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Abstract

Individual decision making in a supply chain will often not lead to an outcome in which total

profit is maximized. Additional action needs to be taken to increase overall efficiency. We

investigate the coordinating effects of two mechanisms: a quantity discount schedule and a

holding cost compensation scheme. Each mechanism is analysed in an environment with con-

tinuous demand and an infinite planning horizon against the background of non-cooperative

game theory. Full coordination is achieved with the first mechanism. The simulation study

shows that the performance of the alternative strongly depends on each actor’s cost parame-

ters.
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Chapter 1

Introduction

The main purpose of each supply chain is to organize the conversion of raw materials into

end-consumer products via various stages of production and distribution. Upstream partners

deliver inputs, while downstream partners buy the output. In an arbitrary configuration, the

supplier’s and buyer’s base of different firms may overlap. The mutual relationships cause

individual decisions to have system-wide implications. When each actor optimizes his own

profit and disregards the effects of his decisions on others, total realized profit may be less

than what it could be if all were to collaborate. However, full cooperation may not be possible

and, instead, one has to resort to other, less extreme, remedies.

In this thesis we investigate the capabilities of two simple mechanisms to mitigate the

negative aspects of anarchistically setting order sizes. For the much studied quantity discount

model we provide a new detailed derivation of optimal behaviour by making use of non-

cooperative game theory. As an alternative we suggest compensation of downstream holding

costs. A customized algorithm is devised to calculate an outcome under the second scheme.

In order to get a better understanding of the performance, we numerically evaluate a set of

parameter configurations.

The remainder is organized as follows. In Chapter 2 we embed the purpose of the thesis in

the more general concept of (counteracting) market inefficiencies. An overview of the problem

environment, including assumptions and notation, can be found in Chapter 3. Chapter 4

contains a short description of the game theoretical concepts applied in Chapter 5 for the

derivation of sequentially optimal behaviour in the lot-sizing games. We present the results

of the simulation study in Chapter 6. In Chapter 7, we look at some directions for future

research. Chapter 8 concludes with a summary of our findings.
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Chapter 2

Problem description

2.1 Introduction

Supply chain inefficiencies are a wide-ranging problem. In Section 2.2 we distinguish several

ways in which myopically taking decisions can be bad for total profit. Optimization of the

system by integrating all operations in one organization and two other, less extreme, solution

approaches are discussed in Section 2.3. We formulate the goal of the thesis in Section 2.4.

2.2 Different supply chain inefficiencies

Double marginalization In the classic case of double marginalization, an upstream actor

incorporates a mark-up above marginal costs in his price. Consequently, a downstream supply

chain partner will set a higher price and will include a mark-up of his own. The overall result

is an inflated price for consumers and a smaller quantity delivered. The realized total supply

chain surplus will be less than in the welfare maximizing outcome, where the pricing decisions

are solely based on the marginal costs of production and distribution at each stage of the

supply chain (Pepall et al. (2002, pages 437-443)).

Non-optimal levels of advertising & product quality Apart from moving product to

the end-consumer, other functions have to be performed in a supply chain. These have to

do with the characteristics of a product, how and to what extent it is promoted and the

amount of capital invested in developing new ones. For society, the benefits to all, including

end-consumers, are relevant. In practice, advantageous aspects, like better informedness of

consumers in case of advertising, will only be taken into account by an actor in as far as his

profits are increased. Pepall et al. (2002, Chapters 10 & 11) shows that the price-sensitiveness

of demand can be an important factor in this respect.
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An equally important cause of socially inefficient decision making is free-riding. Less will

be spent on promotion and product development, because one hopes someone else will make

the necessary investments to increase demand.

Product and/or asset specificity (hold-up problem) Assets in the form of physical

equipment or knowledge can be very hard or even impossible to employ in another business

relationship as profitably as in the current one. When some supply chain member has acquired

such a specific asset, the other party could behave opportunistically after the investment has

been made. He may threaten to find another contracting party, unless the present one is

willing to adjust the contract terms in the sense that the amount paid for the asset will

merely be recovered up till the pay-offs in its second-best use. Rational actors anticipating

this might not invest at all in situations where this opportunistic behaviour is not discouraged

in some way.

Bullwhip effect Lee et al. (1997, pages 95-98) illustrate the well known logistical issue of

the bullwhip effect. In a stochastic environment, deviations from the regular order pattern

can be wrongfully interpreted as indications that the demand intensity has changed. When

the upstream actor forecasts demand for production and inventory planning decisions, the

error is amplified because of extrapolation into the future. Moreover, the resulting change of

the order pattern will become more pronounced, when safety stocks are adjusted, if longer

lead times apply and in case of higher demand variability.

Other problematic factors are order batching, which may translate small (expected) changes

in the amount of product into larger ones upstream, and major undesirable swings in demand

caused by buyers engaging in forward buying. Distorted information also spreads when some

actor cannot meet demand and rations his supplies based on the size of the incoming or-

ders. In response, customers will exaggerate their required amounts. The consequences are

excessive inventories, more difficulties in smoothly organizing production and a necessity to

hold available extra production capacity. The more one gets upstream the supply chain, the

stronger the distortions will be.

Disproportionate risk exposure Problems may emerge as well if some supply chain

member disproportionately carries the burden of negative economic developments. The ex-

posed actor may refrain from actions beneficial to the entire chain. An example is the 2

echelon 1 period Newsboy problem in Axsäter (2006, pages 284-287). The downstream actor

is confronted with stochastic end-consumer demand for which product must be purchased be-

forehand. While the upstream party is guaranteed to make a fixed profit equal to his margin

times the number of units ordered in advance, the other actor’s profit may vary considerably,
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and even be negative. The combination of the unilateral risk exposure, and the fact that the

upstream price, including the margin, will be higher than the echelon cost of procurement,

results in a smaller than jointly optimal downstream order size.

Production planning externalities Each firm has to schedule its production and value

adding activities in order to satisfy demand on its output market. The resulting plan yields

an order scheme, which, in turn, serves as the basis for the production and lot-sizing decisions

taken at the upstream echelon(s). Because of positive or negative externalities to other actors,

the individual planning activities may not minimize total costs in the supply chain.

2.3 Vertical integration & other remedies

Joint ownership by vertically integrating Combining activities in one firm has tradi-

tionally been regarded an important solution in all kinds of situations where market exchange

is very costly or totally fails at all. Williamson (1971) discerns five classes of characteris-

tics, which he deems important for the attractiveness of the approach. Among these are the

monopolistic or oligopolistic contexts where double marginalization is likely to emerge. In

Christy & Grout (1994) and Klein et al. (1978), it is indicated that, when there is much prod-

uct and process/asset specificity, high costs of complex contracting make vertical integration

a more preferred safeguard against mutual hold-up.

Despite the wide-ranging spectrum of problems vertical integration can remedy, the con-

struction of a more sizable firm potentially has some major disadvantages. As described in

Jeuland & Shugan (1983, page 250), a downstream actor may carry products from other

manufacturers to exploit economies of scope, which becomes problematic after integration, a

vertical merger may not be allowed by law, or each independent actor carries out his special-

ized function less efficiently in a larger organization.

Market solutions (closer collaboration) A less extreme approach is increasing the level

of mutual cooperation in the supply chain. To counteract the bullwhip effect and coordinate

buying practices across different actors, Lee et al. (1997, pages 98-100) put forward electronic

data interchange (EDI) and vendor managed inventories (VMI). EDI means that supply

chain partners share company specific information. Communicating details about stock levels

and market forecasts enables anticipation on sudden drops or surges in demand, thereby

decreasing the necessity to keep large safety stocks and making expensive overreactions less

likely. Because of the relegation of all inventory related operations to the upstream partner,

the VMI mechanism is somewhat more extreme.
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Market solutions (aligning incentives) The autonomy of the supply chain members is

respected most when coordination takes place by introducing contractual provisions which

only influence the operating environment of another actor indirectly. For instance, the two-

part tariff, as explained in Pepall et al. (2002, pages 481-483), is particularly suited to confront

the problem of double marginalization. A lump sum payment and charging of the marginal

cost of production for each unit bought will result in a lower price on the finished goods market

and higher total surplus. The construction is typically found in a franchising agreement, and

can, under circumstances, alleviate the problem of suboptimal product quality levels as well.

Methods to mitigate free-riding on someone else’s (advertising) expenditures, are resale

price maintenance and exclusive selling/dealing contracts. With resale price maintenance the

price charged to consumers is no longer freely determined by the retailer. Exclusive selling

and dealing agreements, on the contrary, restrict the number of downstream or upstream

partners. The creation of (local) monopolies ensures that the exclusive supply chain member

reaps all the benefits of his efforts without another supply chain member benefiting at his

expense (Pepall et al. (2002, Chapter 9)).

For the 2 echelon Newsboy problem, Axsäter (2006, pages 286-287) proposes a buy-back

contract. If demand is less than the quantity ordered in advance, the remaining products can

be returned to the upstream partner. Adequately setting the wholesale and buy-back price

results in an order size maximizing total expected supply chain profit.

Finally, a lot of supply chain efficiencies can be resolved by the profit sharing contract.

Because each party gets a predetermined fraction of the pooled profit, operations will shift

to the collectively most desired outcome. A major drawback is that it requires quite some

monitoring resources. Success depends largely on the truthful revelation of individual revenues

and costs.

2.4 Focus of research

Our analysis is restricted to the counteraction of production planning externalities, and more

specifically to the negative consequences of anarchistic lot-sizing. As common ownership and

a construction like VMI are quite rigorous forms of exerting vertical control, and integration of

activities has some major problems of its own, we concentrate on two simple market solutions

to align incentives.

The quantity discount schedule, which has been studied extensively in the literature1, can

be used to directly reward the choice for certain order sizes. The second scheme allows

1For an extensive review of the literature, see Chapter 3 in ’Coordination of lot-sizing decisions in a game
theoretical framework Part 1’
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compensation of the other actor’s costs of holding inventory. Both are studied in a non-

cooperative game theoretical environment. Instead of Pareto efficient (bargaining) outcomes,

as in Kohli & Park (1989), Kim & Hwang (1989) and Chakravarty & Martin (1988), we look

for subgame perfect Nash equilibria. For each schedule we are interested in the degree to

which total profit is enhanced and how the extra surplus, if any, benefits each partner.
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Chapter 3

Modelling the supply chain

3.1 Introduction

Before deriving optimal behaviour in the supply chain, we present the underlying assump-

tions and our notation. Decision making takes place in a 2 actor serial supply chain facing

continuous, constant and price-inelastic demand for an infinite period of time. Due to the ex-

clusion of backordering (some of) the deterministic demand and the properties of the delivery

and production processes, we can limit each actor’s expenses to input prices and lot-sizing

costs. Section 3.2 gives further details and an explanation of the strategic and informational

aspects. We describe the model parameters, the coordination/lot-sizing decisions and some

other notational elements in Section 3.3. Section 3.4 lays down the sequence of decision

making.

3.2 Assumptions

Supply chain structure We look at a serial supply chain comprised of a Retailer serving

end-consumer demand and a Wholesaler supplying him. Inputs originate from the Manufac-

turer, an otherwise passive agent in the 2 echelon setting. A serial configuration is relatively

simple, and, as observed in Li et al. (1995, page 1456), avoids distraction from the main

purpose of the analysis, namely, investigating the effects of measures to coordinate inventory

policy decisions. Using multiple heterogeneous retailers, like Drezner & Wesolowsky (1989,

pages 41-42) and Chakravarty & Martin (1988, pages 275-277), would already cause a lot of

(unnecessary) complications.

Demand, planning horizon & prices The actors’ operations are restricted to a single

product, which is reasonable as long as no major cost synergies, so-called economies of scope,
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can be realized by combining several production and order policies. Demand occurs contin-

uously for an infinite period of time at a constant rate not affected by the price charged to

end-consumers. The process is completely deterministic. Because we normalize the number

of inputs needed for 1 output, the upstream actors face the same demand intensity. Com-

parable to Khouja (2003, page 986), value adding activities are reflected in increasing prices

as one goes downstream. Apart from the price discount fraction associated with the first

coordination mechanism, the actual determination of prices is exogenous to our models. A

convenient consequence is that actors can restrict their attention to production and inventory

related decisions.

Production & delivery rate In the normalized production structure, the Wholesaler and

Retailer add value with, for example, promotional activities, tailored packaging and efficient

distribution to their consumer(s). Although Munson & Rosenblatt (2001, page 377) show that

capacity utilization may strongly influence savings, we impose infinite transformation and

delivery rates: the time needed for value addition is negligible and inventories are replenished

instantaneously upon arrival of the shipment. Infinite rates are a good approximation in case

only a minor part of the resources in the supply chain is used. Introducing capacity constraints

does not essentially change the results, but merely causes the mathematical expressions to be

less tractable. Inputs are processed on a per order basis.

Backordering We do not allow shortages. Inventories are always maintained at levels such

that all orders can be fulfilled entirely at the moment they come in. Excluding postponed

delivery, so-called backordering, is reasonable in situations where stock-outs lead to dispro-

portionately large losses.

Lead times The term lead time is used to designate the time between the moment an order

is received from a customer and the moment that the product arrives there. Constant lead

times are intrinsically linked to a deterministic demand environment without the possibility

of backordering. To be absolutely sure that shortages will be avoided, an actor has to possess

perfect knowledge about the demand pattern and about the time it takes to replenish him. A

simple shift in a previously established order pattern suffices to accommodate for a change in

the lead time. We might, therefore, just as well say that the product is delivered immediately

upon ordering.

Costs Three categories of costs are assumed to be relevant. The first is the unit price an

actor has to pay for acquiring an item from his upstream supply chain partner. The other

two cost categories are related to the lot-sizing decisions: the fixed cost of ordering and the
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inventory holding cost rate. Each cost rate is linear in its driver, i.e., the number of items

sold, the number of orders placed, or the stock level. Moreover, each is constant over time.

The order cost does not depend on the number of items in a batch. It covers administrative

expenses and the costs of personnel to handle the incoming product. The properties of the

delivery and production processes (constant (zero) lead time, infinite rates and conversion on

a per order basis) imply that the production cycle is completely synchronized with the order

cycle. Consequently, the order cost can be considered to include as well a fixed cost of setting

up the value addition process/production.

As inputs are never kept in stock, the holding costs for each actor are limited to inventories

of processed product. The components of a holding cost rate can be divided in two groups,

depending on whether or not there is a direct relationship with the value (input price) of the

product. Examples of value-related components are the interest foregone on the capital tied

up and the losses resulting from obsolescence, damage and theft. On the other hand, costs of

financing or renting storage space are at best remotely connected to price.

A major disadvantage of incorporating to some extent dependency on the input price is

that the social optimum for a quantity discount scenario prescribes a 100 % discount to

achieve minimum holding cost rates, see Weng (1995b, page 310). Zero prices are, however,

not a realistic benchmark and are unacceptable to the actor offering the discount, so that, as

formulated in Chakravarty & Martin (1988, page 274), there is “... no incentive for pursuit

of the optimal ‘social welfare’ solution.” Compared to the other mechanism, the incentive

compatibility problem would lead to an underestimation of the efficiency enhancing effects of

a quantity discount scheme. To avoid these peculiarities and to ensure that the most efficient

outcome is the same, irrespective of whether or not coordination takes place, we assume

price-independent holding cost rates. The coordination terms related to a mechanism drop

out when the individual profit functions are aggregated.

Besides the fixed cost of preparing an outgoing shipment, a separate cost for handling

the downstream partner’s orders is used in Viswanathan & Wang (2003) and Weng (1995a).

For reasons of mathematical clarity and to limit the number of parameter dimensions, we

disregard, in accordance with Munson & Rosenblatt (2001), these order processing costs and,

more generally, any other expenditure.

Strategic interaction & information The supply chain members cannot collaboratively

agree on a joint lot-sizing policy. Unlike Kohli & Park (1989) and Dudek & Stadtler (2005),

negotiations and bargaining are ruled out. Each maximizes profit without taking into account

the possible beneficial or detrimental effects on others. From Corbett & de Groote (2000),

it follows that the amount of available information is crucial for the nature of strategic in-

teraction. We assume that the supply chain has been functioning for quite a while already.

11



Because of past order patterns, each participant is well-informed about the intensity of end-

consumer demand and about the other actor’s cost structure. Common knowledge is also the

underlying principle with respect to the observability of decisions.

3.3 Notation

Environment & decisions The upper part of Table 3.1 presents an overview of all pa-

rameters describing the demand process and the actors’ cost characteristics. The Retailer

receives Pr for each item sold to end-consumers and pays a unit price Pw to the Wholesaler.

With Pm the price paid to the Manufacturer, the gross margin per unit is then straightfor-

wardly Pw − Pm for the Wholesaler. In practice, the nature of production will often lead

to downstream firms having a smaller order/set-up cost and a larger inventory holding cost

rate than their upstream partner. Here, we do not impose Ar < Aw and hr > hw, thereby

maintaining a maximum degree of flexibility in inventory related cost patterns. In fact, this

is yet another motivation for not directly linking holding cost rates to prices, which tend to

increase as more value is added.

Parameter Description

D Demand intensity per time unit
Pi Price per unit charged by actor i ∈ {r, w,m}
Ai Fixed order cost for actor i ∈ {r, w}
hi Holding cost rate for actor i ∈ {r, w}

Variable

Q Retailer order size
nw Wholesaler lot-sizing multiple
αw Quantity discount fraction set by Wholesaler
Rw Quantity discount region set by Wholesaler
Q̄w Order breakpoint belonging to Rw
βw Holding cost compensation fraction set by Wholesaler

Table 3.1: Parameters & decision variables

The first variable in the remainder of the table, Q, represents the amount of product the

Retailer orders each time to satisfy end-consumer demand. It forms the basis for the lot-

sizing decision upstream. Because prescribing a lot-for-lot policy similar to Monahan (1984)

and Khouja (2003) would make the analysis far less interesting, the Wholesaler is allowed to

deliver more than once during an order/production cycle. The zero-inventory property (see

Axsäter (2006, pages 62 & 226)) ensures that his best course of action is to choose an integer

multiple, making his order size equal nwQ.
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Mostly, a quantity discount scheme is of the following form: the domain of all possible

order sizes is divided in several regions by specifying a set of order breakpoints. Each region

is tagged with a certain price discount. Depending on whether the schedule is of the all unit

quantity discount (AQD) or incremental quantity discount (IQD) type, the reduced price is

charged for each item sold or merely for those units of the order falling into the associated

region. The equivalence of both approaches in coordinating a 2 actor serial supply chain

is proved in Weng (1995a), Weng (1995b), Kohli & Park (1989) and Kim & Hwang (1989).

Because a one-to-one transformation from one type to the other exists, there is no need to

consider each. And, as observed in Weng (1995b, page 307), since an IQD is more complex

in nature, it is convenient to restrict attention to AQD schedules.

The Wholesaler, being the dominant actor, sets the terms of the schemes. The discount

αw is a fraction of the original pre-discount price. In accordance with the literature, one

breakpoint Q̄w is set. The discount region variable Rw, explicitly incorporating the flexibility

suggested in Munson & Rosenblatt (2001, page 377), lets the Wholesaler determine whether

the Retailer order size qualifies for the per unit discount αwPw in the region
(
0, Q̄w

]
(quantity

premiums) or
[
Q̄w,∞

)
(proper quantity discount schedule). The holding cost compensation

(HCC) scheme results in an adjusted holding cost rate (1− βw)hr.

Demand, prices, cost parameters, Q and the order breakpoint are all positive (> 0). The

variable nw is restricted to the set of positive integers N = {1, 2, 3, ....}. We have αw ≥ 0 and

βw ∈ [0, 1). Negative values are excluded, because otherwise the downstream partner would

be penalized, which is contrary to the compensating nature of both mechanisms. To guarantee

that an actor continues to pay something for holding inventory, a necessary requirement for

an optimal lot-sizing decision to exist, the compensation fraction must be smaller than 1. We

do not impose an upper limit on αw. In the unlikely scenario that total savings from the

quantity discount scheme exceed or equal total gross revenue, the coordinating actor wants to

select a value equal to or larger than 1. In practice though, this will not occur, as a member

making a loss (negative revenue minus costs) will prevent the supply chain from operating.

Profits, optimal actions & bounds To distinguish among profits (Π, Πr, or Πw), optimal

behaviour and bounds on some variables, we add (multi-element) superscripts. Optimality,

lower and upper bounds are denoted by one of the following: ∗, − or +. The other set of

elements is made up of u, referring to an uncoordinated supply chain, s for the social optimum

and a or b conveying the nature of coordination (which is superfluous if an optimum or bound

for a coordination variable is described). When relaxing the requirement nw ∈ N, notation

will instead be based on νw.
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Performance measures The assessment of the capacity to streamline the supply chain is

done with the help of the performance measures in Table 3.2. The quantity ∆ expresses the

total gain in the supply chain as a percentage of the difference between maximum welfare

and the total profit resulting under anarchy. The other measures are meant to give an idea

about the size of the transfers inciting the Retailer to change his inventory policy, and the

benefits of coordination to individual actors. The payment percentage Φ is based on the ratio

of the Wholesaler’s payment over the efficiency gap. For either echelon, the savings divided

by the minimum lot-sizing costs under anarchy, times 100%, gives δi. We stick to our system

of superscript notation to clarify which mechanism’s performance is measured.

Measure Description

∆ Efficiency gain percentage
Φ Payment percentage
δi Savings percentage for actor i ∈ {r, w}

Table 3.2: Performance measures

3.4 Overview of lot-sizing games

The two types of games are depicted in Figure 3.1. For convenience, we use the holding cost

compensation scheme to illustrate the typical set-up of a coordination game. Replacing βw by

the variables αw and Rw is sufficient to get the schematic overview for the other mechanism.

Each figure satisfies the graphical conventions in Watson (2002). A node represents a decision

for either the R(etailer) or the W(holesaler), while a pair of branches connected by an arc

indicates that the domain for the decision variable at hand consists of an infinite number of

elements. Strictly speaking, nodes situated on an arc stand for a multitude of points from

which the game may continue: one for each value of the decision variable in the previous

stage. Each node in its own information set (the node itself) reflects the assumption that an

Q nw

W
R

(a) Non-coordination

Q nwβw
W

WR

(b) Coordination

Figure 3.1: Extensive forms for 2 echelon games
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actor taking a decision is fully informed about how the game has proceeded previously. The

pay-offs are left out, as these will be established while analysing each game.

To be able to affect downstream behaviour, coordinative action must precede the lot-sizing

stages. Contrary to standard practice in the 2 actor quantity discount literature (see for

example Lee & Rosenblatt (1986)), we do not combine Wholesaler decision making. Not

including the inventory policy decision in the coordination stage better reflects reality where

the Retailer order size is observed before choosing an integer multiple. Although the more

extensive set-up necessitates the derivation of a rule specifying how the Wholesaler responds

to each (possibly irrationally chosen) Q, the difference in approach does not matter for the set

of actions actually chosen by the supply chain members. The rewritten first stage optimization

problems are constructed such that these also depend on nw. Assuming a rational Retailer, the

initially optimal integer will correspond to the action prescribed by the Wholesaler lot-sizing

policy in the third phase of the game.
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Chapter 4

Game theory

4.1 Introduction

All optimal behaviour for the actors will be derived using the tools from non-cooperative

game theory. In Section 4.2, we briefly explain what is meant by strategies, strategy pro-

files, subgames and subgame perfect Nash equilibria. After clarifying these, we discuss the

technique of backward induction. We end with the concept of an equilibrium path.

4.2 Relevant terminology & concepts

Strategies & strategy profiles Individual behaviour throughout the game is summarized

by a strategy, which, in the words of Watson (2002, page 23), gives a complete contingent

plan. Combining the individual strategies in a vector gives a strategy profile. Actions must be

specified for all information sets belonging to a player. With respect to a representative node

located on an arc in Figure 3.1, the player’s strategy must thus prescribe an infinite number

of actions (one for each actual decision node). Next to theoretical elegance, full contingency

has its practical importance. Even though players do not anticipate to ever reach certain

parts of the game, expected behaviour at information sets in later stages might be relevant

for (optimal) decision making earlier on in the game. Moreover, it provides a means of dealing

with an opponent’s non-rational behaviour like mistakes (Watson (2002, page 27)).

Two classes of strategies may be discerned. We call a strategy mixed when for some

information set an actor puts probability on different values of the decision variable and opts

for one of these randomly. A pure strategy is just a special case; at each information set a

particular value is selected with probability one, resulting in absolute certainty concerning an

actor’s decisions. In Chapter 5 we limit ourselves to the last strategy type.
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Subgames Before clarifying our equilibrium concept, we note how each game can be sub-

divided in different subgames. Watson (2002, page 141) describes a subgame as the tree

structure initiated by a decision node x where neither x nor any of its successors are part of

an information set containing nodes that are not successors of x. The most comprehensive

subgame is the game itself. In Figure 3.1, every decision node starts a new subgame.

Subgame perfect Nash equilibria In our games we will be looking for Nash equilibria.

In general, these are defined as strategy profiles wherein each actor’s strategy maximizes his

profit given the other actors’ strategies: each actor plays a best response. Sequential decision

making necessitates a refinement of the Nash equilibrium concept, the subgame perfect Nash

equilibrium, which incorporates the notion of sequential rationalizability in extensive form

games. Citing Watson (2002, page 143), the idea behind subgame perfection is “..that a

solution concept should be consistent with its own application from anywhere in the game

where it can be applied.” Upon entering a new subgame, the prescribed strategy must remain

optimal in the sense that a party does not wish to deviate from it.

Backward induction To find subgame perfect Nash equilibria in pure strategies, we use

backward induction as explained in Watson (2002, page 139). We start with the subgames in

the last stage to determine the best action, which depends on how the game has evolved up

till that point. Bearing in mind this characterization of optimal behaviour, we proceed in a

similar manner with the preceding stage. The process of moving backwards, while anticipating

subsequent profit maximizing behaviour, continues until the beginning of the game (the first

decision node) is reached. Combining the optimal decision rules in all stages gives us the

desired Nash strategy profile(s).

Equilibrium paths The resulting sequence of optimal actions constitutes an equilibrium

path. In many games, a multitude of paths exists. Since our primary interest is in better

aligning the supply chain, we let actors aim for an outcome with maximum social welfare in

case of more than one solution.
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Chapter 5

Nash equilibria for lot-sizing games

5.1 Introduction

In this chapter we analyse the sequentially rational behaviour for the different lot-sizing

games. The subgame perfect pure Nash equilibria are formally described, and, where needed,

an algorithmic environment is included to explain the main steps in the calculation of an

equilibrium path. The assumption of one-time interaction implies that a player’s actions

remain the same for the entire infinite time horizon. The same order cycles will be repeated ad

infinitum. Without any discounting for the time value of money, each actor simply maximizes

average profit per time unit. In Section 5.2 we study the anarchy situation. After deriving

the joint policy that maximizes total supply chain profit in Section 5.3, we introduce quantity

discounts in Section 5.4, and holding cost compensation in Section 5.5.

5.2 Non-cooperative outcome

Pay-offs The total gross margin for the Retailer is (Pr − Pw)D. Subtracting his average

lot-sizing costs yields

Πu
r (Q) = (Pr − Pw)D −Ar

D

Q
− hr

Q

2
(5.2.1)

The costs of ordering equal the fixed order cost Ar times the average number of orders

per time unit D
Q . If no shortages are allowed, it is most efficient to replenish when stocks

have been depleted. Because of infinite delivery and production rates, the inventory level

instantaneously becomes Q upon arrival of the replenishment order, and next, diminishes to

0 again at the constant demand rate. On average Q
2 is kept in stock during a typical order

cycle. Multiplication by hr gives the holding cost term.
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The difference (Pw − Pm) is the basis for the total gross margin per time unit in the

Wholesaler non-coordination profit. The calculation of ordering costs makes use of Aw and

the order size nwQ. Similar to the Retailer, the product of the holding cost rate and the

average stock level is the last component of

Πu
w (Q,nw) = (Pw − Pm)D −Aw

D

nwQ
− hw

(nw − 1)Q

2
(5.2.2)

Under our assumptions regarding shortages, the delivery process and the production tech-

nology, it is shown in Chiang et al. (1994, pages 156-157) and Joglekar (1988, Appendix)

that the total inventory of converted product held upstream during each order cycle is

((nw − 1)Q+ (nw − 2)Q+ · · ·+Q) QD = (nw−1)nwQ2

2D . Dividing by the length of an order

cycle nwQ
D , gives the average (nw−1)Q

2 .

Wholesaler lot-sizing Using backward induction, we first take a look at the last stage in

Figure 3.1(a). For a fixed Q, the Wholesaler has to solve

max
nw

Πu
w (Q,nw) = (Pw − Pm)D −Aw

D

nwQ
− hw

(nw − 1)Q

2

subject to: (5.2.3)

nw ∈ N

The concave Wholesaler profit is maximized at

n∗uw (Q) = min {nw : Πu
w (Q,nw + 1) ≤ Πu

w (Q,nw) |nw ∈ N}

In terms of the problem parameters we get

n∗uw (Q) = min

{
nw :

2AwD

hwQ2
≤ nw (nw + 1) |nw ∈ N

}
Like Munson & Rosenblatt (2001, pages 375-376), an explicit functional form is obtained

by rearranging the terms of the condition somewhat and applying the quadratic formula to

(nw)2 + nw − 2AwD
hwQ2 = 0. Rounding up the positive (non-integer) solution gives the integer of

interest. Alternatively, with Πu
w (Q, 0) = −∞, we can describe the best Wholesaler lot-sizing

action as

n∗uw (Q) = max {nw : Πu
w (Q,nw − 1) ≤ Πu

w (Q,nw) |nw ∈ N}
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Combining both decision rules gives

n∗uw (Q) =



⌈
−1

2
+

√
1

4
+

2AwD

hwQ2

⌉
or⌊

1

2
+

√
1

4
+

2AwD

hwQ2

⌋ (5.2.4)

More demand and a higher fixed order cost force the Wholesaler to save on the costs of

placing orders by increasing his integer multiple. Smaller integers, which lower the average

quantity of product in store, become more attractive if the holding cost rate or the Retailer

order size increases. As required, the minimum of each rule is 1. If the square root term

times 2 is an odd number, no rounding is needed. Instead of a unique lot-sizing decision, two

successive integers will be optimal. The smallest follows from the upper entier expression.

Retailer order size The Wholesaler lot-sizing rules are irrelevant for the Retailer. End-

consumer demand is fulfilled most efficiently by solving, at the node initiating the game, the

standard economic order quantity (EOQ) problem

max Πu
r (Q) = (Pr − Pw)D −Ar

D

Q
− hr

Q

2

subject to: (5.2.5)

Q > 0

As the objective function is concave in Q, it suffices to set the derivative with respect to Q

equal to zero. The solution to the first order condition equals

Q∗u =

√
2ArD

hr
(5.2.6)

The influence of the parameters resembles the effects of Aw, D and hw on n∗uw (Q).

Equilibrium strategies Our findings are summarized in Proposition 5.2.1. We observe

that Q∗u × n∗uw (Q) actually describes an infinite number of Nash equilibria. There is an

unlimited number of (irrational) Retailer order sizes for which the Wholesaler can randomly

choose among one of two optimal lot-sizing multiples returned by n∗uw (Q).

Proposition 5.2.1. All subgame perfect pure Nash equilibria in the non-coordination game

are given by the strategy profiles Q∗u × n∗uw (Q) satisfying Equations (5.2.6) and (5.2.4).
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Proof. See foregoing. Since we do not neglect any optimal decision at some decision node,

backward induction guarantees that all subgame perfect pure Nash equilibria are covered.

Substitution of Q∗u in n∗uw (Q) results in the Wholesaler’s action on the equilibrium path.

A unique outcome exists when dν−uw e = bν+u
w c in

n∗uw =
⌈
ν−uw

⌉
or
⌊
ν+u
w

⌋
(5.2.7)

where:

ν−uw = −1

2
+

√
1

4
+
Awhr
Arhw

(5.2.8)

ν+u
w =

1

2
+

√
1

4
+
Awhr
Arhw

(5.2.9)

The actors’ profits become

Π∗ur = (Pr − Pw)D −
√

2ArhrD (5.2.10)

Π∗uw = (Pw − Pm)D −
(
Aw/n

∗u
w

2Ar
+
hw (n∗uw − 1)

2hr

)√
2ArhrD (5.2.11)

The parameter D does not appear in the expression for n∗uw . Therefore, the realized lot-

sizing costs upstream are scaled by the same constant as those for the Retailer if demand

changes. By construction, Πu
w (Q∗u, ν−uw ) = Πu

w (Q∗u, ν−uw + 1) = Πu
w (Q∗u, ν+u

w ) holds. Since

the concave function Πu
w (Q∗u, nw) has its unrestricted maximum at nw = ν∗uw , we get

Πu
w

(
Q∗u, ν−uw

)
= Πu

w

(
Q∗u, ν+u

w

)
≤ Π∗uw ≤ Πu

w (Q∗u, ν∗uw ) (5.2.12)

with:

ν−uw < ν∗uw < ν+u
w

where:

ν∗uw =

√
Awhr
Arhw

(5.2.13)

Πu
w (Q∗u, ν∗uw ) = (Pw − Pm)D −

(√
Awhw
Arhr

− hw
2hr

)√
2ArhrD (5.2.14)

5.3 Fully optimized supply chain

Joint profit To maximize total supply chain profit, we sum each actor’s profit and decide on

Q and nw simultaneously. A combination of the approach in Goyal (1976) and the procedure

to determine the individually optimal lot-sizing multiple(s) is used to solve:
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max Πs (Q,nw) = (Pr − Pm)D − (Ar +Aw/nw)
D

Q
− (hr + hw (nw − 1))

Q

2

subject to: (5.3.1)

Q > 0 nw ∈ N

Optimal collaborative Retailer action Given a particular nw ∈ N, we have the system-

wide equivalent of Problem (5.2.5). With Ar replaced by Ar + Aw/nw, and hr appearing

instead of the joint holding cost rate hr + hw (nw − 1), incurred for an average item moving

through the supply chain, the more comprehensive solution becomes

Q∗s (nw) =

√
2 (Ar +Aw/nw)D

hr + hw (nw − 1)

The difference between Q∗s (nw) and Q∗u in Equation (5.2.6) concisely illustrates the potential

for inefficient decision making under anarchy.

Optimal collaborative Wholesaler action Insertion of Q∗s (nw) results in a single vari-

able objective function Πs (nw) = Πs (Q∗s (nw) , nw) and a reduced problem

max Πs (nw) = (Pr − Pm)D −
√

2 (Ar +Aw/nw) (hr + hw (nw − 1))D

subject to:

nw ∈ N

As mere inspection does not reveal the behaviour of Πs (nw), we relax the domain restriction

from nw ∈ N to nw ≥ 1 and take the derivative

∂Πs (nw)

∂nw |nw>1
= −

√
D
(
Arhw +Aw (hw − hr) / (nw)2

)
√

2 (Ar +Aw/nw) (hr + hw (nw − 1))

In case hr > hw, we solve Arhw +Aw (hw − hr) / (nw)2 = 0 by setting nw equal to

ν̄sw =

√
Aw (hr − hw)

Arhw

The derivative is positive below and negative beyond ν̄sw. Comparable to the non-coordination

setting, after defining Πs (0) = −∞, the optimal lot-sizing integer(s) is(are) characterized by
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n∗sw =


min {nw : Πs (nw + 1) ≤ Πs (nw) |nw ∈ N}
or

max {nw : Πs (nw − 1) ≤ Πs (nw) |nw ∈ N}

The minimum and maximum integer are found by rounding up or down the respective

positive solutions to (nw)2+nw−Aw(hr−hw)
Arhw

= 0 and (nw)2−nw−Aw(hr−hw)
Arhw

= 0. Some further

adjustment is necessary to take into account hr ≤ hw, for which, with ∂Πs(nw)
∂nw |nw>1

< 0, a

lot-for-lot policy is optimal. Choosing the maximum of an arbitrary constant in the set (0, 2]

([0, 2)) and the term Aw(hr−hw)
Arhw

makes that all scenarios are included in

n∗sw =



⌈
−1

2
+

√
1

4
+ max

{
1,
Aw (hr − hw)

Arhw

}⌉
or⌊

1

2
+

√
1

4
+ max

{
1,
Aw (hr − hw)

Arhw

}⌋ (5.3.2)

Retailer orders are combined in a single batch to a larger extent when ordering is relatively

expensive for the Wholesaler (Aw
Ar

large) and when the cost structures favour holding inventory

upstream (hr−hwhw
large). Smaller ratios let the optimum move towards a collaborative lot-for-

lot policy. Again, two successive integers may be optimal.

Welfare maximizing outcome A solution to the joint optimization problem is comprised

of n∗sw , and Q∗s, which is calculated by substituting n∗sw into Q∗s (nw). With these values,

profits for each echelon are

Π∗sr = (Pr − Pw)D −
(

Ar
2 (Ar +Aw/n∗sw )

+
hr

2 (hr + hw (n∗sw − 1))

)
·
√

2 (Ar +Aw/n∗sw ) (hr + hw (n∗sw − 1))D

Π∗sw = (Pw − Pm)D −
(

Aw/n
∗s
w

2 (Ar +Aw/n∗sw )
+

hw (n∗sw − 1)

2 (hr + hw (n∗sw − 1))

)
·
√

2 (Ar +Aw/n∗sw ) (hr + hw (n∗sw − 1))D

Because Q∗s does not have to coincide with the individually optimal Q∗u, the inequality

Π∗sr ≤ Π∗ur holds. By definition, we have Π∗s = Π∗sr + Π∗sw ≥ Π∗u, and thereby Π∗sw ≥ Π∗uw . As

in the previous section, a change in demand merely scales the downstream order size and the

resulting lot-sizing costs for both actors.
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5.4 Quantity discount schedule

Overview of profits When a quantity discount scheme is introduced, the lot-sizing stages

are preceded by the Wholesaler’s decision on αw and Rw. Both coordination variables appear

in the extended gross margin expression for the Retailer. If the downstream order quantity is

in the discount region, the indicator variable 1{Q∈Rw} takes the value 1 and the Wholesaler

charges (1− αw)Pw. Otherwise, no discount is granted and the regular unit price applies.

The remaining terms of Equation (5.2.1) do not change in

Πa
r (Q,αw, Rw) =

(
Pr −

(
1− αw1{Q∈Rw}

)
Pw
)
D −Ar

D

Q
− hr

Q

2

Incorporating the quantity discount policy similarly in Equation (5.2.2) gives

Πa
w (Q,nw, αw, Rw) =

((
1− αw1{Q∈Rw}

)
Pw − Pm

)
D −Aw

D

nwQ
− hw

(nw − 1)Q

2

Wholesaler lot-sizing stage At his lot-sizing decision nodes, the quantity discount char-

acteristics and the Retailer order quantity have already been determined. As the objective

function only differs by a constant αw1{Q∈Rw}PwD from Πu
w (Q,nw) in Problem (5.2.3), Equa-

tion (5.2.4) remains optimal for

max
nw

Πa
w (Q,nw, αw, Rw) =

((
1− αw1{Q∈Rw}

)
Pw − Pm

)
D −Aw

D

nwQ
− hw

(nw − 1)Q

2

subject to: (5.4.1)

nw ∈ N

Retailer response The decision on the downstream inventory policy is no longer static,

but depends on the vector (αw, Rw). The reaction to a particular quantity discount layout

follows from solving

max
Q

Πa
r (Q,αw, Rw) =

(
Pr −

(
1− αw1{Q∈Rw}

)
Pw
)
D −Ar

D

Q
− hr

Q

2

subject to:

Q > 0

The discontinuity of the profit function at Q̄w makes finding the best order size somewhat

more difficult than in case of Problem (5.2.5). Given an arbitrary set of price, demand and

cost data, Figure 5.1 illustrates how altering the conditions of the AQD scheme influences the
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Retailer’s options. In the no discount region (Q /∈ Rw), profit just equals Πu
r (Q). For all order

sizes in the discount region (Q ∈ Rw), Πa
r (Q,αw, Rw) coincides with the non-coordination

profit shifted upwards by the average total discount per time unit. Because the two curves

run parallel to one another, the unrestricted optimal order size for both is located at Q∗u in

Equation (5.2.6).
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(d) αw = 0.02 and (0, 200]

Figure 5.1: Optimization with Pr = 25, Pw = 15, D = 10000, Ar = 100 and hr = 8
by the Retailer facing an AQD scheme

Typical examples of the trade-off with Q̄w ≥ Q∗u are contained in the first two subfigures.

The Retailer compares his profit at the breakpoint, which is the best among all discount order

sizes, with the maximum non-coordination profit Π∗ur . Figure 5.1(a) depicts a configuration
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wherein the Retailer will not deviate from his anarchy decision. After the discount has been

increased to 2% in Figure 5.1(b), he chooses Q̄w = 1500. Figure 5.1(c) makes clear why

a proper AQD schedule is incapable of provoking more frequent ordering downstream: the

discount is received even when nothing changes at the Retailer. As shown in Figure 5.1(d),

allowing quantity premiums removes this limitation.

The previous observations reveal the essence of the optimal response. The Retailer chooses

Q̄w if the default solution Q∗u is not part of the discount region minus the order breakpoint,

and the profit at the breakpoint at least equals the maximum under anarchy:

Q∗a (αw, Rw) =


Q̄w if Q∗u /∈

(
Rw \ Q̄w

)
and Πa

r

(
Q̄w, αw, Rw

)
≥ Π∗ur

and

Q∗u otherwise

(5.4.2)

In view of reformulating the Wholesaler coordination problem, Q∗a (αw, Rw) formally points

at the breakpoint in the special case where both lot-sizing quantities are the same. We

also assume that an indifferent Retailer accepts the schedule. Without the assumption, a

Wholesaler not satisfied with Q∗u, could be forced to offer a scheme with a slightly higher

discount to make the Retailer strictly prefer Q̄w. However, there is always a smaller discount

that does the job, and, as a consequence, a Nash equilibrium might then not exist.

Coordination stage To take into account the indirect control over the Retailer order size,

we rewrite the Wholesaler profit function as Πa
w (nw, αw, Rw) = Πa

w (Q∗a (αw, Rw) , nw, αw, Rw).

The first stage problem is more easily solved by disregarding the rules in Equation (5.2.4),

and instead include nw in

max Πa
w (nw, αw, Rw) =

((
1− αw1{Q∗a(αw,Rw)∈Rw}

)
Pw − Pm

)
D

−Aw
D

nwQ∗a (αw, Rw)
− hw

(nw − 1)Q∗a (αw, Rw)

2

subject to: (5.4.3)

nw ∈ N αw ≥ 0

Rw ∈
{(

0, Q̄w
]
,
[
Q̄w,∞

)}
Q̄w > 0

Every downstream order size can be achieved by having the Retailer opt for the breakpoint

of an AQD scheme. At the breakpoint it suffices that he is just as well of as under anarchy, i.e.,

the loss resulting from deviation of Q∗u is exactly compensated. A proper quantity discount

should be chosen for Q̄w > Q∗u, while Q̄w < Q∗u requires a quantity premium. In the special

case where Q̄w = Q∗u (with αw = 0), the remainder of the discount region may be located on
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either side of the breakpoint. In terms of nw and Q̄w we restate the problem as

max Πa
w

(
nw, Q̄w

)
=

((
1− Π∗ur −Πu

r

(
Q̄w
)

PwD

)
Pw − Pm

)
D −Aw

D

nwQ̄w
− hw

(nw − 1) Q̄w
2

subject to: (5.4.4)

nw ∈ N Q̄w > 0

After substitution of the expression for Πu
r

(
Q̄w
)
, and aggregating cost components per cate-

gory, the reformulation becomes

max Πa
w

(
nw, Q̄w

)
= (Pr − Pm)D − (Ar +Aw/nw)

D

Q̄w
− (hr + hw (nw − 1))

Q̄w
2
−Π∗ur

subject to:

nw ∈ N Q̄w > 0

In essence, apart from a constant and a change of variables, Problem (5.3.1) needs to be

solved. The best integer n∗aw equals n∗sw in Equation (5.3.2), while the optimal breakpoint Q̄∗w
corresponds to the jointly optimal downstream order size Q∗s. Because the Retailer agrees

to Q∗s, his pre-discount profit is Π∗sr . From the solution we derive

α∗w =
Π∗ur −Π∗sr
PwD

(5.4.5)

and the discount region

R∗w =


(0, Q∗s] 1{Q∗s<Q∗u} + [Q∗s,∞) 1{Q∗s≥Q∗u}

or

(0, Q∗s] 1{Q∗s≤Q∗u} + [Q∗s,∞) 1{Q∗>Q∗u}

(5.4.6)

By construction, two possible regions are defined if Q∗s = Q∗u. In fact, the location of Rw

in a zero-discount scheme is not relevant at all. Moreover, for a Wholesaler satisfied with the

non-coordination outcome, any schedule in which the Retailer is left with too little profit at

the breakpoint, and therefore rejected by selecting Q∗u, is optimal.

Equilibrium strategies and efficiency increase Without further proof, we interpret the

preceding analysis game theoretically in Proposition 5.4.1. Whether or not the supply chain

needs the quantity discount scheme to operate more profitably, the presence of n∗uw (Q) makes

that an infinite number of Nash strategy profiles is described.
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Proposition 5.4.1. The strategy profiles Q∗a (αw, Rw) × [α∗w, R
∗
w, n

∗u
w (Q)] satisfying Equa-

tions (5.4.2), (5.4.5), (5.4.6) and (5.2.4), are subgame perfect pure Nash equilibria in the

quantity discount game. If Q∗s = Q∗u, every AQD set-up with αw = 0, or any schedule

rejected by the Retailer, can be part of an equilibrium.

Assuming the Retailer responds to α∗w and R∗w as anticipated (selecting the breakpoint

Q̄∗w = Q∗s), the Wholesaler will be faced with a reduced Problem (5.4.4), which is solved

by n∗uw (Q∗s). The lot-sizing rule producing the same integer as in the coordination stage of

the game shows that n∗aw = n∗sw is situated on an equilibrium path. The number of outcomes

(including those with rejected schedules) is infinite in case Q∗u is part of a jointly optimal

inventory policy. Otherwise, because of the direct link with the solutions in Section 5.3, the

maximum is 2.

While the Retailer does not improve upon his anarchy profit: Π∗ar = Π∗ur , the Wholesaler

receives Π∗aw = Π∗s−Π∗ur with Π∗uw ≤ Π∗aw ≤ Π∗sw . The supply chain is fully aligned and any ad-

ditional surplus accrues to the upstream actor. Complete synchronization of the supply chain

has been observed before by Banerjee (1986) in a context where a lot-for-lot replenishment

policy is imposed.

5.5 Holding cost compensation

Influence on profits Instead of setting a discount and an appropriate discount region, the

Wholesaler targets the downstream holding costs in Equation (5.2.1) under the alternative

scheme. The profit of a Retailer who gets a fraction βw reimbursed is

Πb
r (Q, βw) = (Pr − Pw)D −Ar

D

Q
− (1− βw)hr

Q

2

After subtracting the total compensation per time unit in Equation (5.2.2), the Wholesaler

profit becomes

Πb
w (Q,nw, βw) = (Pw − Pm)D −Aw

D

nwQ
− hw

(nw − 1)Q

2
− βwhr

Q

2

Lot-sizing stages Like in Problem (5.4.1), the terms related to the coordination mechanism

drop out in the last stage of the game, and, consequently, Equation (5.2.4) is maintained to

maximize Πb
w (Q,nw, βw). Downstream, adjustment of Q∗u in Equation (5.2.6) to the new

holding cost rate gives

Q∗b (βw) =

√
2ArD

(1− βw)hr
(5.5.1)
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The Retailer cannot be triggered to decrease his order size: Q∗b (βw) ≥ Q∗u.

Coordination stage Before deciding on the best level of compensation, the Wholesaler

updates his profit to Πb
w (nw, βw) = Πb

w

(
Q∗b (βw) , nw, βw

)
. Similar to Problem (5.4.3), the

lot-sizing variable is part of

max Πb
w (nw, βw) = (Pw − Pm)D −

(
Aw/nw

2Ar
+
hw (nw − 1) + βwhr

2 (1− βw)hr

)√
2Ar (1− βw)hrD

subject to: (5.5.2)

nw ∈ N βw ∈ [0, 1)

For the moment we ignore the domain restriction on βw, and, for a fixed nw, take the derivative

∂Πb
w (nw, βw)

∂βw
= Q∗b (βw)

(
(Aw/nw −Ar)hr

4Ar
− hw (nw − 1) + hr

4 (1− βw)

)
With Q∗b (βw) > 0, the first order condition is solved by

β̄w (nw) = 1− Ar (hw (nw − 1) + hr)

(Aw/nw −Ar)hr
(5.5.3)
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− 1n+b

w
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Figure 5.2: Stationary points for relaxation of Wholesaler’s
HCC problem with Ar = 100, hr = 8, Aw = 700 and hw = 4
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Provided that nw 6= Aw
Ar

(no division by zero), the solution denotes a stationary point in

case β̄w (nw) < 1, as Q∗b (βw), and thereby the derivative, are not defined for βw ≥ 1. The

largest lot-sizing multiple with a stationary point (not necessarily positive) is either Aw
Ar
− 1,

if the ratio of fixed order costs is integer valued, or
⌊
Aw
Ar

⌋
, if it is not. Although we continue

to have Ar (hw (nw − 1) + hr) > 0, the denominator (Aw/nw −Ar)hr becomes non-positive

when going beyond these bounds. Typical behaviour is shown in Figure 5.2: β̄w (nw) starts

below 1 at nw = 1, and subsequently decreases.

The largest integer with a feasible stationary point (β̄w ∈ [0, 1)) equals 2. The behaviour

of the function till Aw
Ar

allows n+b
w to be described as

n+b
w = max

{
nw :

Ar (hw (nw − 1) + hr)

(Aw/nw −Ar)hr
≤ 1|nw ∈ N ∪ {0}, nw <

Aw
Ar

}
Zero is included in the domain, since the existence of a positive integer with a non-negative

stationary point is not guaranteed. Turning the condition into an equality, taking the positive

(non-integer) solution ν+b
w and rounding down gives

n+b
w =

⌊
ν+b
w

⌋
(5.5.4)

where:

ν+b
w =

1

2
− hr
hw

+

√(
1

2
− hr
hw

)2

+
Awhr
Arhw

While rewriting, the condition is multiplied on both sides by the possibly non-positive term

(Aw/nw −Ar)hr. We show that this complication poses no problems.

Lemma 5.5.1. The expression for the upper bound n+b
w represents the maximum positive

integer with a stationary point in the domain [0, 1). In case there is no such integer, n+b
w = 0.

Proof. The equality Ar
(
hw
(
ν+b
w − 1

)
+ hr

)
=
(
Aw/ν

+b
w −Ar

)
hr is satisfied by the positive

solution ν+b
w to the quadratic equation (nw)2 +

(
2 hrhw − 1

)
nw − Awhr

Arhw
= 0. There are two

scenarios to consider:

(i) When 0 < ν+b
w < Aw

Ar
, it is obvious that n+b

w =
⌊
ν+b
w

⌋
< Aw

Ar
. In this scenario, both sides

of the equality are positive. With Ar (hw (nw − 1) + hr) an increasing and (Aw/nw −Ar)hr
a decreasing function of nw ∈ N, integers ν+b

w < nw < Aw
Ar

have no feasible stationary point,

while the reverse is true for each positive integer nw ≤ n+b
w ;

(ii) ν+b
w ≥ Aw

Ar
means

(
Aw/ν

+b
w −Ar

)
hr ≤ 0 and because of the equality characterizing ν+b

w ,

we get as well Ar
(
hw
(
ν+b
w − 1

)
+ hr

)
≤ 0. The last inequality requires hw > hr and ν+b

w < 1.
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With Aw
Ar
≤ ν+b

w < 1, there are no positive integers with a stationary point in the relevant

domain and so n+b
w =

⌊
ν+b
w

⌋
= 0 is exactly the bound we need.

In Figure 5.2, n+b
w looks quite small compared to Aw

Ar
− 1. It turns out that n+b

w ≤
⌊
Aw
2Ar

⌋
,

once we note that hw(nw−1)+hr
4(1−βw) in the expression for the derivative cannot be smaller than hr

4 if

nw ∈ N and βw ∈ [0, 1). At a feasible stationary point, we therefore have (Aw/nw−Ar)hr
4Ar

≥ hr
4 ,

which, after some manipulation, is seen to be equivalent to (Aw/nw−2Ar)hr
4Ar

≥ 0. Another upper

bound on n+b
w is provided by the anarchistic lot-sizing multiple(s):

Lemma 5.5.2. Equation (5.2.7) bounds the largest integer with a feasible stationary point

from above: n+b
w ≤ n∗uw .

Proof. We start with a brief overview: ν−uw in Equation (5.2.8) is the positive solution of

(nw)2 + nw − Awhr
Arhw

= 0, from (nw)2 − nw − Awhr
Arhw

= 0 we obtain ν+u
w in Equation (5.2.9), and

ν+b
w solves (nw)2 +

(
2 hrhw − 1

)
nw − Awhr

Arhw
= 0:

(i) hr ≥ hw implies 2 hrhw − 1 ≥ 1 and ν+b
w ≤ ν−uw < ν+u

w . The inequality
⌊
ν+b
w

⌋
≤ dν−uw e clearly

holds. With ν+u
w − ν+b

w ≥ ν+u
w − ν−uw = 1, we get

⌊
ν+b
w

⌋
< bν+u

w c;
(ii) hr < hw results in −1 < 2 hrhw −1 < 1. Since ν−uw < ν+b

w < ν+u
w ,

⌊
ν+b
w

⌋
≤ bν+u

w c immediately

follows. Rounding up ν−uw returns the single integer in the set [ν−uw , ν+u
w ), rounding down ν+b

w

gives the same integer or the largest one smaller than ν−uw .

Next, we formally establish the optimal compensation level per integer β∗w (nw). Its non-

increasing nature is a direct consequence of the relationship with β̄w (nw): to curtail the

detrimental effect of larger integer multiples on inventory holding costs, the Wholesaler is

less inclined to stimulate the Retailer to lengthen his order cycle. Ceteris paribus, relatively

expensive ordering and an attractive holding cost rate upstream tend to increase the level of

compensation.

Lemma 5.5.3. For each lot-sizing integer nw ∈ N, the Wholesaler’s optimal holding cost

compensation level is given by β∗w (nw) = β̄w (nw) 1{nw≤n+b
w }.

Proof. We break down N into three regions. In each we use that Q∗b (βw) > 0:

(i) nw ≤ n+b
w : The characteristics of these lot-sizing integers are (Aw/nw−Ar)hr

4Ar
> 0 and non-

negativity of the stationary point. The term hw(nw−1)+hr
4(1−βw) increases in βw < 1. The derivative

∂Πb
w(nw,βw)
∂βw

positive for βw ∈
[
0, β̄w (nw)

)
and negative for βw ∈

(
β̄w (nw) , 1

)
shows that the

stationary point maximizes profit;

(ii) n+b
w < nw < Aw

Ar
: As (Aw/nw−Ar)hr

4Ar
> 0 continues to hold, a stationary point still exists.

Its location below zero means (Aw/nw−Ar)hr
4Ar

< hw(nw−1)+hr
4(1−βw) and consequently ∂Πb

w(nw,βw)
∂βw

< 0
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on the domain [0, 1). Moving the compensation level away from 0 decreases profit;

(iii) nw ≥ Aw
Ar

: Because (Aw/nw−Ar)hr
4Ar

≤ 0 and hw(nw−1)+hr
4(1−βw) > 0, the derivative is negative for

each feasible compensation level. Again, no compensation is optimal.

Based on the previous lemma, we reformulate Problem (5.5.2) entirely in terms of nw. For

nw ≤ n+b
w , the feasible stationary points are optimal and β̄w (nw) is inserted. For larger

integers, the Retailer chooses Q∗u in response to β∗w (nw) = 0, and the Wholesaler’s profit

boils down to Πu
w (Q∗u, nw) (compare Equation (5.2.11)):

max Πb
w (nw) = (Pw − Pm)D − 1{nw≤n+b

w }

√
2 (Aw/nw −Ar) (hw (nw − 1) + hr)D

− 1{nw>n
+b
w }

(
Aw/nw

2Ar
+
hw (nw − 1)

2hr

)√
2ArhrD

subject to: (5.5.5)

nw ∈ N

As long as β∗w (1) > 0 is satisfied, imposing nw ≥ 1 instead of nw ∈ N results in Πb
w (nw)

consisting of two continuous curves with the point of intersection at ν+b
w > 1. The derivative

of the first curve with respect to nw is

∂Πb
w (nw)

∂nw |1<nw<ν
+b
w

= −
√
D
(
Aw (hw − hr) / (nw)2 −Arhw

)
√

2 (Aw/nw −Ar) (hw (nw − 1) + hr)

The solution to the reduced first order condition Aw (hw − hr) / (nw)2 −Arhw = 0 equals

ν̄bw =

√
Aw (hw − hr)

Arhw

If hr < hw, the derivative is negative below and positive beyond ν̄bw. Profit always strictly

increases between 1 and ν+b
w when hr ≥ hw. Finding the best integer n∗bw and the associated

optimal compensation β∗w for an arbitrary problem instance with n+b
w ≥ 1 thus requires check-

ing three integers: 1 and n+b
w , being the extremes within the set of integers having a feasible

stationary point, and the anarchy solution n∗uw . The non-coordination, zero compensation,

policy must be optimal in case n+b
w = 0.

As shown below, the lack of any integer with a positive optimal compensation level can be

tied to certain parameter characteristics. Additionally, there are circumstances for which we

can establish beforehand that the status quo persists despite β∗w (nw) > 0 for some lot-sizing

multiple.
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Proposition 5.5.1. The anarchy integer n∗uw solves Problem (5.5.5), and the Wholesaler

chooses β∗w = 0, if Aw
Ar
≤ 2 or hr

hw
≥ 1.

Proof. (i) Aw
Ar
≤ 2 guarantees ν+b

w ≤ 1, so that n+b
w equals either 0 or 1 with β∗w (1) = 0. As no

compensation is optimal for each integer, the Wholesaler faces his non-coordination problem;

(ii) For the alternative condition, we can limit ourselves to hr
hw
≥ 1 with Aw

Ar
> 2. Of course, n∗uw

yielding Π∗uw is optimal among all integers with β∗w (nw) = 0. The derivative ∂Πb
w(nw)
∂nw |1<nw<ν

+b
w

is strictly positive up till ν+b
w , and, as the second curve is concave with its maximum at ν∗uw

in Equation (5.2.13), profit further increases between ν+b
w and ν−uw (the inequality ν+b

w ≤ ν−uw
follows directly from the proof of Lemma 5.5.2). Complementing with Π∗uw ≥ Πu

w (Q∗u, ν−uw )

in Equation (5.2.12) shows that n∗uw without compensation outperforms as well any integer

having β∗w (nw) > 0.

Before identifying the solution for two other classes of scenarios, we take the inventory

related costs for nw = 1, expressed as
√

Aw
Ar
− 1
√

2ArhrD, and
(√

Awhw
Arhr

− hw
2hr

)√
2ArhrD in

Equation (5.2.14). Assuming Aw
Ar

> 2, the profit inequality Πb
w (1) ≥ Πu

w (Q∗u, ν∗uw ) is satisfied

if
√

Aw
Ar
− 1 + hw

2hr
≤
√

Awhw
Arhr

. The (concave) square root at least equals the increasing linear

term for hw
hr

in the compact set enclosed by

hw
hr

−b,+b
= 2

Aw
Ar
−
√
Aw
Ar
− 1

−
+

√√√√Aw
Ar

(
Aw
Ar
− 2

√
Aw
Ar
− 1

)
Both bounds solve 1

4

(
hw
hr

)2
+
(√

Aw
Ar
− 1− Aw

Ar

)
hw
hr

+
(
Aw
Ar
− 1
)

= 0.

Proposition 5.5.2. A lot-for-lot policy is optimal for Problem (5.5.5), and the Wholesaler

chooses β∗w = 1− Ar
Aw−Ar

, if Aw
Ar

> 2, and either Aw
Ar
≤ 2hwhr or hw

hr
∈
[
hw
hr

−b
, hwhr

+b
]
.

Proof. The condition Aw
Ar

> 2 causes β∗w (1) = β̄w (1) = 1 − Ar
Aw−Ar

and n+b
w ≥ 1. In both

cases, hw
hr
> 1 is implicit. For the combination with

(i) Aw
Ar
≤ 2hwhr , we have ν−uw ≤ 1, dν−uw e ≤ 1, and by Lemma 5.5.2, n+b

w ≤ 1. The(an) anarchy

integer coincides with n+b
w = 1, for which, in fact, a positive compensation level is optimal;

(ii) hw
hr
∈
[
hw
hr

−b
, hwhr

+b
]
, knowing that ν̄bw > 1 holds, the Wholesaler profit first decreases from

Πb
w (1) ≥ Πu

w (Q∗u, ν∗uw ), and, may subsequently increase again, till Πb
w

(
ν+b
w

)
≤ Πu

w (Q∗u, ν∗uw )

on the first continuous curve. The smallest element in the set N outperforms all other integers

with β∗w (nw) > 0, and, given Π∗uw ≤ Πu
w (Q∗u, ν∗uw ) in Equation (5.2.12), is at least as profitable

as the anarchy integer without any compensation. We can rule out ν̄bw ≤ 1, as the profit strictly

increasing along the same curve implies Πb
w (1) < Πb

w

(
ν+b
w

)
= Πu

w

(
Q∗u, ν+b

w

)
≤ Πu

w (Q∗u, ν∗uw ),

which is at odds with hw
hr

in the relevant set.
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Equilibrium Each actor’s rational behaviour is combined in Proposition 5.5.3. Again, an

infinite number of Nash strategy profiles is covered.

Proposition 5.5.3. All subgame perfect pure Nash equilibria in the holding cost compensation

game are given by the strategy profiles Q∗b (βw) × [β∗w, n
∗u
w (Q)] satisfying Equations (5.5.1)

and (5.2.4), and where β∗w is the optimal compensation level associated with the integer n∗bw
solving Problem (5.5.5).

Inserting β∗w in Q∗b (βw) gives the Retailer’s action Q∗b. We formally prove that n∗bw is

implemented in the last stage of the game. The Wholesaler profit for nw = 0 is assumed to

be −∞.

Lemma 5.5.4. The integer n∗bw is part of an equilibrium path.

Proof. The inequalities Πb
w

(
Q∗b, n∗bw + 1, β∗w

)
≤ Πb

w

(
Q∗b, n∗bw , β

∗
w

)
and Πb

w

(
Q∗b, n∗bw − 1, β∗w

)
≤

Πb
w

(
Q∗b, n∗bw , β

∗
w

)
must hold if n∗bw is to follow from Equation (5.2.4);

(i) We get Πb
w

(
Q∗b, n∗bw + 1, β∗w

)
≤ Πb

w

(
Q∗b

(
β∗w
(
n∗bw + 1

))
, n∗bw + 1, β∗w

(
n∗bw + 1

))
based on

Lemma 5.5.3 and Πb
w

(
Q∗b

(
β∗w
(
n∗bw + 1

))
, n∗bw + 1, β∗w

(
n∗bw + 1

))
≤ Πb

w

(
Q∗b, n∗bw , β

∗
w

)
because

of optimality. Combining both gives Πb
w

(
Q∗b, n∗bw + 1, β∗w

)
≤ Πb

w

(
Q∗b, n∗bw , β

∗
w

)
;

(ii) The second condition is obtained similarly, using n∗bw − 1 instead of n∗bw + 1.

With only 1, n+b
w and n∗uw potentially relevant, the number of equilibrium paths is bounded

by 3. When we have two values for the anarchy integer, either both are optimal if hr ≥ hw

(see Proposition 5.5.1), or, as can be inferred from the proof of Lemma 5.5.2 for the case

hr < hw, the smallest coincides with n+b
w .

The maximum profit Π∗bw follows directly from solving Problem (5.5.5). For the Retailer

(1− β∗w)hr instead of hr in Equation (5.2.10) gives

Π∗br = (Pr − Pw)D −
√

2Ar (1− β∗w)hrD (5.5.6)

The Wholesaler does not set a positive compensation level, unless his anarchy profit is

matched. Neither actor is worse off: Π∗br ≥ Π∗ur and Π∗bw ≥ Π∗uw .

Demand does not affect β̄w (nw), nor the bound n+b
w . It scales the Wholesaler lot-sizing

costs for each integer in Πb
w (nw) to the same extent, thereby leaving n∗bw and β∗w unaltered.

The same scaling effect can be observed with respect to Q∗b and the resulting lot-sizing costs

for the Retailer.

The procedure below is used to determine an equilibrium path. By only updating the

policy if a strictly better alternative is found, we ensure, with β̄w (1) ≥ β̄w
(
n+b
w

)
≥ 0, that an

indifferent Wholesaler opts for the maximum possible compensation.
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Calculation of a 2 actor holding cost compensation outcome

Initialize : Π∗b
w = −∞

Determine n+b
w in Equation (5.5.4)

if n+b
w ≥ 1

for nw ∈
{

1, n+b
w

}
Calculate Πb

w (nw) in Problem (5.5.5)

if Πb
w (nw) > Π∗b

w

Set Π∗b
w = Πb

w (nw)

Calculate β̄w (nw) in Equation (5.5.3)

Calculate Q∗b (β̄w (nw)
)
with Equation (5.5.1)

Set β∗
w = β̄w (nw), Q∗b = Q∗b (β̄w (nw)

)
and n∗bw = nw

if Π∗u
w > Π∗b

w

Set Π∗b
w = Π∗u

w

Set β∗
w = 0, Q∗b = Q∗u and n∗bw = n∗uw

Determine Π∗b
r in Equation (5.5.6)

Set Π∗b = Π∗b
w + Π∗b

r
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Chapter 6

Simulation study

6.1 Introduction

To better assess the effects of each mechanism, we calculate some statistics for a set of nu-

merical examples much resembling those in Munson & Rosenblatt (2001). In a fixed demand

context, the (constant) total gross margins are irrelevant in the optimization problems and

when determining differences in profits. After slightly modifying α∗w, we can do completely

without a specification of prices. Because the effect of demand is limited to scaling all re-

sulting lot-sizing costs and Retailer order sizes, the common component
√
D drops out in

the calculation of the alternative quantity discount α̃∗w and the performance measures: using

multiple demand levels does not add extra information. We, therefore, fix D at 10,000. For

the remaining parameters, we select 10 Ar values in the range from 20 to 200, 10 multiples

of 50 as Aw values, and 12 equally spaced hr values between 5 and 60. The holding cost

rate hw starts at 2 and increases till 35 in steps of 3. Solving all 14,400 problem instances

and aggregating statistics in Matlab takes less than 2 minutes on a 2.1 GHz, 4 GB RAM

computer. Section 6.2 gives an idea about how the Wholesaler implements each mechanism.

We discuss the efficiency improvements in Section 6.3. The distribution of savings among the

supply chain partners is the subject of Section 6.4.

6.2 Discount level & amount of compensation

Instead of PwD in Equation (5.4.5), we express the total quantity discount per time unit in

terms of
√

2ArhrD in Equation (5.2.10). Table 6.1 shows that the mean value of this new α̃∗w
is nearly 14%. The maximum discount even amounts to more than 1.5 times the Retailer’s

initial lot-sizing costs. Although the table suggests otherwise, there is no scenario with the
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Wholesaler choosing a zero-discount scheme. All scenarios have an efficiency gap and require

a reduction in price to move inventory policies to the joint optimum.

Looking at the statistics for β∗w, we see that, on average, the Wholesaler’s compensation

is a modest 6.95%. Compared to the first mechanism, there is relatively more dispersion.

Whereas the standard deviation divided by the mean is considerably less than 2 for α̃∗w,

the same ratio exceeds 3 for β∗w. On the one hand, the difference can be explained by the

large percentage of scenarios without any compensation (a little more than 88%), while, on

the other, as exemplified by the maximum fraction 0.95833, environments exist in which the

Wholesaler is prepared to carry a major part of the Retailer’s holding costs.

Value Mean Stdev. Min. Max. Positive

α̃∗w 0.13855 0.23194 0.00000 1.64757 100.00 %
β∗w 0.06950 0.21055 0.00000 0.95833 11.75 %

Table 6.1: Summary statistics for coordination values

In general, the Wholesaler pays a quantity discount larger than the efficiency gap. Particu-

larly noteworthy in Table 6.2 is the maximum where almost 23 times the gap is paid to close

it. The measure Φb peaks at a much lower level, which is typical of the less intensive use of

the HCC mechanism. The minimum value for Φa confirms that α̃∗w = 0 does not occur.

Measure Mean Stdev. Min. Max.

Φa 116.97 % 108.59 % 26.47 % 2267.2 %
Φb 8.97 % 27.85 % 0.00 % 249.83 %

Table 6.2: Summary statistics payment size

We construct Figure 6.1 by calculating the mean and standard deviation for subsets of

scenarios obtained after fixing a parameter at one of its values. Higher Retailer costs tend to

decrease the proportional discount α̃∗w. More expensive lot-sizing upstream has the opposite

effect. The spread keeps up with the average.
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Figure 6.1: Sensitivity of optimal total discount in terms of
√

2ArhrD

A similar pattern is revealed by the sensitivity analysis for the optimal level of holding

cost compensation in Figure 6.2. With Ar and hr increasing (or Aw and hw decreasing), it

becomes harder for the Wholesaler to have the savings on his inventory related costs outweigh

the payments to the Retailer. Specifically, a larger share of the scenarios in a subset gets

covered by Proposition 5.5.1. For hr ≥ 35 or hw ≤ 5, no positive β∗w is chosen, as each

included parameter configuration then satisfies the condition hr
hw
≥ 1.
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Figure 6.2: Sensitivity of optimal HCC fraction

6.3 Effect on the efficiency gap

The mean efficiency gap is 782.29 cost units, which corresponds to an average of 7.08%

above the minimum joint lot-sizing expenses. The smaller impact of the HCC mechanism

is obvious from Table 6.3. Except for the maximum of 99.93%, the ∆b statistics stand out

rather negatively. However, in the 11.75% (see Table 6.1) of all cases where some holding

cost compensation is granted, the record with a, roughly estimated, average gap closure of

8.97%/0.1175 ≈ 76.3%, is actually not that bad.
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Measure Mean Stdev. Min. Max.

∆a 100.00 % 0.00 % 100.00 % 100.00 %
∆b 8.97 % 26.03 % 0.00 % 99.93 %

Table 6.3: Summary statistics efficiency gap closure

The behaviour of the efficiency gain percentage in Figure 6.3 is closely related to the

optimal compensation level. We see more clearly the implication of Proposition 5.5.1 with

two dimensions: the Wholesaler never compensates when hr ≥ hw or Aw ≤ 2Ar. There are

pairs hr, hw in Figures 6.3(c) and 6.3(d) having more or less the same mean and standard

deviation. If Aw ≤ 2Ar holds, no holding costs are reimbursed. The scenarios with Aw > 2Ar

satisfy at least one of the conditions in Proposition 5.5.2, and, therefore, have β∗w = 1− Ar
Aw−Ar

.

The same set of compensation levels results in almost the same set of efficiency data for each

pair.
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Figure 6.3: Influence of varying parameters on HCC efficiency gain
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6.4 Savings throughout the supply chain

Table 6.4 gives an overview of how coordination benefits each actor. While a quantity dis-

count scheme causes substantial savings upstream, the balance shifts markedly in favour of

the downstream actor when coordination takes place by means of the second mechanism.

Although the average δaw value is a moderate 4.70%, the reduction in the Retailer’s lot-sizing

costs can be as high as 79.59%, which is well beyond the AQD maximum for the Wholesaler.

Measure Mean Stdev. Min. Max.

AQD

δar 0.00 % 0.00 % 0.00 % 0.00 %
δaw 11.04 % 11.45 % 0.00 % 58.62 %

HCC
δbr 4.70 % 14.92 % 0.00 % 79.59 %
δbw 1.19 % 4.88 % 0.00 % 49.75 %

Table 6.4: Summary statistics individual savings

We get δbr = 100%
√

2ArhrD−
√

2Ar(1−β∗
w)hrD√

2ArhrD
= 100%

(
1−

√
1− β∗w

)
by taking the lot-sizing

components in Equations (5.2.10) and (5.5.6). The link between the optimal compensation

level and savings at the upstream echelon becomes apparent from a comparison of Figure 6.4

with Figure 6.2. Just as for the Retailer, parameter settings encouraging a heavier use of the

HCC scheme are associated with relatively larger decreases in costs. Figures 6.4(a) and 6.4(b)

display a somewhat deviating pattern: the benefits for the Wholesaler of the AQD schedule

seem rather insensitive to a change in Ar or Aw.
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Figure 6.4: Effect of a changing environment on Wholesaler savings
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Figure 6.4: Effect of a changing environment on Wholesaler savings (continued)

42



Chapter 7

Extensions

7.1 Introduction

The analysis in this thesis can be extended along several lines by relaxing the underlying

assumptions. The models become more realistic, if, for instance, we introduce the element

of imperfect knowledge, which could stem from stochastic demand (Li & Liu (2006)), or

uncertainty about the characteristics of other actors (Corbett & de Groote (2000)). We

consider two other natural extensions in more detail. Using our graphical approach, we

provide preliminary insights in Section 7.2 for a larger serial supply chain. Section 7.3 roughly

sketches some consequences of price-sensitive demand.

7.2 Serial supply chain with 3 echelons

Adding Manufacturer lot-sizing By going further upstream, we encounter the Manu-

facturer who replenishes the Wholesaler. Also faced with a lumpy demand pattern, this actor

uses nm ∈ N to determine an inventory policy. His profit function is a modified version of

Equation (5.2.2). With a unit cost C > 0 paid to an outside source, a fixed order cost Am > 0,

a holding cost rate hm > 0, and the size of incoming orders equal to nwQ, we get

Πu
m (Q,nw, nm) = (Pm − C)D −Am

D

nmnwQ
− hm

(nm − 1)nwQ

2

Figure 7.1 contains the representation of the enlarged non-coordination game. It is the struc-

ture in Figure 3.1(a) complemented with the Manufacturer lot-sizing stage.
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Figure 7.1: Extensive form for 3 echelon
non-coordination game

In the non-coordination setting, the Retailer and Wholesaler hold on to respectively Equa-

tion (5.2.6) and (5.2.4). For the Manufacturer, straightforwardly adjusting the last one gives

n∗um (Q,nw) =



⌈
−1

2
+

√
1

4
+

2AmD

hm (nwQ)2

⌉
or⌊

1

2
+

√
1

4
+

2AmD

hm (nwQ)2

⌋
The algorithm in Munson & Rosenblatt (2001) can be used to determine the values for Q, nw

and nm which maximize total supply chain profit.

Coordination by multiple actors Analogous to the situation with 2 actors, coordination

by the Manufacturer means targeting the downstream partner’s costs. If he offers a combi-

nation of a discount fraction αm and region Rm, his price is multiplied by 1−αm1{nwQ∈Rm},

and the Wholesaler’s gross margin becomes
((

1− αw1{Q∈Rw}
)
Pw −

(
1− αm1{nwQ∈Rm}

)
Pm
)
.

The term βmhw
(nw−1)Q

2 represents the costs of realizing a holding cost rate (1− βm)hw down-

stream.

As illustrated in Figure 7.2 for the second mechanism, interaction may take place in multiple

ways. The more dominant upstream actor is granted the first mover advantage, giving him

the most influence on how the rest of the game proceeds. Accordingly, lack of any difference

in power between both is translated into simultaneous coordination in Figure 7.2(c). The new

graphical element of a dashed line enclosing the βm arc represents the fact that all decision

nodes are in the same information set: the Wholesaler does not know the value of βm when

setting his level of compensation. We could have equally well reversed the first two stages.

Because the Retailer’s lot-sizing problems do not change, Equation (5.4.2) and (5.5.1) still

apply in a 3 actor context. Solving Problem (5.5.5) with (1− βm)hw instead of hw gives the

response to a particular βm value. Irrespective of the scheme’s details, the Wholesaler always

at least earns his 2 echelon coordination profit. A pure strategy Nash equilibrium may not

exist for the simultaneous moves scenario.
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Figure 7.2: Extensive forms for 3 echelon coordination games

The larger games can be used to investigate whether parties’ coordinative actions are strate-

gic substitutes or complements, and to what extent the sequence of decision making matters

for the success of streamlining the supply chain. In contrast to the simpler setting, introduc-

tion of a mechanism could be bad for efficiency. Alignment of the two downstream echelons

may create new lot-sizing externalities at the most upstream level, causing a decrease in the

Manufacturer’s profit which exceeds the total benefits for the Retailer and Wholesaler.

7.3 Price-sensitive demand

Influence on revenue In practice, there are many situations where demand, in fact, de-

pends on the price charged to end-consumers. In our lot-sizing environment, a convenient

way to model price-sensitivity is to let the Retailer price in Equation (5.2.1) decrease linearly

in D:

Πu
r (D,Pw, Q) =


((P0 − ρD)− Pw)D −Ar

D

Q
− hr

Q

2
if 0 < D ≤ P0

ρ

and

0 if D = 0
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The Wholesaler equivalent largely corresponds to Equation (5.2.2). The endogenous deter-

mination of prices and demand is reflected in

Πu
w (D,Pw, Q, nw) =


(Pw − Pm)D −Aw

D

nwQ
− hw

(nw − 1)Q

2
if 0 < D ≤ P0

ρ

and

0 if D = 0

The profit functions under the AQD and HCC schemes are obtained by incorporating the

variables αw, Rw and βw as in the fixed demand context.

Referring to Figure 3.1, the Wholesaler moves first in each game by setting his price Pw (and

the characteristics of the coordination mechanism). The decision on D is included in the next

(Retailer lot-sizing) stage. A non-operational supply chain is the result of the downstream

actor choosing D = 0.

Demand & lot-sizing Very little changes in the last stage of the game. The Whole-

saler’s lot-sizing rule n∗uw (D,Q) equals Equation (5.2.4) with D as an additional variable.

The Retailer’s anarchy reaction follows after inserting Equation (5.2.6) in Πu
r (D,Pw, Q) and

subsequently solving

max
D

Πu
r (D,Pw) = ((P0 − ρD)− Pw)D −

√
2ArhrD

subject to:

0 ≤ D ≤ P0
ρ

The response to a vector (Pw, βw) is determined similarly using Equation (5.5.1). For the

AQD scheme, we may apply the approach in Viswanathan & Wang (2003).

Performance Price-elasticity adds double marginalization as another source of inefficien-

cies (see Chapter 2). The effectiveness of a mechanism will not just depend on its capacity to

fine-tune lot-sizing policies, but also on its potential to generate extra revenue. Setting higher

quantity discounts or granting more compensation lowers the marginal costs for the Retailer

and will stimulate him to sell more to end-consumers. Based on Weng (1995a), Weng (1995b)

and Viswanathan & Wang (2003), we expect the AQD’s efficiency performance to drop below

100%, and even more so if demand becomes more price-elastic.
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Chapter 8

Conclusion

In order to investigate the potential of a quantity discount mechanism and a holding cost

compensation scheme to align lot-sizing decisions in a 2 actor serial supply chain, we derived

subgame perfect pure Nash strategies using backward induction. It was shown that intro-

duction of an AQD schedule leads to full optimization of the supply chain, as the Wholesaler

reaps all the benefits of coordination, and, therefore, has an incentive to maximize surplus.

We provided a general solution algorithm to calculate an equilibrium path in case the HCC

mechanism is used. Additionally, the optimal level of compensation was theoretically estab-

lished for two classes of parameter configurations. The simulation study revealed that the

Wholesaler sets a higher fraction, both actors realize larger savings percentages, and the effi-

ciency gap is closed to a larger extent when lot-sizing becomes more expensive upstream/less

expensive downstream. The Retailer receiving a considerable share of the savings makes the

Wholesaler less inclined to coordinate.

47



Bibliography
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