a base set of κ regressors to
make one period ahead forecasts of yt using only information that is publicly available at the time. We
simulate the search for a forecasting model by applying three different criteria for model selection, to
the set of regression models spanned by all possible permutations of the κ regressors {xl,x2, . . . ,xκ}
in the base set. This gives a total of 2κ different models, M, each of which is uniquely identified by a
number, i, between 1 and 2κ.

Since the dependent variable yt is binary, it can be forecasted by a logit or probit model. Kole
and Van Dijk (2010) opt for a logit model (Berkson, 1944), as this model can be easily extended to a
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multinomial logit model when more states are present. We consider the following logit model:

Mi : P(yt = 1) = F(X
′
i,tβ) =

exp(X
′
i,tβ)

1+ exp(X′
i,tβ)

(8.1)

where Xi,t is a (κi + 1)×1 vector of regressors under model Mi, obtained as a subset of the base set
of regressors, Xt , plus a vector of ones for the intercept term.

The particular choice of Xi,t to be used in forecasting of yt+1 can be based on a number of statisti-
cal model selection criteria, such as Akaike’s Information Criterion (AIC) (Akaike, 1973), Schwarz’s
Information Criterion (SIC) (Schwarz, 1978), or the in-sample hitrate. The first two criteria are
likelihood-based and assign different weights to the parsimony and fit of the models. The fit is mea-
sured by the maximized value of the log-likelihood function (L̂L), and the parsimony by the number
of freely estimated coefficients.

The Akaike and Schwarz model selection criteria are defined as

AICi,t = L̂Li,t − (κi +1) (8.2)

SICi,t = L̂Li,t −1/2(κi +1) ln(t) (8.3)

Based on these beliefs, we establish a base set of potential forecasting variables and, at each point in
time, search for a reasonable model specification, capable of predicting yT+1, across this set. Notably,
this procedure assumes that, at each point in time, we use only historically available information to
select a model according to a predefined model selection criterion and then use the chosen model to
make one-period ahead predictions of the market condition.

In each case the model selection criteria described above were applied to logit models using the
S&P500 price index as the dependent variable and subsets of the base set of regressors as the inde-
pendent variables. For our set of ten regressors, this means comparing 210 = 1024 models at each
point in time, and over the period 1980M12 to 2010M11 this gives a total of 368,640 regressions to
be computed.

The model that minimizes the AIC, SIC or maximizes the in-sample hitrate is chosen, and the pa-
rameter values estimated with observations over the past twenty years are used to forecast yT+1. The
outcome of the logistic regression will be P(yT+1 = 1), which is the predicted probability belonging to
a bull market at time T +1. The predicted probability belonging to a bear market is 1−P(yT+1 = 1).
The next step is to use a cut-off value, c, on these probabilities in order to classify them as a bull
prediction or a bear prediction. Cramer (1999) shows that in a binary logit analysis with unequal sam-
ple frequencies of the two outcomes the less frequent outcome always has lower estimated prediction
probabilities than the other outcome. As shown in Figure 2, each window of twenty years contains
significantly more bull months than bear months. Therefore we set c to the proportion of bull months
in our window. This means c can vary over time.

Kole and Van Dijk (2010) state that to form the one-period ahead prediction for yT+1, the prevail-
ing state at time T is needed. For the rules-based approaches, this information may not be available.
In the approach of Lunde and Timmermann (2004), only if the stock price index at time t equals the
last observed maximum (minimum), and is a fraction λ1 above (λ2 below) the prior minimum is the
market surely in a bull (bear) state. So, the market may already have switched, but this will only
become obvious later. In that case, the state of the market is known until the period of the last extreme
value, which we denote with T ∗ ≤ T .
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9 Empirical Results

9.1 Prediction of bull and bear markets

As discussed in section 8, we estimated a total of 368,640 models over the 1980M12 to 2010M11
period. Clearly, we cannot supply the reader with all the details of the estimation results. In this
section we provide the main results.

Table 4 shows, for every variable, the percentage of months where it was included in the model,
according to the three different selection criteria. As to be expected, the average number of variables
included in the model is higher for the in-sample hitrate criterion and the AIC than for the SIC. As can
be seen in (8.2) and (8.3), the SIC puts a heavier penalty for inclusion of an additional variable than
the AIC. It is clear that the in-sample hitrate criterion does not put any restrictions on the inclusion of
additional variables. In Appendix A we provide some graphic displays of the inclusion frequency of
the variables in the base set under the three different selection criteria.

Table 4: Percentage of periods where a regressor is included in forecasting equations
In-Sample Hitrate AIC SIC

Bear Bull Total Bear Bull Total Bear Bull Total

Inflation rate 48.8 52.9 51.9 72.3 68.2 69.2 35.3 30.5 31.7
Relative Narrow money growth 51.2 27.9 33.3 18.1 7.2 9.7 00.0 00.0 00.0
Relative Broad money growth 45.2 35.1 37.5 18.7 10.1 11.9 00.0 00.0 00.0
Industrial production yearly growth 77.4 62.0 65.6 68.7 95.3 89.2 63.5 85.5 80.3
Yearly change unemployment rate 66.7 64.1 64.7 60.2 88.8 82.2 37.6 60.4 55.0
Relative trade weighted exchange rate 42.9 29.3 32.5 34.9 26.4 28.3 18.8 12.4 13.9
Relative 3-month T-Bill rate 57.1 44.9 47.8 36.1 18.8 22.8 30.6 17.8 20.8
Yield spread 86.9 84.1 84.7 91.6 88.1 88.9 84.7 78.2 79.7
Credit spread 39.3 54.0 50.6 45.8 49.8 48.9 24.7 35.6 33.1
Relative dividend yield 85.7 79.7 81.1 81.9 92.4 90.0 83.5 84.7 84.4

Average number of variables 5.5 4.8 5.0 4.6 4.8 4.7 3.4 3.7 3.7

Notes: This table shows the percentage of periods where a regressor is included in forecasting equations. The results are

based on the selection of variables recursively over the period 1980M12 to 2010M11. Each month the set of regressors that

maximizes a given model selection criterium was determined and used to forecast the market condition one month ahead.

See Section 8.3 for a definition of the statistical model selection criteria.

Besides the statistical performance, most literature on forecasting of the market condition pays
attention to the investment performance of every method analyzed. In our research, we want to condi-
tion the risk model choice on the prediction of bull and bear markets, which means our main priority
here is to predict as many bull and bear months correctly. Therefore, we only look at the statistical
quality of our predictions. We measure the statistical quality by the out-of-sample hitrate and the
results are shown in Table 5. Looking at these results, the selection of predicting variables based on
the Schwarz Selection Criteria performs best, with a hitrate of more than 85%. However, the hitrates
of the other two criteria are only slightly lower. Clearly, there are no significant differences in the
performance of the model selection criteria in predicting bull and bear markets.
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Table 5: Predictive accuracy

In-sample hitrate AIC SIC
Forecast Forecast Forecast

Bear Bull Total Bear Bull Total Bear Bull Total

Bear 48 22 70 49 21 70 51 19 70
Bull 36 254 290 34 256 290 34 256 290
Total 84 276 360 83 277 360 85 275 360

Correct 48 254 302 49 256 305 51 256 307
% Correct 57.1 92.0 83.9 59.0 92.4 84.7 60.0 93.1 85.3

% Incorrect 42.9 8.0 6.1 41.0 7.6 15.3 40.0 6.9 14.7

Notes: This table shows the predictive accuracy of the logit model, according to three different selection criteria, namely

the in-sample hitrate, the Akaike Selection Criterion (AIC) and the Schwarz Information Criterion (SIC). Every month t a

one-step-ahead forecast for month t + 1 is made for the probability of a bull and of a bear month. The first prediction is

made for 1981M1 and the last for 2010M12, giving a total of 360 predictions.

9.2 Backtests VaR - Single risk models

We first check for each model whether the number of VaR violations corresponds to the expected
number of violations, which is 2.5 per year for a 99% VaR. In Figure 3, each graph displays the
accumulated number of violations of all models for the estimation of the 1-day VaR7 over the previous
250 trading days, evaluated each quarter. These violations are based on the VaR estimates for the 50/50
portfolio, but the results for the other portfolios, which are shown in Appendix B, are very similar.
The colors of the horizontal shaded areas indicate the Basel zones for VaR models (see Table 1) and
the vertical shaded areas track the bear markets derived from the S&P500 Index. We see that almost
all models have a relatively large number of violations in 1987, which corresponds to the stock market
crash on Monday 19, 1987. Furthermore, other peaks in the number of violations occur in 1998 due
to the crisis in Russia, in 2000 due to the collapse of the internet bubble and in 2008 due to the recent
banking crisis. It is clear that most models do not manage to stay out of the red zone over the whole
testing period. When these models reach the number of 10 violations during one financial year, the
model enters the red zone and might be disallowed by the banking regulator.

Tables 6 to 16 set out the results for backtesting the 99% 1-day VaR and 99% 10-day VaR for
the 50/50 portfolio. The results for the 20/80 portfolio and the 80/20 portfolio are very similar and
are provided in Appendix C. The results include the coverage tests, the average minimum required
capital and the maximum number of violations for each model over the previous 250 trading days,
which corresponds to the highest peak in Figure 3. The results in these tables show that only two
models manage to stay out of the red zone for the 1-day VaR estimates during the whole testing period,
i.e. the filtered historical simulation model with GARCH volatility and the parametric linear Student
t model with EWMA volatility with an optimized λ, each having a maximum of nine violations over
the previous 250 trading days, which occurred in 2007 for both models.

7In section 7 we explained why we use the 1-day VaR estimates instead of the 10-day VaR estimates for these backtests.
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Figure 3: Number of violations for the 50/50 portfolio accumulated over the previous 250 trading days
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Notes: This figure shows graphic displays of the number of violations for the 50/50 portfolio of all models for the estimation

of VaR on a 1-day risk horizon accumulated over the previous 250 trading days, evaluated each quarter. The colors of the

horizontal shaded areas indicate the Basel zones for VaR models and the vertical shaded areas track the bear markets derived

from the S&P500 Index.
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Figure 3: Number of violations for the 50/50 portfolio accumulated over the previous 250 trading days -
Continued
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For the parametric linear models (Table 6 and 7), the assumption of normally distributed returns
leads to an underestimation of VaR. The observed number of violations are almost twice as high as the
number of expected violations. The model with a mixture of two normal distributions, which should
capture excess kurtosis and negative skewness in the portfolio returns, does indeed lead to a lower
number of violations, but this number is still significantly higher than the number of violations we
would expect for a 99% confidence level. The assumption of Student t distributed returns logically
leads to a more conservative estimation of VaR and therefore also to less violations, compared to the
normal assumption. Imposing EWMA volatility leads to more reliable volatility estimates for 1-day
VaR estimates, resulting in a lower observed number of violations. However, on a 10-day horizon the
EWMA models do not significantly outperform the model with unconditional volatility estimates.

As expected, the number of observed violations for historical simulation models with equal weight
or exponential weight do not come close to the expected number of violations. Nevertheless, imposing
a volatility clustering structure by using filtered historical simulation results in a significant lower
number of violations. Filtered historical simulation with GARCH volatility leads to 92 violations for
a 10-day risk horizon, which is not significantly different from the number of expected violations.
The EGARCH volatility model overestimates VaR on a 10-day horizon and has an observed number
of violations significantly lower than the expected number of violations.

For the estimation of the 1-day VaR with Monte Carlo simulation models, Tables 9 and 13 show
that imposing volatility clustering does not lead to significantly better results than assuming uncon-
ditional volatility. However, on a 10-day risk horizon, imposing path dependence behavior by using
GARCH or EGARCH volatility leads to an observed number of violations relatively close to the
expected number of violations. Especially the model with EGARCH volatility estimates, which cap-
tures asymmetric behavior in the conditional variance, approaches the expected number of violations
reasonably well.

As can be seen in Tables 10 to 12 and 14 to 16, imposing copula dependence does not lead to
significantly better results compared to the Monte Carlo simulation models with uncorrelated asset
returns. However, to diversificate risk, portfolio managers will hold portfolios containing much more
assets than the two-asset portfolios our results are based on. With portfolios containing more as-
sets with stronger dependence, implementing copula dependence is likely to lead to relatively better
results.

For the 1-day VaR estimates the number of consecutive violations is relatively low, especially for
models which capture volatility clustering. For most of these models the independence test is not
rejected. However, estimating VaR on a 10-day horizon leads to a much higher number of consecutive
violations. For all models, the hypothesis of independent violations is convincingly rejected for the
10-day VaR estimates. This is a clear indication of positive autocorrelation of the VaR violations.

The average minimum required capital for all models shows that a trade off takes place between
the multiplier and the VaR estimate in equation (7.2). High VaR estimates have an upward effect on
the MRC, but they also lead to a lower number of violations, and thus to a low multiplier, which
has a downward effect on the MRC. However, we should also take into account that a bank is not
allowed to use a red zone model. Therefore, in the evaluation of the average MRC, we should only
take into account the filtered historical simulation model with GARCH volatility and the parametric
linear Student t model with EWMA volatility with an optimized λ. The latter models has the lowest
average MRC (24.28% of the portfolio value) and can therefore, based on this criterium, be qualified
as best performing model.
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Table 6: Backtests on VaR for the 50/50 portfolio - Parametric linear models - Normal distribution
Unc. vol. EWMA λ = 0.94 EWMA λ̂ Normal mixture

1-day VaR

Expected # violations 76 76 76 76
Observed # violations 176 146 147 125
# consecutive violations 17 8 8 13
Unconditional coverage <0.001 <0.001 <0.001 <0.001
Independence <0.001 0.010 0.011 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001

Average MRC 0.0761 0.0729 0.0726 0.0864
Maximum # violations 36 12 11 24

10-day VaR

Expected # violations 76 76 76 76
Observed # violations 153 156 157 64
# consecutive violations 101 103 101 46
Unconditional coverage <0.001 <0.001 <0.001 0.165
Independence <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001

Average MRC 0.2304 0.2276 0.2251 0.3258
Maximum # violations 35 15 16 13

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 50/50 portfolio of

different parametric normal linear models, i.e. a model with unconditional volatility (Unc. vol.), a model with EWMA

volatility with λ equal to 0.94, a model with EWMA volatility with λ optimized and a model based on a mixture of two

normal distributions. For both risk horizons, the first row indicates the expected number of violations, which corresponds to

the 99% confidence level on which the VaR estimates are based. The second and third row show the observed numbers of

violations and the observed number of consecutive violations, respectively. The p-values of the coverage tests are presented

in rows 4 to 6. The last two rows give the average minimum required capital over the whole testing period and the maximum

number of observed violations over the previous 250 trading days. The backtests are based on VaR estimates made on a

daily basis from January 1st, 1981 to December 31st, 2010, giving a total of 7571 estimates to be evaluated for the 10-day

VaR estimates and 7580 for the 1-day VaR estimates.

29



9 EMPIRICAL RESULTS

Table 7: Backtests on VaR for the 50/50 portfolio - Parametric linear models - Student t distribution
Unc. vol. EWMA λ = 0.94 EWMA λ̂

1-day VaR

Expected # violations 76 76 76
Observed # violations 123 95 100
# consecutive violations 10 4 3
Unconditional coverage <0.001 0.033 0.008
Independence <0.001 0.040 0.205
Conditional coverage <0.001 0.012 0.013

Average MRC 0.0820 0.0760 0.0755
Maximum # violations 28 10 9

10-day VaR

Expected # violations 76 76 76
Observed # violations 114 115 114
# consecutive violations 71 74 71
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2527 0.2450 0.2428
Maximum # violations 26 14 14

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 50/50 portfolio of

different parametric Student t linear models, i.e. a model with unconditional volatility (Unc. vol.), a model with EWMA

volatility with λ equal to 0.94 and a model with EWMA volatility with λ optimized. For both risk horizons, the first row

indicates the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates

are based. The second and third row show the observed numbers of violations and the observed number of consecutive

violations, respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average

minimum required capital over the whole testing period and the maximum number of observed violations over the previous

250 trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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9 EMPIRICAL RESULTS

Table 8: Backtests on VaR for the 50/50 portfolio - Historical simulation models
Equal weight Exp. weight FHS - GARCH FHS - EGARCH

1-day VaR

Expected # violations 76 76 76 76
Observed # violations 128 194 97 98
# consecutive violations 12 10 3 4
Unconditional coverage <0.001 <0.001 0.019 0.014
Independence <0.001 0.044 0.177 0.049
Conditional coverage <0.001 <0.001 0.026 0.007

Average MRC 0.0821 0.0820 0.0773 0.0769
Maximum # violations 25 10 9 14

10-day VaR

Expected # violations 76 76 76 76
Observed # violations 149 224 92 55
# consecutive violations 96 145 58 37
Unconditional coverage <0.001 <0.001 0.069 0.012
Independence <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001

Average MRC 0.2569 0.2575 0.2503 0.2935
Maximum # violations 22 23 16 14

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 50/50 portfolio of

different historical simulation models, i.e. a model with equally weighted returns, a model with exponentially weighted

returns and filtered historical simulation models with GARCH and EGARCH volatility. For both risk horizons, the first row

indicates the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates

are based. The second and third row show the observed numbers of violations and the observed number of consecutive

violations, respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average

minimum required capital over the whole testing period and the maximum number of observed violations over the previous

250 trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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9 EMPIRICAL RESULTS

Table 9: Backtests on 99% VaR for the 50/50 portfolio - Monte Carlo simulation - Normal random
numbers

Unc. vol. EWMA λ = 0.94 EWMA λ̂ GARCH EGARCH

1-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 183 166 173 150 145
# consecutive violations 17 11 6 8 7
Unconditional coverage <0.001 <0.001 <0.001 <0.001 <0.001
Independence <0.001 0.001 0.349 0.014 0.030
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.0746 0.0732 0.0726 0.0724 0.0716
Maximum # violations 34 13 13 15 18

10-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 164 166 169 130 66
# consecutive violations 108 106 103 88 45
Unconditional coverage <0.001 <0.001 <0.001 <0.001 0.252
Independence <0.001 <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.2263 0.2282 0.2257 0.2291 0.2929
Maximum # violations 29 16 16 15 15

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 50/50 portfolio of

different Monte Carlo simulation models with normal random numbers, i.e. a model with unconditional volatility (Unc.

vol.), a model with EWMA volatility with λ equal to 0.94, a model with EWMA volatility with λ optimized and models

with GARCH and EGARCH volatility. For both risk horizons, the first row indicates the expected number of violations,

which corresponds to the 99% confidence level on which the VaR estimates are based. The second and third row show

the observed numbers of violations and the observed number of consecutive violations, respectively. The p-values of the

coverage tests are presented in rows 4 to 6. The last two rows give the average minimum required capital over the whole

testing period and the maximum number of observed violations over the previous 250 trading days. The backtests are based

on VaR estimates made on a daily basis from January 1st, 1981 to December 31st, 2010, giving a total of 7571 estimates to

be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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9 EMPIRICAL RESULTS

Table 10: Backtests on 99% VaR for the 50/50 portfolio - Monte Carlo simulation with Normal Copulas
- Normal marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 152 145
# consecutive violations 13 8 6
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.016 0.089
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0799 0.0724 0.0713
Maximum # violations 32 15 19

10-day VaR

Expected # violations 76 76 76
Observed # violations 163 121 65
# consecutive violations 107 82 46
Unconditional coverage <0.001 <0.001 0.205
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2277 0.2277 0.2924
Maximum # violations 29 15 16

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 50/50 portfolio

of different Monte Carlo simulation models with normal copulas, based on normal marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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9 EMPIRICAL RESULTS

Table 11: Backtests on 99% VaR for the 50/50 portfolio - Monte Carlo simulation with Student t Copulas
- Normal marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 152 146
# consecutive violations 13 8 6
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.016 0.094
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0799 0.0724 0.0713
Maximum # violations 32 15 19

10-day VaR

Expected # violations 76 76 76
Observed # violations 163 122 65
# consecutive violations 107 83 46
Unconditional coverage <0.001 <0.001 0.205
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2277 0.2278 0.2924
Maximum # violations 29 15 16

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 50/50 portfolio of

different Monte Carlo simulation models with Student t copulas, based on normal marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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9 EMPIRICAL RESULTS

Table 12: Backtests on 99% VaR for the 50/50 portfolio - Monte Carlo simulation with Clayton Copulas
- Normal marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 151 145
# consecutive violations 13 8 6
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.015 0.089
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0800 0.0724 0.0714
Maximum # violations 32 15 19

10-day VaR

Expected # violations 76 76 76
Observed # violations 163 121 65
# consecutive violations 107 82 46
Unconditional coverage <0.001 <0.001 0.205
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2279 0.2278 0.2924
Maximum # violations 29 15 16

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 50/50 portfolio of

different Monte Carlo simulation models with Clayton copulas, based on normal marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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9 EMPIRICAL RESULTS

Table 13: Backtests on 99% VaR for the 50/50 portfolio - Monte Carlo simulation - Student t random
numbers

Unc. vol. EWMA λ = 0.94 EWMA λ̂ GARCH EGARCH

1-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 140 119 135 107 111
# consecutive violations 12 4 5 4 5
Unconditional coverage <0.001 <0.001 <0.001 <0.001 <0.001
Independence <0.001 0.171 0.139 0.089 0.031
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.0793 0.0757 0.0764 0.0.0764 0.0759
Maximum # violations 30 11 11 12 15

10-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 139 156 161 130 75
# consecutive violations 91 100 99 84 49
Unconditional coverage <0.001 <0.001 <0.001 <0.001 0.935
Independence <0.001 <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.2482 0.2330 0.2315 0.2282 0.2672
Maximum # violations 23 14 16 15 16

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 50/50 portfolio of

different Monte Carlo simulation models with Student t random numbers, i.e. a model with unconditional volatility (Unc.

vol.), a model with EWMA volatility with λ equal to 0.94, a model with EWMA volatility with λ optimized and models

with GARCH and EGARCH volatility. For both risk horizons, the first row indicates the expected number of violations,

which corresponds to the 99% confidence level on which the VaR estimates are based. The second and third row show

the observed numbers of violations and the observed number of consecutive violations, respectively. The p-values of the

coverage tests are presented in rows 4 to 6. The last two rows give the average minimum required capital over the whole

testing period and the maximum number of observed violations over the previous 250 trading days. The backtests are based

on VaR estimates made on a daily basis from January 1st, 1981 to December 31st, 2010, giving a total of 7571 estimates to

be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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9 EMPIRICAL RESULTS

Table 14: Backtests on 99% VaR for the 50/50 portfolio - Monte Carlo simulation with Normal Copulas
- Student t marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 113 110
# consecutive violations 13 5 6
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.036 0.007
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0799 0.0761 0.0771
Maximum # violations 32 10 16

10-day VaR

Expected # violations 76 76 76
Observed # violations 129 121 67
# consecutive violations 78 76 47
Unconditional coverage <0.001 <0.001 0.305
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2475 0.2281 0.2659
Maximum # violations 26 15 15

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 50/50 portfolio of

different Monte Carlo simulation models with normal copulas, based on Student t marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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9 EMPIRICAL RESULTS

Table 15: Backtests on 99% VaR for the 50/50 portfolio - Monte Carlo simulation with Student t Copulas
- Student t marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 113 110
# consecutive violations 13 5 6
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.036 0.007
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0799 0.0761 0.0772
Maximum # violations 32 10 16

10-day VaR

Expected # violations 76 76 76
Observed # violations 129 121 68
# consecutive violations 78 76 47
Unconditional coverage <0.001 <0.001 0.365
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2475 0.2281 0.2661
Maximum # violations 26 15 15

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 50/50 portfolio of

different Monte Carlo simulation models with Student t copulas, based on Student t marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 16: Backtests on 99% VaR for the 50/50 portfolio - Monte Carlo simulation with Clayton Copulas
- Student t marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 111 110
# consecutive violations 13 5 6
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.031 0.007
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0800 0.0762 0.0773
Maximum # violations 32 10 16

10-day VaR

Expected # violations 76 76 76
Observed # violations 128 121 68
# consecutive violations 76 76 47
Unconditional coverage <0.001 <0.001 0.365
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2475 0.2282 0.2658
Maximum # violations 26 15 15

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 50/50 portfolio of

different Monte Carlo simulation models with Clayton copulas, based on Student t marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.

9.3 Backtests VaR - Combination of risk models conditional on the market condition

We propose a new approach to model selection for predicting VaR, namely conditioning the risk model
choice on bull and bear predictions. When dividing the stock market into bull and bear markets, a
bear market is likely to capture more extreme events and its return distribution will have thicker tails.
Therefore, it is unlikely for one single risk model to perform best in all conditions. During bear
markets, it can be optimal to use a different risk model than used during bull markets.

In the previous sections we discussed the methodology and results of forecasting VaR and we
proposed a pragmatic strategy to predict bull and bear markets. In this section we combine these two
methodologies and condition the model selection to forecast VaR on the bull and bear predictions.
That is, we use one model to estimate VaR during bear markets and another model to estimate VaR
during bear markets.

On the first trading day of each month, we predict whether that month will be a bull or a bear
month. Then, the risk model belonging to this prediction is used to estimate VaR for the remaining
days of the month. A combination of two different models, one performing relatively well during
bull months and the other performing relatively well during bear months, is likely to have better VaR
estimates than both models used separately.

Unfortunately we did not find a combination of two different models which leads to a maximum
number of violations less than 10 and a significant reduction in the average minimum required capital,
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10 CONCLUSION

compared to the parametric linear Student t model with EWMA volatility with an optimized λ. The
main reasons for this result are the low number of bear months (only 19% of the whole testing period)
and the fact that the best performing models incurred their largest number of violations just before the
beginning of these bear months.

Figure 3 shows that none of the investigated models incurred a large number of violations during
the longest bear period, which started in 2000. Since all models managed to stay out of the red zone,
there is no reason to combine two different models to obtain a better result for this period.

During the last bear period, which started in November 2007, many models incurred their largest
number of violations. However, the models which performed relatively well during this period in-
curred their largest number of violations just before the beginning of this bear period, so at the end of
a bull period. A reason for this could be the fact that the VaR estimates at the end of this bull period
where based on the previous three years, which consisted of only bull months, with an upwarding
trend of the S&P500 Index. Just before the start of the bear period in November 2007 there were
already some relatively large negative returns and this resulted in an underestimation of VaR and a
relatively high number of violations.

10 Conclusion

The Basel II Accord (Basel Committee on Banking Supervision, 2006) requires that banks communi-
cate their risk forecasts to the appropriate monetary authorities at the beginning of each trading day,
using one or more risk models to measure Value-at-Risk (VaR). The risk estimates of these models
are used to determine capital requirements and associated capital costs of banks, depending in part on
the number of previous violations, whereby realized losses exceed the estimated VaR. The minimum
capital charges must be set at the higher of the previous day’s VaR or the average VaR over the last
60 trading days, multiplied by a factor k, which lies between 3 and 4. Since a bank’s main objective
is to maximize profits, they wish to minimize their capital charges, while restricting the number of
violations in a given year below the maximum of 10 allowed by the Basel II Accord.

In this paper we compared the estimation of Value-at-Risk by a variety of risk models. These
models can be divided in three main categories, i.e. parametric linear, historical and Monte Carlo
risk models. We considered several methods to make volatility estimates over a 10-day risk horizon.
We proposed the idea of constructing a risk management strategy that used combinations of two
different risk models for forecasting VaR. This combination was based on the prediction of bull and
bear markets, so we used two separate models for bull and bear months.

From the prediction of bull and bear markets we conclude that with a relatively simple and prag-
matic strategy a high number of correct predictions can be achieved. We used a binomial logit model
with ten predicting variables to predict every month whether next month will be a bull or a bear month.
We showed that, by using the Schwarz Information Criterium to determine the optimal subset of pre-
dicting variables each month, this results in an out-of-sample hitrate of 85.3%. Using the Akaike
Information Criterium of the in-sample hitrate to determine the optimal of variables lead to slightly
lower out-of-sample hitrates.

To determine which models perform best for the estimation of VaR, we constructed three different
linear portfolios of the S&P500 Index and the Barclays Capital US Aggregate Bond Index. Several
backtests were applied and this leads to the conclusion that only two models managed to stay under
the maximum of 10 violation per financial year, i.e. the filtered historical simulation model with
GARCH volatility and the parametric linear Student t model with EWMA volatility with an optimized
λ, although several other models had a maximum of 10 or 11 violations per year.
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From the combinations of different risk models we conclude that there are no combinations of two
different models that lead to a maximum number of violations less than 10 and a significant reduction
in the average minimum required capital, compared to the parametric linear Student t model with
EWMA volatility with an optimized λ. The main reasons for this result are the low number of bear
months (only 19% of the whole testing period) and the fact that the best performing models incurred
their largest number of violations just before the beginning of these bear months.
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A GRAPHIC DISPLAYS OF THE INCLUSION FREQUENCY OF THE PREDICTING VARIABLES

A Graphic displays of the inclusion frequency of the predicting vari-
ables

Figure 4: Inclusion frequency of the variables in the base set under the in-sample hitrate selection crite-
rion, 1981M1 to 2010M12
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Note: The inclusion of the variable in the regression model is depicted by unity, and zero otherwise.
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A GRAPHIC DISPLAYS OF THE INCLUSION FREQUENCY OF THE PREDICTING VARIABLES

Figure 4: Inclusion frequency of the variables in the base set under the in-sample hitrate selection crite-
rion, 1981M1 to 2010M12 - Continued
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Note: The inclusion of the variable in the regression model is depicted by unity, and zero otherwise.
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A GRAPHIC DISPLAYS OF THE INCLUSION FREQUENCY OF THE PREDICTING VARIABLES

Figure 5: Inclusion frequency of the variables in the base set under the Akaike selection criterion (AIC),
1981M1 to 2010M12
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Note: The inclusion of the variable in the regression model is depicted by unity, and zero otherwise.
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Figure 5: Inclusion frequency of the variables in the base set under the Akaike selection criterion (AIC),
1981M1 to 2010M12 - Continued
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Note: The inclusion of the variable in the regression model is depicted by unity, and zero otherwise.
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A GRAPHIC DISPLAYS OF THE INCLUSION FREQUENCY OF THE PREDICTING VARIABLES

Figure 6: Inclusion frequency of the variables in the base set under the Schwarz selection criterion (SIC),
1981M1 to 2010M12
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Note: The inclusion of the variable in the regression model is depicted by unity, and zero otherwise.
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A GRAPHIC DISPLAYS OF THE INCLUSION FREQUENCY OF THE PREDICTING VARIABLES

Figure 6: Inclusion frequency of the variables in the base set under the Schwarz selection criterion (SIC),
1981M1 to 2010M12 - Continued
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Note: The inclusion of the variable in the regression model is depicted by unity, and zero otherwise.
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B GRAPHIC DISPLAYS OF THE NUMBER OF VIOLATIONS FOR THE 20/80 AND 80/20
PORTFOLIO

B Graphic displays of the number of violations for the 20/80 and 80/20
portfolio

Figure 7: Number of violations for the 20/80 portfolio accumulated over the previous 250 trading days
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Notes: This figure shows graphic displays of the number of violations for the 20/80 portfolio of all models for the estimation

of VaR on a 1-day risk horizon accumulated over the previous 250 trading days, evaluated each quarter. The colors of the

horizontal shaded areas indicate the Basel zones for VaR models and the vertical shaded areas track the bear markets derived

from the S&P500 Index.
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B GRAPHIC DISPLAYS OF THE NUMBER OF VIOLATIONS FOR THE 20/80 AND 80/20
PORTFOLIO

Figure 7: Number of violations for the 20/80 portfolio accumulated over the previous 250 trading days -
Continued

0

5

10

15

20

25

30

35

40

1985 1990 1995 2000 2005 2010

Unconditional volatility
G AR CH
E GARC H

Monte C arlo simulation models with Clayton copulas - Normal marginals

0

5

10

15

20

25

30

35

40

1985 1990 1995 2000 2005 2010

Unconditional volatility
E WMA   λ = 0.94
E WMA   λ optimized
G AR CH
E GARC H

Monte C arlo simulation models - S tudent t distribution

0

5

10

15

20

25

30

35

40

1985 1990 1995 2000 2005 2010

Unconditional volatility
G AR CH
E GARC H

Monte C arlo simulation models with normal copulas - S tudent t marginals

0

5

10

15

20

25

30

35

40

1985 1990 1995 2000 2005 2010

Unconditional volatility
G AR CH
E GARC H

Monte C arlo simulation models with Student t copulas - S tudent t marginals

0

5

10

15

20

25

30

35

40

1985 1990 1995 2000 2005 2010

Unconditional volatility
G AR CH
E GARC H

Monte C arlo simulation models with Clayton copulas - S tudent t marginals

Notes: For figure notes, see the first part of the figure.
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B GRAPHIC DISPLAYS OF THE NUMBER OF VIOLATIONS FOR THE 20/80 AND 80/20
PORTFOLIO

Figure 8: Number of violations for the 80/20 portfolio accumulated over the previous 250 trading days
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Notes: This figure shows graphic displays of the number of violations for the 80/20 portfolio of all models for the estimation

of VaR on a 1-day risk horizon accumulated over the previous 250 trading days, evaluated each quarter. The colors of the

horizontal shaded areas indicate the Basel zones for VaR models and the vertical shaded areas track the bear markets derived

from the S&P500 Index.

51



B GRAPHIC DISPLAYS OF THE NUMBER OF VIOLATIONS FOR THE 20/80 AND 80/20
PORTFOLIO

Figure 8: Number of violations for the 80/20 portfolio accumulated over the previous 250 trading days -
Continued
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C BACKTEST RESULTS ON VAR FOR THE 20/80 AND 80/20 PORTFOLIO

C Backtest results on VaR for the 20/80 and 80/20 portfolio

Table 17: Backtests on VaR for the 20/80 portfolio - Parametric linear models - Normal distribution
Unc. vol. EWMA λ = 0.94 EWMA λ̂ Normal mixture

1-day VaR

Expected # violations 76 76 76 76
Observed # violations 178 146 147 132
# consecutive violations 16 7 8 13
Unconditional coverage <0.001 <0.001 <0.001 <0.001
Independence <0.001 0.032 0.011 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001

Average MRC 0.0717 0.0693 0.0689 0.0830
Maximum # violations 35 12 11 24

10-day VaR

Expected # violations 76 76 76 76
Observed # violations 158 156 159 67
# consecutive violations 105 101 102 47
Unconditional coverage <0.001 <0.001 <0.001 0.305
Independence <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001

Average MRC 0.2172 0.2156 0.2142 0.3048
Maximum # violations 34 15 16 13

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 20/80 portfolio of

different parametric normal linear models, i.e. a model with unconditional volatility (Unc. vol.), a model with EWMA

volatility with λ equal to 0.94, a model with EWMA volatility with λ optimized and a model based on a mixture of two

normal distributions. For both risk horizons, the first row indicates the expected number of violations, which corresponds to

the 99% confidence level on which the VaR estimates are based. The second and third row show the observed numbers of

violations and the observed number of consecutive violations, respectively. The p-values of the coverage tests are presented

in rows 4 to 6. The last two rows give the average minimum required capital over the whole testing period and the maximum

number of observed violations over the previous 250 trading days. The backtests are based on VaR estimates made on a

daily basis from January 1st, 1981 to December 31st, 2010, giving a total of 7571 estimates to be evaluated for the 10-day

VaR estimates and 7580 for the 1-day VaR estimates.
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C BACKTEST RESULTS ON VAR FOR THE 20/80 AND 80/20 PORTFOLIO

Table 18: Backtests on VaR for the 20/80 portfolio - Parametric linear models - Student t distribution
Unc. vol. EWMA λ = 0.94 EWMA λ̂

1-day VaR

Expected # violations 76 76 76
Observed # violations 125 93 101
# consecutive violations 11 3 3
Unconditional coverage <0.001 0.055 0.006
Independence <0.001 0.143 0.215
Conditional coverage <0.001 0.055 0.010

Average MRC 0.0774 0.0722 0.0718
Maximum # violations 27 10 9

10-day VaR

Expected # violations 76 76 76
Observed # violations 115 114 117
# consecutive violations 71 73 74
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2380 0.2318 0.2318
Maximum # violations 25 14 14

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 20/80 portfolio of

different parametric Student t linear models, i.e. a model with unconditional volatility (Unc. vol.), a model with EWMA

volatility with λ equal to 0.94 and a model with EWMA volatility with λ optimized. For both risk horizons, the first row

indicates the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates

are based. The second and third row show the observed numbers of violations and the observed number of consecutive

violations, respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average

minimum required capital over the whole testing period and the maximum number of observed violations over the previous

250 trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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C BACKTEST RESULTS ON VAR FOR THE 20/80 AND 80/20 PORTFOLIO

Table 19: Backtests on VaR for the 20/80 portfolio - Historical simulation models
Equal weight Exp. weight FHS - GARCH FHS - EGARCH

1-day VaR

Expected # violations 76 76 76 76
Observed # violations 129 195 91 99
# consecutive violations 10 10 3 3
Unconditional coverage <0.001 <0.001 0.089 0.011
Independence <0.001 0.047 0.128 0.195
Conditional coverage <0.001 <0.001 0.074 0.016

Average MRC 0.0778 0.0779 0.0730 0.0737
Maximum # violations 25 10 10 15

10-day VaR

Expected # violations 76 76 76 76
Observed # violations 150 229 95 67
# consecutive violations 97 148 62 47
Unconditional coverage <0.001 <0.001 0.032 0.305
Independence <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001

Average MRC 0.2429 0.2443 0.2374 0.2834
Maximum # violations 22 23 14 15

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 20/80 portfolio of

different historical simulation models, i.e. a model with equally weighted returns, a model with exponentially weighted

returns and filtered historical simulation models with GARCH and EGARCH volatility. For both risk horizons, the first row

indicates the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates

are based. The second and third row show the observed numbers of violations and the observed number of consecutive

violations, respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average

minimum required capital over the whole testing period and the maximum number of observed violations over the previous

250 trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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C BACKTEST RESULTS ON VAR FOR THE 20/80 AND 80/20 PORTFOLIO

Table 20: Backtests on 99% VaR for the 20/80 portfolio - Monte Carlo simulation - Normal random
numbers

Unc. vol. EWMA λ = 0.94 EWMA λ̂ GARCH EGARCH

1-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 190 162 169 151 145
# consecutive violations 17 8 7 7 5
Unconditional coverage <0.001 <0.001 <0.001 <0.001 <0.001
Independence <0.001 0.034 0.134 0.046 0.228
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.0704 0.0692 0.0694 0.0690 0.0682
Maximum # violations 36 13 12 15 19

10-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 164 170 168 128 68
# consecutive violations 107 108 102 87 45
Unconditional coverage <0.001 <0.001 <0.001 <0.001 0.365
Independence <0.001 <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.2132 0.2166 0.2172 0.2180 0.2804
Maximum # violations 28 15 17 15 16

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 20/80 portfolio of

different Monte Carlo simulation models with normal random numbers, i.e. a model with unconditional volatility (Unc.

vol.), a model with EWMA volatility with λ equal to 0.94, a model with EWMA volatility with λ optimized and models

with GARCH and EGARCH volatility. For both risk horizons, the first row indicates the expected number of violations,

which corresponds to the 99% confidence level on which the VaR estimates are based. The second and third row show

the observed numbers of violations and the observed number of consecutive violations, respectively. The p-values of the

coverage tests are presented in rows 4 to 6. The last two rows give the average minimum required capital over the whole

testing period and the maximum number of observed violations over the previous 250 trading days. The backtests are based

on VaR estimates made on a daily basis from January 1st, 1981 to December 31st, 2010, giving a total of 7571 estimates to

be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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C BACKTEST RESULTS ON VAR FOR THE 20/80 AND 80/20 PORTFOLIO

Table 21: Backtests on 99% VaR for the 20/80 portfolio - Monte Carlo simulation with Normal Copulas
- Normal marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 144 151 141
# consecutive violations 13 7 5
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.046 0.185
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0756 0.0691 0.0671
Maximum # violations 30 14 18

10-day VaR

Expected # violations 76 76 76
Observed # violations 166 129 66
# consecutive violations 111 87 46
Unconditional coverage <0.001 <0.001 0.252
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2158 0.2174 0.2773
Maximum # violations 27 16 14

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 20/80 portfolio

of different Monte Carlo simulation models with normal copulas, based on normal marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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C BACKTEST RESULTS ON VAR FOR THE 20/80 AND 80/20 PORTFOLIO

Table 22: Backtests on 99% VaR for the 20/80 portfolio - Monte Carlo simulation with Student t Copulas
- Normal marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 142 152 141
# consecutive violations 13 7 5
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.049 0.185
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0755 0.0691 0.0672
Maximum # violations 30 14 18

10-day VaR

Expected # violations 76 76 76
Observed # violations 167 129 66
# consecutive violations 112 87 46
Unconditional coverage <0.001 <0.001 0.252
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2159 0.2174 0.2774
Maximum # violations 27 16 14

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 20/80 portfolio of

different Monte Carlo simulation models with Student t copulas, based on normal marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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C BACKTEST RESULTS ON VAR FOR THE 20/80 AND 80/20 PORTFOLIO

Table 23: Backtests on 99% VaR for the 20/80 portfolio - Monte Carlo simulation with Clayton Copulas
- Normal marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 139 148 139
# consecutive violations 13 7 5
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.037 0.167
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0757 0.0690 0.0673
Maximum # violations 29 14 17

10-day VaR

Expected # violations 76 76 76
Observed # violations 166 129 66
# consecutive violations 111 87 46
Unconditional coverage <0.001 <0.001 0.252
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2165 0.2178 0.2777
Maximum # violations 27 16 14

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 20/80 portfolio of

different Monte Carlo simulation models with Clayton copulas, based on normal marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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C BACKTEST RESULTS ON VAR FOR THE 20/80 AND 80/20 PORTFOLIO

Table 24: Backtests on 99% VaR for the 20/80 portfolio - Monte Carlo simulation - Student t random
numbers

Unc. vol. EWMA λ = 0.94 EWMA λ̂ GARCH EGARCH

1-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 156 110 128 109 109
# consecutive violations 12 6 4 4 4
Unconditional coverage <0.001 <0.001 <0.001 <0.001 <0.001
Independence <0.001 0.006 0.261 0.099 0.099
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.07569 0.0706 0.0716 0.0721 0.0715
Maximum # violations 32 8 11 11 17

10-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 137 161 158 121 70
# consecutive violations 86 100 99 81 45
Unconditional coverage <0.001 <0.001 <0.001 <0.001 0.504
Independence <0.001 <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.2323 0.2239 0.2220 0.2169 0.2544
Maximum # violations 23 16 16 14 15

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 20/80 portfolio of

different Monte Carlo simulation models with Student t random numbers, i.e. a model with unconditional volatility (Unc.

vol.), a model with EWMA volatility with λ equal to 0.94, a model with EWMA volatility with λ optimized and models

with GARCH and EGARCH volatility. For both risk horizons, the first row indicates the expected number of violations,

which corresponds to the 99% confidence level on which the VaR estimates are based. The second and third row show

the observed numbers of violations and the observed number of consecutive violations, respectively. The p-values of the

coverage tests are presented in rows 4 to 6. The last two rows give the average minimum required capital over the whole

testing period and the maximum number of observed violations over the previous 250 trading days. The backtests are based

on VaR estimates made on a daily basis from January 1st, 1981 to December 31st, 2010, giving a total of 7571 estimates to

be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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C BACKTEST RESULTS ON VAR FOR THE 20/80 AND 80/20 PORTFOLIO

Table 25: Backtests on 99% VaR for the 20/80 portfolio - Monte Carlo simulation with Normal Copulas
- Student t marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 144 112 105
# consecutive violations 13 5 3
Unconditional coverage <0.001 <0.001 0.001
Independence <0.001 0.033 0.253
Conditional coverage <0.001 <0.001 0.003

Average MRC 0.0756 0.0734 0.0822
Maximum # violations 30 11 15

10-day VaR

Expected # violations 76 76 76
Observed # violations 130 121 69
# consecutive violations 77 77 47
Unconditional coverage <0.001 <0.001 0.431
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2347 0.2185 0.2637
Maximum # violations 22 14 14

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 20/80 portfolio of

different Monte Carlo simulation models with normal copulas, based on Student t marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 26: Backtests on 99% VaR for the 20/80 portfolio - Monte Carlo simulation with Student t Copulas
- Student t marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 142 111 105
# consecutive violations 13 5 3
Unconditional coverage <0.001 <0.001 0.001
Independence <0.001 0.031 0.253
Conditional coverage <0.001 <0.001 0.003

Average MRC 0.0755 0.0734 0.0824
Maximum # violations 30 11 15

10-day VaR

Expected # violations 76 76 76
Observed # violations 131 121 69
# consecutive violations 79 77 47
Unconditional coverage <0.001 <0.001 0.431
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2349 0.2185 0.2641
Maximum # violations 22 14 14

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 20/80 portfolio of

different Monte Carlo simulation models with Student t copulas, based on Student t marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 27: Backtests on 99% VaR for the 20/80 portfolio - Monte Carlo simulation with Clayton Copulas
- Student t marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 139 110 104
# consecutive violations 13 5 3
Unconditional coverage <0.001 <0.001 0.002
Independence <0.001 0.029 0.242
Conditional coverage <0.001 <0.001 0.004

Average MRC 0.0757 0.0736 0.0827
Maximum # violations 29 11 15

10-day VaR

Expected # violations 76 76 76
Observed # violations 128 119 68
# consecutive violations 77 75 47
Unconditional coverage <0.001 <0.001 0.365
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2353 0.2187 0.2644
Maximum # violations 22 14 14

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 20/80 portfolio of

different Monte Carlo simulation models with Clayton copulas, based on Student t marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 28: Backtests on VaR for the 80/20 portfolio - Parametric linear models - Normal distribution
Unc. vol. EWMA λ = 0.94 EWMA λ̂ Normal mixture

1-day VaR

Expected # violations 76 76 76 76
Observed # violations 173 147 147 127
# consecutive violations 16 8 8 14
Unconditional coverage <0.001 <0.001 <0.001 <0.001
Independence <0.001 0.011 0.011 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001

Average MRC 0.0773 0.0739 0.0736 0.0800
Maximum # violations 36 12 11 25

10-day VaR

Expected # violations 76 76 76 76
Observed # violations 152 156 157 61
# consecutive violations 100 103 102 44
Unconditional coverage <0.001 <0.001 <0.001 0.079
Independence <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001

Average MRC 0.2344 0.2310 0.2286 0.3298
Maximum # violations 35 15 16 13

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 80/20 portfolio of

different parametric normal linear models, i.e. a model with unconditional volatility (Unc. vol.), a model with EWMA

volatility with λ equal to 0.94, a model with EWMA volatility with λ optimized and a model based on a mixture of two

normal distributions. For both risk horizons, the first row indicates the expected number of violations, which corresponds to

the 99% confidence level on which the VaR estimates are based. The second and third row show the observed numbers of

violations and the observed number of consecutive violations, respectively. The p-values of the coverage tests are presented

in rows 4 to 6. The last two rows give the average minimum required capital over the whole testing period and the maximum

number of observed violations over the previous 250 trading days. The backtests are based on VaR estimates made on a

daily basis from January 1st, 1981 to December 31st, 2010, giving a total of 7571 estimates to be evaluated for the 10-day

VaR estimates and 7580 for the 1-day VaR estimates.
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Table 29: Backtests on VaR for the 80/20 - Parametric linear models - Student t distribution
Unc. vol. EWMA λ = 0.94 EWMA λ̂

1-day VaR

Expected # violations 76 76 76
Observed # violations 122 95 101
# consecutive violations 10 4 3
Unconditional coverage <0.001 0.033 0.006
Independence <0.001 0.040 0.215
Conditional coverage <0.001 0.012 0.010

Average MRC 0.0832 0.0770 0.0766
Maximum # violations 28 10 9

10-day VaR

Expected # violations 76 76 76
Observed # violations 114 115 115
# consecutive violations 71 73 73
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2571 0.2493 0.2470
Maximum # violations 25 14 14

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 80/20 portfolio of

different parametric Student t linear models, i.e. a model with unconditional volatility (Unc. vol.), a model with EWMA

volatility with λ equal to 0.94 and a model with EWMA volatility with λ optimized. For both risk horizons, the first row

indicates the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates

are based. The second and third row show the observed numbers of violations and the observed number of consecutive

violations, respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average

minimum required capital over the whole testing period and the maximum number of observed violations over the previous

250 trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 30: Backtests on VaR for the 80/20 - Historical simulation models
Equal weight Exp. weight FHS - GARCH FHS - EGARCH

1-day VaR

Expected # violations 76 76 76 76
Observed # violations 126 194 99 104
# consecutive violations 10 9 4 5
Unconditional coverage <0.001 <0.001 0.011 0.002
Independence <0.001 0.102 0.053 0.018
Conditional coverage <0.001 <0.001 0.006 <0.001

Average MRC 0.0834 0.0832 0.0783 0.0787
Maximum # violations 25 10 11 14

10-day VaR

Expected # violations 76 76 76 76
Observed # violations 148 220 102 69
# consecutive violations 95 140 71 42
Unconditional coverage <0.001 <0.001 0.004 0.045
Independence <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001

Average MR 0.2610 0.2608 0.2555 0.2992
Maximum # violations 22 23 14 15

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 80/20 portfolio of

different historical simulation models, i.e. a model with equally weighted returns, a model with exponentially weighted

returns and filtered historical simulation models with GARCH and EGARCH volatility. For both risk horizons, the first row

indicates the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates

are based. The second and third row show the observed numbers of violations and the observed number of consecutive

violations, respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average

minimum required capital over the whole testing period and the maximum number of observed violations over the previous

250 trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 31: Backtests on 99% VaR for the 80/20 - Monte Carlo simulation - Normal random numbers
Unc. vol. EWMA λ = 0.94 EWMA λ̂ GARCH EGARCH

1-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 177 162 166 149 145
# consecutive violations 15 9 4 7 8
Unconditional coverage <0.001 <0.001 <0.001 <0.001 <0.001
Independence <0.001 0.011 1.000 0.040 0.009
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.0757 0.0735 0.0732 0.0736 0.0726
Maximum # violations 34 12 11 12 18

10-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 164 165 165 125 64
# consecutive violations 107 104 104 86 44
Unconditional coverage <0.001 <0.001 <0.001 <0.001 0.165
Independence <0.001 <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.2317 0.2337 0.2316 0.2340 0.2965
Maximum # violations 27 16 16 15 14

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 80/20 portfolio of

different Monte Carlo simulation models with normal random numbers, i.e. a model with unconditional volatility (Unc.

vol.), a model with EWMA volatility with λ equal to 0.94, a model with EWMA volatility with λ optimized and models

with GARCH and EGARCH volatility. For both risk horizons, the first row indicates the expected number of violations,

which corresponds to the 99% confidence level on which the VaR estimates are based. The second and third row show

the observed numbers of violations and the observed number of consecutive violations, respectively. The p-values of the

coverage tests are presented in rows 4 to 6. The last two rows give the average minimum required capital over the whole

testing period and the maximum number of observed violations over the previous 250 trading days. The backtests are based

on VaR estimates made on a daily basis from January 1st, 1981 to December 31st, 2010, giving a total of 7571 estimates to

be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 32: Backtests on 99% VaR for the 80/20 portfolio - Monte Carlo simulation with Normal Copulas
- Normal marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 150 147
# consecutive violations 12 8 7
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.014 0.035
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0809 0.0736 0.0727
Maximum # violations 31 14 18

10-day VaR

Expected # violations 76 76 76
Observed # violations 159 124 69
# consecutive violations 105 85 46
Unconditional coverage <0.001 <0.001 0.431
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2300 0.2346 0.2965
Maximum # violations 28 15 16

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 80/20 portfolio

of different Monte Carlo simulation models with normal copulas, based on normal marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 33: Backtests on 99% VaR for the 80/20 portfolio - Monte Carlo simulation with Student t Copulas
- Normal marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 150 147
# consecutive violations 12 8 7
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.014 0.035
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0809 0.0736 0.0727
Maximum # violations 31 14 18

10-day VaR

Expected # violations 76 76 76
Observed # violations 159 125 69
# consecutive violations 105 85 46
Unconditional coverage <0.001 <0.001 0.431
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2300 0.2347 0.2965
Maximum # violations 28 15 16

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 80/20 portfolio of

different Monte Carlo simulation models with Student t copulas, based on normal marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 34: Backtests on 99% VaR for the 80/20 portfolio - Monte Carlo simulation with Clayton Copulas
- Normal marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 150 147
# consecutive violations 12 8 7
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.014 0.035
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0809 0.0736 0.0727
Maximum # violations 31 14 18

10-day VaR

Expected # violations 76 76 76
Observed # violations 159 124 69
# consecutive violations 105 85 46
Unconditional coverage <0.001 <0.001 0.431
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2301 0.2346 0.2965
Maximum # violations 27 15 16

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 80/20 portfolio of

different Monte Carlo simulation models with Clayton copulas, based on normal marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 35: Backtests on 99% VaR for the 80/20 - Monte Carlo simulation - Student t random numbers
Unc. vol. EWMA λ = 0.94 EWMA λ̂ GARCH EGARCH

1-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 142 119 124 109 112
# consecutive violations 10 5 3 4 5
Unconditional coverage <0.001 <0.001 <0.001 <0.001 <0.001
Independence <0.001 0.054 0.534 0.099 0.033
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.0812 0.0766 0.0768 0.0770 0.0770
Maximum # violations 31 10 8 9 14

10-day VaR

Expected # violations 76 76 76 76 76
Observed # violations 123 147 160 117 67
# consecutive violations 73 95 99 80 46
Unconditional coverage <0.001 <0.001 <0.001 <0.001 0.305
Independence <0.001 <0.001 <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001 <0.001 <0.001

Average MRC 0.2502 0.2359 0.2344 0.2308 0.2700
Maximum # violations 23 15 16 14 16

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 80/20 portfolio of

different Monte Carlo simulation models with Student t random numbers, i.e. a model with unconditional volatility (Unc.

vol.), a model with EWMA volatility with λ equal to 0.94, a model with EWMA volatility with λ optimized and models

with GARCH and EGARCH volatility. For both risk horizons, the first row indicates the expected number of violations,

which corresponds to the 99% confidence level on which the VaR estimates are based. The second and third row show

the observed numbers of violations and the observed number of consecutive violations, respectively. The p-values of the

coverage tests are presented in rows 4 to 6. The last two rows give the average minimum required capital over the whole

testing period and the maximum number of observed violations over the previous 250 trading days. The backtests are based

on VaR estimates made on a daily basis from January 1st, 1981 to December 31st, 2010, giving a total of 7571 estimates to

be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 36: Backtests on 99% VaR for the 80/20 portfolio - Monte Carlo simulation with Normal Copulas
- Student t marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 109 109
# consecutive violations 12 5 4
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.026 0.099
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0809 0.0766 0.0764
Maximum # violations 31 11 16

10-day VaR

Expected # violations 76 76 76
Observed # violations 130 122 72
# consecutive violations 79 80 45
Unconditional coverage <0.001 <0.001 0.666
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2503 0.2316 0.2674
Maximum # violations 25 14 15

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 80/20 portfolio of

different Monte Carlo simulation models with normal copulas, based on Student t marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 37: Backtests on 99% VaR for the 80/20 portfolio - Monte Carlo simulation with Student t Copulas
- Student t marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 109 109
# consecutive violations 12 5 4
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.026 0.099
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0809 0.0766 0.0765
Maximum # violations 31 11 16

10-day VaR

Expected # violations 76 76 76
Observed # violations 131 122 72
# consecutive violations 80 80 45
Unconditional coverage <0.001 <0.001 0.666
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2505 0.2315 0.2674
Maximum # violations 25 14 15

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 80/20 portfolio of

different Monte Carlo simulation models with Student t copulas, based on Student t marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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Table 38: Backtests on 99% VaR for the 80/20 portfolio - Monte Carlo simulation with Clayton Copulas
- Student t marginals

Unc. vol. GARCH EGARCH

1-day VaR

Expected # violations 76 76 76
Observed # violations 140 109 108
# consecutive violations 12 5 4
Unconditional coverage <0.001 <0.001 <0.001
Independence <0.001 0.026 0.094
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.0809 0.0766 0.0766
Maximum # violations 31 11 16

10-day VaR

Expected # violations 76 76 76
Observed # violations 130 122 73
# consecutive violations 79 80 45
Unconditional coverage <0.001 <0.001 0.753
Independence <0.001 <0.001 <0.001
Conditional coverage <0.001 <0.001 <0.001

Average MRC 0.2503 0.2315 0.2669
Maximum # violations 25 14 15

Notes: This table shows the backtest results for 1-day VaR estimates and 10-day VaR estimates for the 80/20 portfolio of

different Monte Carlo simulation models with Clayton copulas, based on Student t marginals with unconditional volatility

estimates, GARCH volatility estimates and EGARCH volatility estimates. For both risk horizons, the first row indicates

the expected number of violations, which corresponds to the 99% confidence level on which the VaR estimates are based.

The second and third row show the observed numbers of violations and the observed number of consecutive violations,

respectively. The p-values of the coverage tests are presented in rows 4 to 6. The last two rows give the average minimum

required capital over the whole testing period and the maximum number of observed violations over the previous 250

trading days. The backtests are based on VaR estimates made on a daily basis from January 1st, 1981 to December 31st,

2010, giving a total of 7571 estimates to be evaluated for the 10-day VaR estimates and 7580 for the 1-day VaR estimates.
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