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Abstract

Individual decision making in a supply chain will often not lead to an outcome in which

total profit is maximized. Additional action needs to be taken to increase overall efficiency.

We investigate the coordinating effects of two mechanisms: a quantity discount schedule and

an order bonus scheme. Each mechanism is analysed in an environment with continuous

demand and an infinite planning horizon against the background of non-cooperative game

theory. Whereas the traditional scheme fully aligns the supply chain, the alternative turns

out to be completely ineffective.
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Chapter 1

Introduction

The main purpose of each supply chain is to organize the conversion of raw materials into

end-consumer products via various stages of production and distribution. Upstream partners

deliver inputs, while downstream partners buy the output. In an arbitrary configuration, the

supplier’s and buyer’s base of different firms may overlap. The mutual relationships cause

individual decisions to have system-wide implications. When each actor optimizes his own

profit and disregards the effects of his decisions on others, total realized profit may be less

than what it could be if all were to collaborate. However, full cooperation may not be possible

and, instead, one has to resort to other, less extreme, remedies.

In this thesis we investigate the capabilities of two simple mechanisms to mitigate the

negative aspects of anarchistically setting order sizes. For the much studied quantity discount

model we provide a new detailed derivation of optimal behaviour by making use of non-

cooperative game theory. The second approach is to allow (partial) reimbursement of the

downstream order costs. Whereas the traditional scheme fully aligns the supply chain, the

alternative turns out to be completely ineffective.

The remainder is organized as follows. In Chapter 2 we embed the purpose of the thesis

in the more general concept of (counteracting) market inefficiencies. Chapter 3 discusses

the relevant literature. An overview of the problem environment, including assumptions and

notation, can be found in Chapter 4. Chapter 5 contains a short description of the game

theoretical concepts applied in Chapter 6 for the derivation of sequentially optimal behaviour

in the lot-sizing games. Chapter 7 concludes with a summary of our findings.
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Chapter 2

Problem description

2.1 Introduction

Supply chain inefficiencies are a wide-ranging problem. In Section 2.2 we distinguish several

ways in which myopically taking decisions can be bad for total profit. Optimization of the

system by integrating all operations in one organization and two other, less extreme, solution

approaches are discussed in Section 2.3. We formulate the goal of the thesis in Section 2.4.

2.2 Different supply chain inefficiencies

Double marginalization In the classic case of double marginalization, an upstream actor

incorporates a mark-up above marginal costs in his price. Consequently, a downstream supply

chain partner will set a higher price and will include a mark-up of his own. The overall result

is an inflated price for consumers and a smaller quantity delivered. The realized total supply

chain surplus will be less than in the welfare maximizing outcome, where the pricing decisions

are solely based on the marginal costs of production and distribution at each stage of the

supply chain (Pepall et al. (2002, pages 437-443)).

Non-optimal levels of advertising & product quality Apart from moving product to

the end-consumer, other functions have to be performed in a supply chain. These have to

do with the characteristics of a product, how and to what extent it is promoted and the

amount of capital invested in developing new ones. For society, the benefits to all, including

end-consumers, are relevant. In practice, advantageous aspects, like better informedness of

consumers in case of advertising, will only be taken into account by an actor in as far as his

profits are increased. Pepall et al. (2002, Chapters 10 & 11) shows that the price-sensitiveness

of demand can be an important factor in this respect.

4



An equally important cause of socially inefficient decision making is free-riding. Less will

be spent on promotion and product development, because one hopes someone else will make

the necessary investments to increase demand.

Product and/or asset specificity (hold-up problem) Assets in the form of physical

equipment or knowledge can be very hard or even impossible to employ in another business

relationship as profitable as in the current one. When some supply chain member has acquired

such a specific asset, the other party could behave opportunistically after the investment has

been made. He may threaten to find another contracting party, unless the present one is

willing to adjust the contract terms in the sense that the amount paid for the asset will

merely be recovered up till the pay-offs in its second-best use. Rational actors anticipating

this might not invest at all in situations where this opportunistic behaviour is not discouraged

in some way.

Bullwhip effect Lee et al. (1997, pages 95-98) illustrate the well known logistical issue of

the bullwhip effect. In a stochastic environment, deviations from the regular order pattern

can be wrongfully interpreted as indications that the demand intensity has changed. When

the upstream actor forecasts demand for production and inventory planning decisions, the

error is amplified because of extrapolation into the future. Moreover, the resulting change of

the order pattern will become more pronounced, when safety stocks are adjusted, if longer

lead times apply and in case of higher demand variability.

Other problematic factors are order batching, which may translate small (expected) changes

in the amount of product into larger ones upstream, and major undesirable swings in demand

caused by buyers engaging in forward buying. Distorted information also spreads when some

actor cannot meet demand and rations his supplies based on the size of the incoming or-

ders. In response, customers will exaggerate their required amounts. The consequences are

excessive inventories, more difficulties in smoothly organizing production and a necessity to

hold available extra production capacity. The more one gets upstream the supply chain, the

stronger the distortions will be.

Disproportionate risk exposure Problems may emerge as well if some supply chain

member disproportionately carries the burden of negative economic developments. The ex-

posed actor may refrain from actions beneficial to the entire chain. An example is the 2

echelon 1 period Newsboy problem in Axsäter (2006, pages 284-287). The downstream actor

is confronted with stochastic end-consumer demand for which product must be purchased be-

forehand. While the upstream party is guaranteed to make a fixed profit equal to his margin

times the number of units ordered in advance, the other actor’s profit may vary considerably,
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and even be negative. The combination of the unilateral risk exposure, and the fact that the

upstream price, including the margin, will be higher than the echelon cost of procurement,

results in a smaller than jointly optimal downstream order size.

Production planning externalities Each firm has to schedule its production and value

adding activities in order to satisfy demand on its output market. The resulting plan yields

an order scheme, which, in turn, serves as the basis for the production and lot-sizing decisions

taken at the upstream echelon(s). Because of positive or negative externalities to other actors,

the individual planning activities may not minimize total costs in the supply chain.

2.3 Vertical integration & other remedies

Joint ownership by vertically integrating Combining activities in one firm has tradi-

tionally been regarded an important solution in all kinds of situations where market exchange

is very costly or totally fails at all. Williamson (1971) discerns five classes of characteris-

tics, which he deems important for the attractiveness of the approach. Among these are the

monopolistic or oligopolistic contexts where double marginalization is likely to emerge. In

Christy & Grout (1994) and Klein et al. (1978), it is indicated that, when there is much prod-

uct and process/asset specificity, high costs of complex contracting make vertical integration

a more preferred safeguard against mutual hold-up.

Despite the wide-ranging spectrum of problems vertical integration can remedy, the con-

struction of a more sizable firm potentially has some major disadvantages. As described in

Jeuland & Shugan (1983, page 250), a downstream actor may carry products from other

manufacturers to exploit economies of scope, which becomes problematic after integration, a

vertical merger may not be allowed by law, or each independent actor carries out his special-

ized function less efficiently in a larger organization.

Market solutions (closer collaboration) A less extreme approach is increasing the level

of mutual cooperation in the supply chain. To counteract the bullwhip effect and coordinate

buying practices across different actors, Lee et al. (1997, pages 98-100) put forward electronic

data interchange (EDI) and vendor managed inventories (VMI). EDI means that supply

chain partners share company specific information. Communicating details about stock levels

and market forecasts enables anticipation on sudden drops or surges in demand, thereby

decreasing the necessity to keep large safety stocks and making expensive overreactions less

likely. Because of the relegation of all inventory related operations to the upstream partner,

the VMI mechanism is somewhat more extreme.
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Market solutions (aligning incentives) The autonomy of the supply chain members is

respected most when coordination takes place by introducing contractual provisions which

only influence the operating environment of another actor indirectly. For instance, the two-

part tariff, as explained in Pepall et al. (2002, pages 481-483), is particularly suited to confront

the problem of double marginalization. A lump sum payment and charging of the marginal

cost of production for each unit bought will result in a lower price on the finished goods market

and higher total surplus. The construction is typically found in a franchising agreement, and

can, under circumstances, alleviate the problem of suboptimal product quality levels as well.

Methods to mitigate free-riding on someone else’s (advertising) expenditures, are resale

price maintenance and exclusive selling/dealing contracts. With resale price maintenance the

price charged to consumers is no longer freely determined by the retailer. Exclusive selling

and dealing agreements, on the contrary, restrict the number of downstream or upstream

partners. The creation of (local) monopolies ensures that the exclusive supply chain member

reaps all the benefits of his efforts without another supply chain member benefiting at his

expense (Pepall et al. (2002, Chapter 9)).

For the 2 echelon Newsboy problem, Axsäter (2006, pages 286-287) proposes a buy-back

contract. If demand is less than the quantity ordered in advance, the remaining products can

be returned to the upstream partner. Adequately setting the wholesale and buy-back price

results in an order size maximizing total expected supply chain profit.

Finally, a lot of supply chain efficiencies can be resolved by the profit sharing contract.

Because each party gets a predetermined fraction of the pooled profit, operations will shift

to the collectively most desired outcome. A major drawback is that it requires quite some

monitoring resources. Success depends largely on the truthful revelation of individual revenues

and costs.

2.4 Focus of research

Our analysis is restricted to the counteraction of production planning externalities, and more

specifically to the negative consequences of anarchistic lot-sizing. As common ownership and

a construction like VMI are quite rigorous forms of exerting vertical control, and integration of

activities has some major problems of its own, we concentrate on two simple market solutions

to align incentives.

The first mechanism is a quantity discount schedule, which may be used to directly reward

the choice for certain order sizes. Under the alternative scheme, it becomes possible to reduce

the other actor’s costs of placing orders by granting an order bonus. We are interested in
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deriving Stackelberg (Nash) equilibria for 2 actor lot-sizing games, the degree to which a

schedule enhances total profits and how the extra surplus, if any, benefits each partner.
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Chapter 3

Literature review

3.1 Introduction

In their overview, Sarmah et al. (2006) roughly rubricate the supply chain coordination liter-

ature in categories like articles with a manufacturer’s/seller’s perspective, joint buyer/seller

models, game theoretical literature and analyses with multiple buyers. In Section 3.2 we

adhere to a somewhat different classification. We start with a system-wide view, and pro-

ceed with cooperative and non-cooperative contractual arrangements concentrating on the

mitigation of production and inventory control externalities. The second part of the section

contains a discussion of models where either the assumption of strategic certainty is relaxed,

or where demand characteristics become more complex. Most articles assume continuous

constant demand and an infinite planning horizon (the well known economic order quantity

(EOQ) context). Section 3.3 relates our analysis to the literature.

3.2 Discussion

System-wide optimization An approach, closely linked to the concept of vertical inte-

gration, is the simultaneous optimization of the entire supply chain. The profits or costs of

all actors are added and the objective becomes maximizing total surplus or minimizing total

costs. In Goyal (1976), a standard EOQ context is used to establish the profits for a customer

and a supplier. After inserting the expression for the optimal customer order cycle into the

joint cost equation, the optimal lot-sizing integers can be easily determined. Goyal (1988)

considers the more general case, in which the vendor/supplier has a finite production capacity

and shipment to the customer/purchaser takes place at the end of a production run.

Central inventory control is probably even more important in complicated supply chain

designs. Khouja (2003a) investigates the use of an equal cycle time for each actor and the
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application of an integer multiple or integer power of two policy at each stage of an arborescent

type supply chain. In contrast to the integer multiple rule, the order intervals can differ among

members in the same stage with integer powers of two. Under assumptions as in Goyal (1988),

either a closed form expression or an algorithm to arrive at a solution (not necessarily optimal)

is presented. The performance of the different policies is evaluated in a setting with seven

retailers, three manufacturers and one supplier. The tabulated values and the results of a

sensitivity analysis show that with integer multiples, quite substantial cost reductions can be

realized compared to the equal cycle time option. Total cost can be further reduced, although

to a smaller extent, with the integer power of two policy.

Another more complex configuration is analysed in Khouja (2003b). In a serial supply chain

with G+ 1 echelons, each supplier g delivers his output to actor g + 1 and adds some value,

while the assembler in the last stage integrates the components into an end-product. To

achieve mutual coordination, a synchronized solution is calculated. The author justifies the

resulting lot-for-lot replenishment policies for all actors with a just in time (JIT) argument;

they enable a quick reaction to changes in demand and product design. What seems especially

strange in this respect, though, is that the inputs are assumed to come in some time before

production actually starts. Total inventory carrying costs could be decreased if one would

wait until the moment they are needed. The article lacks an explanation of why this early

arrival of inputs should be useful.

From the individually most preferred order intervals it can be seen that, by synchronizing,

the actors at both extremes of the supply chain are harmed most. This shifting of the cost

balance might lead to a misalignment of incentives, even when all suppliers and the assem-

bler are vertically integrated. To alleviate this problem, the author suggests the internal

adjustment of the holding cost structures or the fixed costs of placing an order. Some doubt,

however, is cast on the correctness and usefulness of the expressions stating how the individ-

ually preferred lot-sizing decisions can be made to correspond to the optimal joint JIT cycle

time. In the numerical example, the entire chain is synchronized by fixing the selling price

below the input price for some echelons, such that value is destroyed there.

Price-inelastic demand with cooperation When parties are autonomous cooperating

decision makers, attention shifts to negotiation over the division of any efficiency gains arising

from collaboration. A graphical illustration of the feasible set of seller prices and buyer order

quantities is given in Dada & Srikanth (1987, page 1249). Because the authors assume price-

independent inventory holding cost rates, total system costs are minimized at a fixed order

quantity Q∗∗. The maximum total savings can be distributed in any possible way among the

supply chain partners by appropriately setting the price charged to the buyer.
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A second article, Kohli & Park (1989), contains a more extensive analysis. All Pareto

efficient outcomes, where the resulting costs of one of the actors cannot be decreased without

increasing those of the other, are located at the welfare maximizing order quantity Q∗, and

only differ in terms of the supplier price. With the maximum price, all benefits accrue to

the seller and the buyer is just compensated for his increased costs. Charging the minimum

results in the opposite. Both the Nash and the Kalai & Smordinsky bargaining solution, see

Kohli & Park (1989, page 700) for an explanation of these bargaining concepts, predict that,

when the seller and the buyer are risk neutral or equally risk averse, an equal split of the

efficiency gain will be agreed upon. The more some agent is risk averse, the smaller his share.

Another bargaining model due to Eliashberg (Kohli & Park (1989, page 702)) points at the

detrimental effects of a decrease in bargaining power. Comparable to Dada & Srikanth (1987),

quantity discounts are proposed to enforce the agreement. Whether the discount scheme is of

the all unit quantity discount (AQD) or the incremental unit quantity discount (IQD) type,

is irrelevant.

Kim & Hwang (1989) show that an AQD and IQD schedule remain equally capable of

realizing each price and order quantity combination in the feasible set if inventory holding

costs directly depend on price. Pareto efficient outcomes are determined by minimizing the

joint costs subject to the constraint that the savings for the parties are linearly related via a

distribution parameter. Their parameter α equals r/ (1− r) in Chakravarty & Martin (1988),

who, in addition, study the case with multiple buyers having a common order interval and

a configuration with heterogeneous groups of buyers. Chiang et al. (1994) calculate Pareto

bargaining solutions in an alternative way. An exponential transformation of variables is used

to translate a mixed integer geometric programming formulation into a convex programming

problem.

Price-inelastic demand without cooperation The article by Monahan (1984) may be

seen as the starting point of a formal analysis of an AQD scheme in a non-cooperative en-

vironment. Saving on order processing and set-up costs, capturing transport discounts and

cost of capital considerations might all motivate the vendor to change the buyer’s lot-sizing

behaviour. A buyer, willing to increase the standard EOQ order size by a factor K, needs to

be compensated for extra costs. Incorporation of the ‘practical’ expression for the minimally

acceptable discount, which does not take into account the effect of price on the buyer inven-

tory holding cost rate, gives the vendor an extra decision variable. A relatively high vendor

fixed order cost causes the optimal scaling factor K∗ to be larger. Monahan (1988) defends

the simple model by pointing out that it is merely meant to illustrate the use of quantity

discount schedules to affect downstream inventory policies. Graphical illustrations of the 1

buyer and a multiple buyer scenario can be found in Drezner & Wesolowsky (1989).
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In Joglekar (1988), it is argued that, if the buyer order size increases notably because

of the discount scheme in Monahan (1984), production capacity can no longer be assumed

unlimited. To accommodate to this complication, adjusted minimum discount and vendor

profit expressions are derived. With a non-negligible time to produce, even a vendor using

a lot-for-lot replenishment policy incurs carrying costs. The same finite production rate

formulas are derived in Banerjee (1986b), where it is shown for the common order interval

case, by referring to Banerjee (1986a), that a quantity discount schedule fully optimizes a 2

echelon serial supply chain.

When the assumption of an infinite production rate is maintained, order handling and

manufacturing at the vendor should be decoupled according to Joglekar (1988). Since the

order processing costs of the vendor and the buyer likely do not differ much, the optimal

scaling factor will be very limited in magnitude, meaning that coordination of order cycles

does not have a large impact. Instead, saving on large manufacturing set-up costs, by including

different buyer batches in one production run, will be more cost effective.

The combination of a quantity discount schedule and a more flexible lot-sizing rule is

analysed in Lee & Rosenblatt (1986). If the lot-for-lot assumption is set aside, the quantity

discount offered to the buyer not solely depends on the fixed order and set-up cost, as in

Monahan (1984), but also on the holding cost rates of both parties. The algorithm is criticised

in Goyal (1987a) for being unnecessarily complex. By exploiting the characteristics of the

problem, a much more elegant procedure, similar to that in Goyal (1976) and Goyal (1988),

can be constructed. The reduced cost function, which results by substituting the expression

for the optimal scaling factor, is convex in the supplier lot-sizing variable. The optimal

integer(s) must satisfy a simple condition.

Goyal (1987b) introduces the parameter a ≥ 0, reflecting the strength of the buyer in the

supply chain. The more dominant the buyer, the larger a, the harder it is for the supplier to

convince the buyer to choose the order quantity prescribed in the quantity discount scheme.

If a = 1, the buyer is exactly compensated for the increase in costs, the model reduces to

that in Goyal (1987a), and the supply chain is fully optimized. Other parameter values

are less beneficial for total welfare: a approximating 0 leads to efficiency losses, while the

non-coordination outcome is associated with a perfectly dominating buyer.

The nature of the Banerjee (1986c) model is quite different from the foregoing. The sup-

plier’s objective becomes the realization of a prespecified level of gross profit on each unit

sold. The dependency of the customer inventory holding cost rate on price enables the sup-

plier to affect downstream behaviour. A lower price decreases the supplier’s gross margin

and increases his incoming orders. There exists a unique solution, which yields the chosen
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profit margin. A numerical example and a sensitivity analysis are performed to provide more

insight into the effect of changing parameters.

The already mentioned Chiang et al. (1994) explicitly recognizes game theory as the under-

lying behavioral mechanism. Next to cooperation, a non-cooperative scenario is elaborated

on. Just like Banerjee (1986c), the buyer order size can be influenced indirectly because of

a price-dependent holding cost rate. Knowing the buyer’s lot-sizing response, the authors

establish the price maximizing the seller’s profit. A closer look at the analysis reveals that a

price discount will merely be applied if the buyer’s budget constraint is binding. The necessity

of a limit on expenses, to ensure a positive optimal discount, seems somewhat artificial.

Munson & Rosenblatt (2001) is one of the few articles analysing coordination in a 3 ech-

elon serial supply chain. The manufacturer, positioned in the middle of the chain, is the

dominant actor, who decides on the quantity discount schedules he imposes on the down-

stream buyer and the upstream supplier. The authors present a tailored algorithm to solve

the manufacturer’s cost minimization problem. If savings can be extracted from the sup-

plier, the discount schedules are configured to minimize total costs in the supply chain. It

is theoretically shown that potential savings at the supplier or the manufacturer are largest

when production capacity at either party is very small or very large. Several conditions state

under which circumstances common order intervals across the supply chain are optimal. A

lower bound on the realizable gains is given for the case with infinite production rates and

lot-for-lot replenishment policies.

In a computational study, different combinations of parameter values are used to test the

performance. Adding a third tier considerably adds to savings. On average, total cost is

reduced by 42.81%. The manufacturer benefits most in two cases. When the supplier is

confronted with an unfavorable cost structure, more savings can be appropriated. In situations

where the inventory holding characteristics of the retailer and the manufacturer do not differ

much, the relatively limited amount of compensation for the retailer adds to profitability.

Neglection of the supplier in 29.48% of the cases does not matter much for total supply chain

efficiency. The nearly perfect result of just 0.12% above the minimum total costs is explained

by observing that the supplier is most likely to be left out when this actor’s potential savings

are small anyway.

Price-inelastic demand & uncertainty Coordination of the supply chain becomes a

more challenging task, when there is a lack of knowledge about another actor’s characteristics

or decisions. Corbett & de Groote (2000) analyse the influence of strategic uncertainty on the

effectiveness of a quantity discount scheme. Their seller is not fully informed about the buyer

holding cost rate, but instead, is confronted with a probability distribution of buyer types

ranging from hb to h̄b. In an equilibrium, where the buyer truthfully reveals his type, the
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seller may find it profitable to exclude certain downstream actors by choosing a cut-off value

h∗b < h̄b. Compared to the full information scenario, buyers with a holding cost rate between

h∗b and h̄b will find it too expensive to trade, while those with smaller rates are favoured by

the presence of asymmetric information; their costs decrease. The higher the actual holding

cost rate, the larger the difference between the jointly optimal order size and the buyer’s

lot-sizing decision. With less additional profit and a range of buyer types who keep some cost

reductions to themselves, the seller cannot reap the maximum gain anymore.

Results, essentially the same as in a full information context, emerge in Li & Liu (2006) for

a 2 echelon supply chain facing stochastic demand. Analogous to Kohli & Park (1989), and

by implicitly making use of the approximation in Axsäter (2006, page 107) for the expected

costs of the buyer, the minimum and maximum discounts are derived. The approximation is

a reasonable one, if there are few backorders and the order quantity Q is large. The expected

efficiency gain can be expressed as the difference between the maximum and the minimum

wholesale price multiplied by the expectation of demand. α ∈ [0, 1] represents the fraction

of the extra surplus which goes to the buyer after the (not modelled) negotiation process.

Despite demand uncertainty, a quantity discount schedule is still capable to coordinate the

supply chain towards the system-wide optimum.

Price-sensitive demand Another complicating factor arises when demand reacts to the

price charged. In Section 2.2, we described how individualistic pricing causes double marginal-

ization throughout the supply chain. Moorthy (1987) thinks that the profit sharing arrange-

ment, by means of a quantity discount, proposed in Jeuland & Shugan (1983) is unnecessarily

complex, may conflict with competition law because of price discriminatory aspects, and,

above all, is not needed to achieve full coordination. Each mechanism making the adjusted

retailer’s effective marginal cost function intersect his marginal revenue function from below

at the system-wide optimal quantity, will do the job. His alternative of a (unilaterally im-

posed) two-part tariff is, in turn, rejected in Jeuland & Shugan (1988), because it violates

their equality of partners assumption.

Besides double marginalization, the familiar planning externalities emerge, when, next to

pricing decisions, order sizes have to be set. Two articles, which to a large extent make use of

the same model, are Li et al. (1995) and Li et al. (1996). The seller moves first by declaring his

price charged to the buyer. Multiplication with a constant k (not a decision variable) yields

the consumer price. With demand known, the buyer decides, under a budget restriction

as in Chiang et al. (1994), on the lot-sizing policy. The resulting price and order size are

respectively too high and too small to maximize total profits. To sustain mutually beneficial

cooperation, the authors concentrate on the combination of a quantity discount schedule and
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equal profit sharing. A weakness in the analysis of Li et al. (1995) is the minimization of a

’quasi’ joint cost function in which the effect of price on the buyer’s gross margin is left out.

Unlike the previous articles, the buyer and seller each have to take pricing and lot-sizing

decisions in Abad (1994). Much like Chiang et al. (1994), an algorithm, based on a set

of rewritten first order conditions, is set out to calculate the Pareto efficient cooperative

solutions. As a special case, the Pareto efficient Nash bargaining solution is obtained. In an

extended configuration, the seller is confronted with multiple buyers. A distinction is made

between a group composed of heterogeneous individuals and a group of buyers sharing some

common cost and demand characteristics. Pricing (quantity discount) schedules are provided

to support the different outcomes.

Any form of collaboration is absent in Weng (1995a). In contrast to Banerjee (1986b), it

is proved that quantity discounts are not sufficient to achieve and enforce the most efficient

2 actor outcome in an environment with price-elastic demand. A second mechanism, like a

franchise fee, is required. Weng (1995b) looks at the situation wherein such a complementary

mechanism is lacking. A supplier has to decide for either an AQD or an IQD type of schedule

on the discount fraction d ∈ [0, 1) and the order size breakpoint. The prespecified minimum

increase in profits to entice the buyer to accept the schedule leads to a lower bound ≥ 0 on

the set of feasible discounts. Fractions above a certain upper bound ≤ 1 are not attractive

enough from the supplier’s point of view. After reducing the continuous interval of fractions

to a discretized finite set, the supplier can, given the buyer’s optimal lot-sizing response, de-

termine his optimal discount. The equivalence of the two types of quantity discount schemes,

established in Kohli & Park (1989) and Kim & Hwang (1989), is shown to continue to hold

in both Weng (1995a) and Weng (1995b). This guarantees that, even with price-sensitivity,

the optimal IQD can be directly inferred from the optimal AQD schedule, and vice versa.

Viswanathan & Wang (2003) deem quantity discounts insufficiently effective in boosting

revenue, and propose the volume discount as a more direct way of stimulating sales at the

downstream level. The authors implement an iterative search grid procedure to find the

quantity and volume discounts maximizing the vendor’s profit. The search range is repeatedly

adjusted by concentrating on the most promising discount regions. The retailer is allowed to

deny service to any customer, when he makes a loss given the characteristics of the scheme.

Opting for the exit strategy results in a non-operating supply chain.

As expected by the authors, the volume discount indeed performs better in the simulation

study. A higher vendor order cost, a higher vendor holding cost rate and less costly ordering for

the retailer decrease the advantage of granting discounts on larger sales volumes. If the effect

of price on demand diminishes, revenues are more difficult to influence, and the source of extra

profits shifts to the cost economies associated with coordinated ordering. Consequently, as in
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the fixed demand literature, a quantity discount schedule is then the preferred mechanism.

This preference is reinforced for larger values of the vendor order-processing cost. Maximum

gain, i.e., a fully optimized supply chain, is achieved by combining the two schemes. With

a volume discount instead of a franchise fee, the last result corroborates the two mechanism

requirement in Weng (1995a).

Coordination and dynamic lot-sizing All foregoing literature assumes that demand

occurs continuously over an infinite planning horizon. An alternative is to limit the number of

time units, e.g. months or years, and subdivide these in different periods. Because the amount

of product in each period need not be the same, a lumpy demand pattern emerges. In this

last category of coordination models, we review two articles using mathematical programming

techniques to solve the actors’ dynamic lot-sizing (DLS) problems.

How total efficiency is affected by a gradual movement towards a more tightly integrated

and more informed 2 actor DLS supply chain, is analysed in Sahin & Robinson (2005). In a

rolling horizon environment, a vendor replenishes a manufacturer, who organizes production

to fulfill consumer demand in K periods. Model outcomes are calculated for multiple sets

of parameter combinations. Although the sharing of more information with the vendor can

result in some cost reductions, vertically integrating operations to a smaller or larger extent

is far more effective. Maximum savings up till 47.58% can be realized, once the manufacturer

shares all information across a fully integrated supply chain. The value of joint decision

making is larger if demand is less lumpy or increases, when transportation costs rise and in

case the number of items grows.

Compared to the EOQ literature with reported percentages ranging from a few percent to

just 35%, the magnitude of the reported cost savings is remarkable. The gap could, however,

be due to the unexplained difference in interpretation of the costs of placing orders. The

formal descriptions of the models in the appendix seem to imply that a single order may

contain several types of product if integration is part of the coordination efforts, while set-up

and invoice costs are incurred for each separate category otherwise. As the dramatic (more

than 85%) savings in order costs are only realized the moment one goes beyond information

sharing, and because exactly these cost reductions largely contribute to the substantial average

total efficiency increases for the integration strategies, the authors’ claim that coordination

is much more important in make-to-order lumpy demand contexts seems a little premature.

In Dudek & Stadtler (2005), the authors check whether bargaining leads to a more profitably

operating supply chain. The setting consists of a buyer and a supplier, each satisfying external

demand for different items under capacity restrictions. The supplier, in addition, has to

supply part of the buyer’s requisites. Inputs can either be directly used, or may first have

to be converted into intermediate products. Without collaboration, the buyer solves his
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production problem, and subsequently the supplier minimizes his own costs. If bargaining is

possible, parties receive order proposals from one another and respond by suggesting updated

plans containing minor modifications within some predefined bounds. A trade-off is made

between higher personal benefits and the amount of deviations from the received proposal.

The repetitive construction of new compromises continues until joint costs no longer decrease

and another degradation of total net savings is not tolerated anymore. The outcome is made

incentive compatible by offering the buyer a kind of quantity discount scheme adjusted to a

DLS setting. The discount at least compensates for the extra costs at the downstream level.

The process is simulated for five different production structures across seven capacity uti-

lization rates. When negotiation is introduced, all infeasibilities under anarchistic conditions

disappear and a large part, on average 69.8%, of the gap between the non-coordination out-

come and the joint optimum is closed. It remains unclear why, despite the collaborative con-

text, parties are not able to coordinate on the joint optimum, reap the maximum efficiency

gain and divide it among themselves. This would have the additional benefit of evading the

rather cumbersome process of exchanging adjusted order schemes.

3.3 Link with thesis

The analysis of our first coordination mechanism in a 2 actor serial supply chain is closely

related to much of the existing EOQ coordination literature. However, we deviate substan-

tially from the mainstream by explicitly studying it in a non-cooperative game theoretical

environment. Instead of concentrating on Pareto efficient bargaining outcomes, we look for

subgame perfect Nash equilibria. Although several articles use other measures to streamline

operations, like profit sharing, franchise fees and volume discounts, these are often solely con-

sidered in combination with quantity discounts. Results on some form of order bonus (OB)

scheme seem to be lacking entirely.

17



Chapter 4

Modelling the supply chain

4.1 Introduction

Before deriving optimal behaviour in the supply chain, we present the underlying assump-

tions and our notation. Decision making takes place in a 2 actor serial supply chain facing

continuous, constant and price-inelastic demand for an infinite period of time. Due to the ex-

clusion of backordering (some of) the deterministic demand and the properties of the delivery

and production processes, we can limit each actor’s expenses to input prices and lot-sizing

costs. Section 4.2 gives further details and an explanation of the strategic and informational

aspects. We describe the model parameters, the coordination/lot-sizing decisions and some

other notational elements in Section 4.3. Section 4.4 lays down the sequence of decision

making.

4.2 Assumptions

Supply chain structure We look at a serial supply chain comprised of a Retailer serving

end-consumer demand and a Wholesaler supplying him. Inputs originate from the Manufac-

turer, an otherwise passive agent in the 2 echelon setting. A serial configuration is relatively

simple, and, as observed in Li et al. (1995, page 1456), avoids distraction from the main

purpose of the analysis, namely, investigating the effects of measures to coordinate inventory

policy decisions. Using multiple heterogeneous retailers, like Drezner & Wesolowsky (1989,

pages 41-42) and Chakravarty & Martin (1988, pages 275-277), would already cause a lot of

(unnecessary) complications.

Demand, planning horizon & prices The actors’ operations are restricted to a single

product, which is reasonable as long as no major cost synergies, so-called economies of scope,
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can be realized by combining several production and order policies. Demand occurs contin-

uously for an infinite period of time at a constant rate not affected by the price charged to

end-consumers. The process is completely deterministic. Because we normalize the number

of inputs needed for 1 output, the upstream actors face the same demand intensity. Compa-

rable to Khouja (2003b, page 986), value adding activities are reflected in increasing prices

as one goes downstream. Apart from the price discount fraction associated with the first

coordination mechanism, the actual determination of prices is exogenous to our models. A

convenient consequence is that actors can restrict their attention to production and inventory

related decisions.

Production & delivery rate In the normalized production structure, the Wholesaler and

Retailer add value with, for example, promotional activities, tailored packaging and efficient

distribution to their consumer(s). Although Munson & Rosenblatt (2001, page 377) show that

capacity utilization may strongly influence savings, we impose infinite transformation and

delivery rates: the time needed for value addition is negligible and inventories are replenished

instantaneously upon arrival of the shipment. Infinite rates are a good approximation in case

only a minor part of the resources in the supply chain is used. Introducing capacity constraints

does not essentially change the results, but merely causes the mathematical expressions to be

less tractable. Inputs are processed on a per order basis.

Backordering We do not allow shortages. Inventories are always maintained at levels such

that all orders can be fulfilled entirely at the moment they come in. Excluding postponed

delivery, so-called backordering, is reasonable in situations where stock-outs lead to dispro-

portionately large losses.

Lead times The term lead time is used to designate the time between the moment an order

is received from a customer and the moment that the product arrives there. Constant lead

times are intrinsically linked to a deterministic demand environment without the possibility

of backordering. To be absolutely sure that shortages will be avoided, an actor has to possess

perfect knowledge about the demand pattern and about the time it takes to replenish him. A

simple shift in a previously established order pattern suffices to accommodate for a change in

the lead time. We might, therefore, just as well say that the product is delivered immediately

upon ordering.

Costs Three categories of costs are assumed to be relevant. The first is the unit price an

actor has to pay for acquiring an item from his upstream supply chain partner. The other

two cost categories are related to the lot-sizing decisions: the fixed cost of ordering and the
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inventory holding cost rate. Each cost rate is linear in its driver, i.e., the number of items

sold, the number of orders placed, or the stock level. Moreover, each is constant over time.

The order cost does not depend on the number of items in a batch. It covers administrative

expenses and the costs of personnel to handle the incoming product. The properties of the

delivery and production processes (constant (zero) lead time, infinite rates and conversion on

a per order basis) imply that the production cycle is completely synchronized with the order

cycle. Consequently, the order cost can be considered to include as well a fixed cost of setting

up the value addition process/production.

As inputs are never kept in stock, the holding costs for each actor are limited to inventories

of processed product. The components of a holding cost rate can be divided in two groups,

depending on whether or not there is a direct relationship with the value (input price) of the

product. Examples of value-related components are the interest foregone on the capital tied

up and the losses resulting from obsolescence, damage and theft. On the other hand, costs of

financing or renting storage space are at best remotely connected to price.

A major disadvantage of incorporating to some extent dependency on the input price is

that the social optimum for a quantity discount scenario prescribes a 100 % discount to

achieve minimum holding cost rates, see Weng (1995b, page 310). Zero prices are, however,

not a realistic benchmark and are unacceptable to the actor offering the discount, so that, as

formulated in Chakravarty & Martin (1988, page 274), there is “... no incentive for pursuit

of the optimal ‘social welfare’ solution.” Compared to the other mechanism, the incentive

compatibility problem would lead to an underestimation of the efficiency enhancing effects of

a quantity discount scheme. To avoid these peculiarities and to ensure that the most efficient

outcome is the same, irrespective of whether or not coordination takes place, we assume

price-independent holding cost rates. The coordination terms related to a mechanism drop

out when the individual profit functions are aggregated.

Besides the fixed cost of preparing an outgoing shipment, a separate cost for handling

the downstream partner’s orders is used in Viswanathan & Wang (2003) and Weng (1995a).

For reasons of mathematical clarity and to limit the number of parameter dimensions, we

disregard, in accordance with Munson & Rosenblatt (2001), these order processing costs and,

more generally, any other expenditure.

Strategic interaction & information The supply chain members cannot collaboratively

agree on a joint lot-sizing policy. Unlike Kohli & Park (1989) and Dudek & Stadtler (2005),

negotiations and bargaining are ruled out. Each maximizes profit without taking into account

the possible beneficial or detrimental effects on others. From Corbett & de Groote (2000),

it follows that the amount of available information is crucial for the nature of strategic in-

teraction. We assume that the supply chain has been functioning for quite a while already.
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Because of past order patterns, each participant is well-informed about the intensity of end-

consumer demand and about the other actor’s cost structure. Common knowledge is also the

underlying principle with respect to the observability of decisions.

4.3 Notation

Environment & decisions The upper part of Table 4.1 presents an overview of all pa-

rameters describing the demand process and the actors’ cost characteristics. The Retailer

receives Pr for each item sold to end-consumers and pays a unit price Pw to the Wholesaler.

With Pm the price paid to the Manufacturer, the gross margin per unit is then straightfor-

wardly Pw − Pm for the Wholesaler. In practice, the nature of production will often lead

to downstream firms having a smaller order/set-up cost and a larger inventory holding cost

rate than their upstream partner. Here, we do not impose Ar < Aw and hr > hw, thereby

maintaining a maximum degree of flexibility in inventory related cost patterns. In fact, this

is yet another motivation for not directly linking holding cost rates to prices, which tend to

increase as more value is added.

Parameter Description

D Demand intensity per time unit
Pi Price per unit charged by actor i ∈ {r, w,m}
Ai Fixed order cost for actor i ∈ {r, w}
hi Holding cost rate for actor i ∈ {r, w}

Variable

Q Retailer order size
nw Wholesaler lot-sizing multiple
αw Quantity discount fraction set by Wholesaler
Rw Quantity discount region set by Wholesaler
Q̄w Order breakpoint belonging to Rw
γw Order bonus fraction set by Wholesaler

Table 4.1: Parameters & decision variables

The first variable in the remainder of the table, Q, represents the amount of product the

Retailer orders each time to satisfy end-consumer demand. It forms the basis for the lot-sizing

decision upstream. Because prescribing a lot-for-lot policy similar to Monahan (1984) and

Khouja (2003b) would make the analysis far less interesting, the Wholesaler is allowed to

deliver more than once during an order/production cycle. The zero-inventory property (see

Axsäter (2006, pages 62 & 226)) ensures that his best course of action is to choose an integer

multiple, making his order size equal nwQ.
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Mostly, a quantity discount scheme is of the following form: the domain of all possible

order sizes is divided in several regions by specifying a set of order breakpoints. Each region

is tagged with a certain price discount. Depending on whether the schedule is of the AQD

or IQD type, the discount is granted on each item sold or merely on those units of the order

falling into the associated region. In the previous chapter we have seen that Weng (1995a),

Weng (1995b), Kohli & Park (1989) and Kim & Hwang (1989) prove the equivalence of both

approaches in coordinating a 2 actor serial supply chain. Because a one-to-one transformation

exists, there is no need to consider each. And, as observed in Weng (1995b, page 307), since

an IQD scheme is more complex in nature, it is convenient to restrict attention to AQD

schedules.

The Wholesaler, being the dominant actor, sets the terms of the schemes. The discount

αw is a fraction of the original pre-discount price. In accordance with the literature, one

breakpoint Q̄w is set. The discount region variable Rw, explicitly incorporating the flexibility

suggested in Munson & Rosenblatt (2001, page 377), lets the Wholesaler determine whether

the Retailer order size qualifies for the per unit discount αwPw in the region
(
0, Q̄w

]
(quantity

premiums) or
[
Q̄w,∞

)
(proper quantity discount schedule). The OB scheme result in an

adjusted fixed order cost (1− γw)Ar.

Demand, prices, cost parameters, Q and the order breakpoint are all positive (> 0). The

variable nw is restricted to the set of positive integers N = {1, 2, 3, ....}. We have αw ≥ 0 and

γw ∈ [0, 1). Negative values are excluded, because otherwise the downstream partner would

be penalized, which is contrary to the compensating nature of both mechanisms. To guarantee

that an actor continues to pay something for placing orders, a necessary requirement for an

optimal lot-sizing decision to exist, the bonus fraction must be smaller than 1. We do not

impose an upper limit on αw In the unlikely scenario that total savings from the quantity

discount scheme exceed or equal total gross revenue, the coordinating actor wants to select a

value equal to or larger than 1. In practice though, this will not occur, as a member making

a loss (negative revenue minus costs) will prevent the supply chain from operating.

Profits, optimal actions & bounds To distinguish among profits (Π, Πr, or Πw), optimal

behaviour and bounds on some variables, we add (multi-element) superscripts. Optimality,

lower and upper bounds are denoted by one of the following: ∗, − or +. The other set of

elements is made up of u, referring to an uncoordinated supply chain, s for the social optimum

and a or c conveying the nature of coordination (which is superfluous if an optimum or bound

for a coordination variable is described). When relaxing the requirement nw ∈ N, notation

will instead be based on νw.
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4.4 Overview of lot-sizing games

The two types of games are depicted in Figure 4.1. For convenience, we use the order bonus

scheme to illustrate the typical set-up of a coordination game. Replacing γw by the variables

αw and Rw is sufficient to get the schematic overview for the other mechanism. Each figure

satisfies the graphical conventions in Watson (2002). A node represents a decision for either

the R(etailer) or the W(holesaler), while a pair of branches connected by an arc indicates

that the domain for the decision variable at hand consists of an infinite number of elements.

Strictly speaking, nodes situated on an arc stand for a multitude of points from which the

game may continue: one for each value of the decision variable in the previous stage. Each

node being in its own information set (the node itself) reflects the assumption that an actor

taking a decision is fully informed about how the game has proceeded previously. The pay-offs

are left out, as these will be established while analysing each game.

Q nw

W
R

(a) Non-coordination

Q nwγw
W

WR

(b) Coordination

Figure 4.1: Extensive forms for 2 echelon games

To be able to affect downstream behaviour, coordinative action must precede the lot-sizing

stages. Contrary to standard practice in the 2 actor quantity discount literature (see for

example Lee & Rosenblatt (1986)), we do not combine Wholesaler decision making. Not

including the inventory policy decision in the coordination stage better reflects reality where

the Retailer order size is observed before choosing an integer multiple. Although the more

extensive set-up necessitates the derivation of a rule specifying how the Wholesaler responds

to each (possibly irrationally chosen) Q, the difference in approach does not matter for the set

of actions actually chosen by the supply chain members. The rewritten first stage optimization

problems are constructed such that these also depend on nw. Assuming a rational Retailer, the

initially optimal integer will correspond to the action prescribed by the Wholesaler lot-sizing

policy in the third phase of the game.
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Chapter 5

Game theory

5.1 Introduction

All optimal behaviour for the actors will be derived using the tools from non-cooperative

game theory. In Section 5.2, we briefly explain what is meant by strategies, strategy pro-

files, subgames and subgame perfect Nash equilibria. After clarifying these, we discuss the

technique of backward induction. We end with the concept of an equilibrium path.

5.2 Relevant terminology & concepts

Strategies & strategy profiles Individual behaviour throughout the game is summarized

by a strategy, which, in the words of Watson (2002, page 23), gives a complete contingent

plan. Combining the individual strategies in a vector gives a strategy profile. Actions must be

specified for all information sets belonging to a player. With respect to a representative node

located on an arc in Figure 4.1, the player’s strategy must thus prescribe an infinite number

of actions (one for each actual decision node). Next to theoretical elegance, full contingency

has its practical importance. Even though players do not anticipate to ever reach certain

parts of the game, expected behaviour at information sets in later stages might be relevant

for (optimal) decision making earlier on in the game. Moreover, it provides a means of dealing

with an opponent’s non-rational behaviour like mistakes (Watson (2002, page 27)).

Two classes of strategies may be discerned. We call a strategy mixed when for some

information set an actor puts probability on different values of the decision variable and opts

for one of these randomly. A pure strategy is just a special case; at each information set a

particular value is selected with probability one, resulting in absolute certainty concerning an

actor’s decisions. In Chapter 6 we limit ourselves to the last strategy type.

24



Subgames Before clarifying our equilibrium concept, we note how each game can be sub-

divided in different subgames. Watson (2002, page 141) describes a subgame as the tree

structure initiated by a decision node x where neither x nor any of its successors are part of

an information set containing nodes that are not successors of x. The most comprehensive

subgame is the game itself. In Figure 4.1, every decision node starts a new subgame.

Subgame perfect Nash equilibria In our games we will be looking for Nash equilibria.

In general, these are defined as strategy profiles wherein each actor’s strategy maximizes his

profit given the other actors’ strategies: each actor plays a best response. Sequential decision

making necessitates a refinement of the Nash equilibrium concept, the subgame perfect Nash

equilibrium, which incorporates the notion of sequential rationalizability in extensive form

games. Citing Watson (2002, page 143), the idea behind subgame perfection is “..that a

solution concept should be consistent with its own application from anywhere in the game

where it can be applied.” Upon entering a new subgame, the prescribed strategy must remain

optimal in the sense that a party does not wish to deviate from it.

Backward induction To find subgame perfect Nash equilibria in pure strategies, we use

backward induction as explained in Watson (2002, page 139). We start with the subgames in

the last stage to determine the best action, which depends on how the game has evolved up

till that point. Bearing in mind this characterization of optimal behaviour, we proceed in a

similar manner with the preceding stage. The process of moving backwards, while anticipating

subsequent profit maximizing behaviour, continues until the beginning of the game (the first

decision node) is reached. Combining the optimal decision rules in all stages gives us the

desired Nash strategy profile(s).

Equilibrium paths The resulting sequence of optimal actions constitutes an equilibrium

path. In many games, a multitude of paths exists. Since our primary interest is in better

aligning the supply chain, we let actors aim for an outcome with maximum social welfare in

case of more than one solution.
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Chapter 6

Nash equilibria for lot-sizing games

6.1 Introduction

In this chapter we analyse the sequentially rational behaviour for the different EOQ lot-sizing

games, and formally describe the subgame perfect pure Nash equilibria. The assumption of

one-time interaction implies that a player’s actions remain the same for the entire infinite

time horizon. The same order cycles will be repeated ad infinitum. Without any discounting

for the time value of money, each actor simply maximizes average profit per time unit. In

Section 6.2 we study the anarchy situation. After deriving the joint policy that maximizes

total supply chain profit in Section 6.3, we introduce quantity discounts in Section 6.4, and

the order bonus mechanism in Section 6.5.

6.2 Non-cooperative outcome

Pay-offs The total gross margin for the Retailer is (Pr − Pw)D. Subtracting his average

lot-sizing costs yields

Πu
r (Q) = (Pr − Pw)D −Ar

D

Q
− hr

Q

2
(6.2.1)

The costs of ordering equal the fixed order cost Ar times the average number of orders

per time unit D
Q . If no shortages are allowed, it is most efficient to replenish when stocks

have been depleted. Because of infinite delivery and production rates, the inventory level

instantaneously becomes Q upon arrival of the replenishment order, and next, diminishes to

0 again at the constant demand rate. On average Q
2 is kept in stock during a typical order

cycle. Multiplication by hr gives the holding cost term.

The difference (Pw − Pm) is the basis for the total gross margin per time unit in the

Wholesaler non-coordination profit. The calculation of ordering costs makes use of Aw and

26



the order size nwQ. Similar to the Retailer, the product of the holding cost rate and the

average stock level is the last component of

Πu
w (Q,nw) = (Pw − Pm)D −Aw

D

nwQ
− hw

(nw − 1)Q

2
(6.2.2)

Under our assumptions regarding shortages, the delivery process and the production tech-

nology, it is shown in Chiang et al. (1994, pages 156-157) and Joglekar (1988, Appendix)

that the total inventory of converted product held upstream during each order cycle is

((nw − 1)Q+ (nw − 2)Q+ · · ·+Q) QD = (nw−1)nwQ2

2D . Dividing by the length of an order

cycle nwQ
D , gives the average (nw−1)Q

2 .

Wholesaler lot-sizing Using backward induction, we first take a look at the last stage in

Figure 4.1(a). For a fixed Q, the Wholesaler has to solve

max
nw

Πu
w (Q,nw) = (Pw − Pm)D −Aw

D

nwQ
− hw

(nw − 1)Q

2

subject to: (6.2.3)

nw ∈ N

The concave Wholesaler profit is maximized at

n∗uw (Q) = min {nw : Πu
w (Q,nw + 1) ≤ Πu

w (Q,nw) |nw ∈ N}

In terms of the problem parameters we get

n∗uw (Q) = min

{
nw :

2AwD

hwQ2
≤ nw (nw + 1) |nw ∈ N

}
Like Munson & Rosenblatt (2001, pages 375-376), an explicit functional form is obtained

by rearranging the terms of the condition somewhat and applying the quadratic formula to

(nw)2 + nw − 2AwD
hwQ2 = 0. Rounding up the positive (non-integer) solution gives the integer of

interest. Alternatively, with Πu
w (Q, 0) = −∞, we can describe the best Wholesaler lot-sizing

action as

n∗uw (Q) = max {nw : Πu
w (Q,nw − 1) ≤ Πu

w (Q,nw) |nw ∈ N}
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Combining both decision rules gives

n∗uw (Q) =



⌈
−1

2
+

√
1

4
+

2AwD

hwQ2

⌉
or⌊

1

2
+

√
1

4
+

2AwD

hwQ2

⌋ (6.2.4)

More demand and a higher fixed order cost force the Wholesaler to save on the costs of

placing orders by increasing his integer multiple. Smaller integers, which lower the average

quantity of product in store, become more attractive if the holding cost rate or the Retailer

order size increases. As required, the minimum of each rule is 1. If the square root term

times 2 is an odd number, no rounding is needed. Instead of a unique lot-sizing decision, two

successive integers will be optimal. The smallest follows from the upper entier expression.

Retailer order size The Wholesaler lot-sizing rules are irrelevant for the Retailer. End-

consumer demand is fulfilled most efficiently by solving, at the node initiating the game, the

standard EOQ problem

max Πu
r (Q) = (Pr − Pw)D −Ar

D

Q
− hr

Q

2

subject to: (6.2.5)

Q > 0

As the objective function is concave in Q, it suffices to set the derivative with respect to Q

equal to zero. The solution to the first order condition equals

Q∗u =

√
2ArD

hr
(6.2.6)

The influence of the parameters resembles the effects of Aw, D and hw on n∗uw (Q).

Equilibrium strategies Our findings are summarized in Proposition 6.2.1. We observe

that Q∗u × n∗uw (Q) actually describes an infinite number of Nash equilibria. There is an

unlimited number of (irrational) Retailer order sizes for which the Wholesaler can randomly

choose among one of two optimal lot-sizing multiples returned by n∗uw (Q).

Proposition 6.2.1. All subgame perfect pure Nash equilibria in the non-coordination game

are given by the strategy profiles Q∗u × n∗uw (Q) satisfying Equations (6.2.6) and (6.2.4).
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Proof. See foregoing. Since we do not neglect any optimal decision at some decision node,

backward induction guarantees that all subgame perfect pure Nash equilibria are covered.

Substitution of Q∗u in n∗uw (Q) results in the Wholesaler’s action on the equilibrium path.

A unique outcome exists when dν−uw e = bν+u
w c in

n∗uw =
⌈
ν−uw

⌉
or
⌊
ν+u
w

⌋
(6.2.7)

where:

ν−uw = −1

2
+

√
1

4
+
Awhr
Arhw

ν+u
w =

1

2
+

√
1

4
+
Awhr
Arhw

(6.2.8)

The actors’ profits become

Π∗ur = (Pr − Pw)D −
√

2ArhrD

Π∗uw = (Pw − Pm)D −
(
Aw/n

∗u
w

2Ar
+
hw (n∗uw − 1)

2hr

)√
2ArhrD (6.2.9)

The parameter D does not appear in the expression for n∗uw . Therefore, the realized lot-

sizing costs upstream are scaled by the same constant as those for the Retailer if demand

changes. By construction, Πu
w (Q∗u, ν−uw ) = Πu

w (Q∗u, ν−uw + 1) = Πu
w (Q∗u, ν+u

w ) holds. Since

the concave function Πu
w (Q∗u, nw) has its unrestricted maximum at nw = ν∗uw , we get

Πu
w

(
Q∗u, ν−uw

)
= Πu

w

(
Q∗u, ν+u

w

)
≤ Π∗uw ≤ Πu

w (Q∗u, ν∗uw ) (6.2.10)

with:

ν−uw < ν∗uw < ν+u
w

where:

ν∗uw =

√
Awhr
Arhw

(6.2.11)

Πu
w (Q∗u, ν∗uw ) = (Pw − Pm)D −

(√
Awhw
Arhr

− hw
2hr

)√
2ArhrD

6.3 Fully optimized supply chain

Joint profit To maximize total supply chain profit, we sum each actor’s profit and decide on

Q and nw simultaneously. A combination of the approach in Goyal (1976) and the procedure

to determine the individually optimal lot-sizing multiple(s) is used to solve:
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max Πs (Q,nw) = (Pr − Pm)D − (Ar +Aw/nw)
D

Q
− (hr + hw (nw − 1))

Q

2

subject to: (6.3.1)

Q > 0 nw ∈ N

Optimal collaborative Retailer action Given a particular nw ∈ N, we have the system-

wide equivalent of Problem (6.2.5). With Ar replaced by Ar + Aw/nw, and hr appearing

instead of the joint holding cost rate hr + hw (nw − 1), incurred for an average item moving

through the supply chain, the more comprehensive solution becomes

Q∗s (nw) =

√
2 (Ar +Aw/nw)D

hr + hw (nw − 1)

The difference between Q∗s (nw) and Q∗u in Equation (6.2.6) concisely illustrates the potential

for inefficient decision making under anarchy.

Optimal collaborative Wholesaler action Insertion of Q∗s (nw) results in a single vari-

able objective function Πs (nw) = Πs (Q∗s (nw) , nw) and a reduced problem

max Πs (nw) = (Pr − Pm)D −
√

2 (Ar +Aw/nw) (hr + hw (nw − 1))D

subject to:

nw ∈ N

As mere inspection does not reveal the behaviour of Πs (nw), we relax the domain restriction

from nw ∈ N to nw ≥ 1 and take the derivative

∂Πs (nw)

∂nw |nw>1
= −

√
D
(
Arhw +Aw (hw − hr) / (nw)2

)
√

2 (Ar +Aw/nw) (hr + hw (nw − 1))

In case hr > hw, we solve Arhw +Aw (hw − hr) / (nw)2 = 0 by setting nw equal to

ν̄sw =

√
Aw (hr − hw)

Arhw

The derivative is positive below and negative beyond ν̄sw. Comparable to the non-coordination

setting, after defining Πs (0) = −∞, the optimal lot-sizing integer(s) is(are) characterized by
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n∗sw =


min {nw : Πs (nw + 1) ≤ Πs (nw) |nw ∈ N}
or

max {nw : Πs (nw − 1) ≤ Πs (nw) |nw ∈ N}

The minimum and maximum integer are found by rounding up or down the respective

positive solutions to (nw)2+nw−Aw(hr−hw)
Arhw

= 0 and (nw)2−nw−Aw(hr−hw)
Arhw

= 0. Some further

adjustment is necessary to take into account hr ≤ hw, for which, with ∂Πs(nw)
∂nw |nw>1

< 0, a

lot-for-lot policy is optimal. Choosing the maximum of an arbitrary constant in the set (0, 2]

([0, 2)) and the term Aw(hr−hw)
Arhw

makes that all scenarios are included in

n∗sw =



⌈
−1

2
+

√
1

4
+ max

{
1,
Aw (hr − hw)

Arhw

}⌉
or⌊

1

2
+

√
1

4
+ max

{
1,
Aw (hr − hw)

Arhw

}⌋ (6.3.2)

Retailer orders are combined in a single batch to a larger extent when ordering is relatively

expensive for the Wholesaler (Aw
Ar

large) and when the cost structures favour holding inventory

upstream (hr−hwhw
large). Smaller ratios let the optimum move towards a collaborative lot-for-

lot policy. Again, two successive integers may be optimal.

Welfare maximizing outcome A solution to the joint optimization problem is comprised

of n∗sw , and Q∗s, which is calculated by substituting n∗sw into Q∗s (nw). With these values,

profits for each echelon are

Π∗sr = (Pr − Pw)D −
(

Ar
2 (Ar +Aw/n∗sw )

+
hr

2 (hr + hw (n∗sw − 1))

)
·
√

2 (Ar +Aw/n∗sw ) (hr + hw (n∗sw − 1))D

Π∗sw = (Pw − Pm)D −
(

Aw/n
∗s
w

2 (Ar +Aw/n∗sw )
+

hw (n∗sw − 1)

2 (hr + hw (n∗sw − 1))

)
·
√

2 (Ar +Aw/n∗sw ) (hr + hw (n∗sw − 1))D

Because Q∗s does not have to coincide with the individually optimal Q∗u, the inequality

Π∗sr ≤ Π∗ur holds. By definition, we have Π∗s = Π∗sr + Π∗sw ≥ Π∗u, and thereby Π∗sw ≥ Π∗uw . As

in the previous section, a change in demand merely scales the downstream order size and the

resulting lot-sizing costs for both actors.
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6.4 Quantity discount schedule

Overview of profits When a quantity discount scheme is introduced, the lot-sizing stages

are preceded by the Wholesaler’s decision on αw and Rw. Both coordination variables appear

in the extended gross margin expression for the Retailer. If the downstream order quantity is

in the discount region, the indicator variable 1{Q∈Rw} takes the value 1 and the Wholesaler

charges (1− αw)Pw. Otherwise, no discount is granted and the regular unit price applies.

The remaining terms of Equation (6.2.1) do not change in

Πa
r (Q,αw, Rw) =

(
Pr −

(
1− αw1{Q∈Rw}

)
Pw
)
D −Ar

D

Q
− hr

Q

2

Incorporating the quantity discount policy similarly in Equation (6.2.2) gives

Πa
w (Q,nw, αw, Rw) =

((
1− αw1{Q∈Rw}

)
Pw − Pm

)
D −Aw

D

nwQ
− hw

(nw − 1)Q

2

Wholesaler lot-sizing stage At his lot-sizing decision nodes, the quantity discount char-

acteristics and the Retailer order quantity have already been determined. As the objective

function only differs by a constant αw1{Q∈Rw}PwD from Πu
w (Q,nw) in Problem (6.2.3), Equa-

tion (6.2.4) remains optimal for

max
nw

Πa
w (Q,nw, αw, Rw) =

((
1− αw1{Q∈Rw}

)
Pw − Pm

)
D −Aw

D

nwQ
− hw

(nw − 1)Q

2

subject to: (6.4.1)

nw ∈ N

Retailer response The decision on the downstream inventory policy is no longer static,

but depends on the vector (αw, Rw). The reaction to a particular quantity discount layout

follows from solving

max
Q

Πa
r (Q,αw, Rw) =

(
Pr −

(
1− αw1{Q∈Rw}

)
Pw
)
D −Ar

D

Q
− hr

Q

2

subject to:

Q > 0

The discontinuity of the profit function at Q̄w makes finding the best order size somewhat

more difficult than in case of Problem (6.2.5). Given an arbitrary set of price, demand and

cost data, Figure 6.1 illustrates how altering the conditions of the AQD scheme influences the
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Retailer’s options. In the no discount region (Q /∈ Rw), profit just equals Πu
r (Q). For all order

sizes in the discount region (Q ∈ Rw), Πa
r (Q,αw, Rw) coincides with the non-coordination

profit shifted upwards by the average total discount per time unit. Because the two curves

run parallel to one another, the unrestricted optimal order size for both is located at Q∗u in

Equation (6.2.6).
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(a) αw = 0.01 and Rw = [1500,∞)
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(b) αw = 0.02 and Rw = [1500,∞)
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(c) αw = 0.02 and Rw = [200,∞)
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(d) αw = 0.02 and (0, 200]

Figure 6.1: Optimization with Pr = 25, Pw = 15, D = 10000, Ar = 100 and hr = 8
by the Retailer facing an AQD scheme

Typical examples of the trade-off with Q̄w ≥ Q∗u are contained in the first two subfigures.

The Retailer compares his profit at the breakpoint, which is the best among all discount order

sizes, with the maximum non-coordination profit Π∗ur . Figure 6.1(a) depicts a configuration
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wherein the Retailer will not deviate from his anarchy decision. After the discount has been

increased to 2% in Figure 6.1(b), he chooses Q̄w = 1500. Figure 6.1(c) makes clear why

a proper AQD schedule is incapable of provoking more frequent ordering downstream: the

discount is received even when nothing changes at the Retailer. As shown in Figure 6.1(d),

allowing quantity premiums removes this limitation.

The previous observations reveal the essence of the optimal response. The Retailer chooses

Q̄w if the default solution Q∗u is not part of the discount region minus the order breakpoint,

and the profit at the breakpoint at least equals the maximum under anarchy:

Q∗a (αw, Rw) =


Q̄w if Q∗u /∈

(
Rw \ Q̄w

)
and Πa

r

(
Q̄w, αw, Rw

)
≥ Π∗ur

and

Q∗u otherwise

(6.4.2)

In view of reformulating the Wholesaler coordination problem, Q∗a (αw, Rw) formally points

at the breakpoint in the special case where both lot-sizing quantities are the same. We

also assume that an indifferent Retailer accepts the schedule. Without the assumption, a

Wholesaler not satisfied with Q∗u, could be forced to offer a scheme with a slightly higher

discount to make the Retailer strictly prefer Q̄w. However, there is always a smaller discount

that does the job, and, as a consequence, a Nash equilibrium might then not exist.

Coordination stage To take into account the indirect control over the Retailer order size,

we rewrite the Wholesaler profit function as Πa
w (nw, αw, Rw) = Πa

w (Q∗a (αw, Rw) , nw, αw, Rw).

The first stage problem is more easily solved by disregarding the rules in Equation (6.2.4),

and instead include nw in

max Πa
w (nw, αw, Rw) =

((
1− αw1{Q∗a(αw,Rw)∈Rw}

)
Pw − Pm

)
D

−Aw
D

nwQ∗a (αw, Rw)
− hw

(nw − 1)Q∗a (αw, Rw)

2

subject to: (6.4.3)

nw ∈ N αw ≥ 0

Rw ∈
{(

0, Q̄w
]
,
[
Q̄w,∞

)}
Q̄w > 0

Every downstream order size can be achieved by having the Retailer opt for the breakpoint

of an AQD scheme. At the breakpoint it suffices that he is just as well of as under anarchy, i.e.,

the loss resulting from deviation of Q∗u is exactly compensated. A proper quantity discount

should be chosen for Q̄w > Q∗u, while Q̄w < Q∗u requires a quantity premium. In the special

case where Q̄w = Q∗u (with αw = 0), the remainder of the discount region may be located on
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either side of the breakpoint. In terms of nw and Q̄w we restate the problem as

max Πa
w

(
nw, Q̄w

)
=

((
1− Π∗ur −Πu

r

(
Q̄w
)

PwD

)
Pw − Pm

)
D −Aw

D

nwQ̄w
− hw

(nw − 1) Q̄w
2

subject to: (6.4.4)

nw ∈ N Q̄w > 0

After substitution of the expression for Πu
r

(
Q̄w
)
, and aggregating cost components per cate-

gory, the reformulation becomes

max Πa
w

(
nw, Q̄w

)
= (Pr − Pm)D − (Ar +Aw/nw)

D

Q̄w
− (hr + hw (nw − 1))

Q̄w
2
−Π∗ur

subject to:

nw ∈ N Q̄w > 0

In essence, apart from a constant and a change of variables, Problem (6.3.1) needs to be

solved. The best integer n∗aw equals n∗sw in Equation (6.3.2), while the optimal breakpoint Q̄∗w
corresponds to the jointly optimal downstream order size Q∗s. Because the Retailer agrees

to Q∗s, his pre-discount profit is Π∗sr . From the solution we derive

α∗w =
Π∗ur −Π∗sr
PwD

(6.4.5)

and the discount region

R∗w =


(0, Q∗s] 1{Q∗s<Q∗u} + [Q∗s,∞) 1{Q∗s≥Q∗u}

or

(0, Q∗s] 1{Q∗s≤Q∗u} + [Q∗s,∞) 1{Q∗>Q∗u}

(6.4.6)

By construction, two possible regions are defined if Q∗s = Q∗u. In fact, the location of Rw

in a zero-discount scheme is not relevant at all. Moreover, for a Wholesaler satisfied with the

non-coordination outcome, any schedule in which the Retailer is left with too little profit at

the breakpoint, and therefore rejected by selecting Q∗u, is optimal.

Equilibrium strategies and efficiency increase Without further proof, we interpret the

preceding analysis game theoretically in Proposition 6.4.1. Whether or not the supply chain

needs the quantity discount scheme to operate more profitably, the presence of n∗uw (Q) makes

that an infinite number of Nash strategy profiles is described.
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Proposition 6.4.1. The strategy profiles Q∗a (αw, Rw) × [α∗w, R
∗
w, n

∗u
w (Q)] satisfying Equa-

tions (6.4.2), (6.4.5), (6.4.6) and (6.2.4), are subgame perfect pure Nash equilibria in the

quantity discount game. If Q∗s = Q∗u, every AQD set-up with αw = 0, or any schedule

rejected by the Retailer, can be part of an equilibrium.

Assuming the Retailer responds to α∗w and R∗w as anticipated (selecting the breakpoint

Q̄∗w = Q∗s), the Wholesaler will be faced with a reduced Problem (6.4.4), which is solved

by n∗uw (Q∗s). The lot-sizing rule producing the same integer as in the coordination stage of

the game shows that n∗aw = n∗sw is situated on an equilibrium path. The number of outcomes

(including those with rejected schedules) is infinite in case Q∗u is part of a jointly optimal

inventory policy. Otherwise, because of the direct link with the solutions in Section 6.3, the

maximum is 2.

While the Retailer does not improve upon his anarchy profit: Π∗ar = Π∗ur , the Wholesaler

receives Π∗aw = Π∗s − Π∗ur with Π∗uw ≤ Π∗aw ≤ Π∗sw . The supply chain is fully aligned and

any additional surplus accrues to the upstream actor. As mentioned in Chapter 3, complete

synchronization of the supply chain has been observed before by Banerjee (1986b) in a context

where a lot-for-lot replenishment policy is imposed.

6.5 Order bonus mechanism

Profits When coordination takes place by means of the second mechanism, the Wholesaler

grants γwAr as a bonus each time he receives an order. Adjusting Equation (6.2.1) accordingly

gives the Retailer profit

Πc
r (Q, γw) = (Pr − Pw)D − (1− γw)Ar

D

Q
− hr

Q

2

The implications for Equation (6.2.2) of awarding an order bonus are reflected in

Πc
w (Q,nw, γw) = (Pw − Pm)D −Aw

D

nwQ
− γwAr

D

Q
− hw

(nw − 1)Q

2

Lot-sizing stages Because, as in Problem (6.4.1), the terms related to coordination drop

out, Equation (6.2.4) remains optimal in the last stage of the game. Simply replacing Ar by

(1− γw)Ar in Equation (6.2.6) yields the downstream lot-sizing response

Q∗c (γw) =

√
2 (1− γw)ArD

hr
(6.5.1)
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The inequality Q∗c (γw) ≤ Q∗u means that, compared to non-coordination, the Retailer can

only be stimulated to order in smaller batches.

Coordination stage At the beginning of the game, the Wholesaler incorporates Q∗c (γw)

in Πc
w (nw, γw) = Πc

w (Q∗c (γw) , nw, γw), but, analogous to Problem (6.4.3), he re-optimizes

over nw:

max Πc
w (nw, γw) = (Pw − Pm)D −

(
Aw/nw

2 (1− γw)Ar
+

(1− γw)hw (nw − 1) + γwhr
2 (1− γw)hr

)
·
√

2 (1− γw)ArhrD

subject to: (6.5.2)

nw ∈ N γw ∈ [0, 1)

The derivative of the objective function with respect to γw is

∂Πc
w (nw, γw)

∂γw
=
Q∗c (γw)

1− γw

(
hw (nw − 1)− hr

4
− (Aw/nw +Ar)hr

4 (1− γw)Ar

)
The term Q∗c(γw)

1−γw =
√

2ArD
(1−γw)hr

never equals 0, and is, therefore, neglected in the first order

condition, which is solved by

γ̄w (nw) = 1− (Aw/nw +Ar)hr
Ar (hw (nw − 1)− hr)

If nw > hw+hr
hw

, the solution constitutes a stationary point. Smaller lot-sizing multiples

result in bonus levels for which the objective function and the derivative are not defined. In

case nw = hw+hr
hw

, or equivalently hw (nw − 1) − hr = 0, a division by 0 precludes existence.

The function γ̄w (nw) is increasing with lim
nw→∞

γ̄w (nw) = 1. In Figure 6.2, stationary points

can be identified for nw ≥ 4.

Interesting multiples start at nw = 7 where γ̄w (nw) equals 0. In general, we describe the

smallest integer having γ̄w (nw) ∈ [0, 1) as

n−cw = min

{
nw :

(Aw/nw +Ar)hr
Ar (hw (nw − 1)− hr)

≤ 1|nw ∈ N, nw >
hw + hr
hw

}
The positive solution to (nw)2 −

(
2 hrhw + 1

)
nw − Awhr

Arhw
= 0 is rounded up in order to get the

explicit functional form
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n−cw =
⌈
ν−cw
⌉

where:

ν−cw =
1

2
+
hr
hw

+

√(
1

2
+
hr
hw

)2

+
Awhr
Arhw

Ignoring Awhr
Arhw

and rearranging the remainder, we arrive at n−cw ≥
⌈
hw+2hr
hw

⌉
> hw+hr

hw
(as

required). From a global inspection of ν−cw and the expression in Equation (6.2.8), it can be

seen that ν−cw > ν+u
w holds, and that the lower bound exceeds Equation (6.2.7): n−cw > n∗uw .

1 4 7 10 13 16 19 22 25 28 31 34 37
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−2

−1

0

1

nw →
 

 

hw + hr

hw
+ 1

n−c
w

γ̄w (nw)

Figure 6.2: Stationary points for relaxation of Wholesaler’s
OB problem with Ar = 100, hr = 8, Aw = 700 and hw = 4

In the following lemma, we state the optimal bonus level per integer. Starting from n−cw , the

Wholesaler tries to mitigate the negative effects of a growing integer multiple on inventory

holding costs by tempting the Retailer to replenish more often. Cost structures favouring

longer lot-sizing cycles upstream (Aw high, hw low) and smaller orders downstream (Ar low,

hr high) tend to shift the optimal bonus level downwards.

Lemma 6.5.1. For each lot-sizing integer nw ∈ N, the Wholesaler’s optimal order bonus is

given by γ∗w (nw) = γ̄w (nw) 1{nw≥n−c
w }.

Proof. We know that Q∗c(γw)
1−γw > 0. Three cases are distinguished:

(i) nw ≤ hw+hr
hw

: These integers lacking a stationary point satisfy hw(nw−1)−hr
4 ≤ 0. With
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(Aw/nw+Ar)hr
4(1−γw)Ar

> 0, the derivative ∂Πc
w(nw,γw)
∂γw

is negative for all bonus levels in the relevant

domain. Setting the bonus fraction at 0 maximizes profit;

(ii) hw+hr
hw

< nw < n−cw : Here, hw(nw−1)−hr
4 > 0, and, hence, a stationary point exists. Its

infeasibility and (Aw/nw+Ar)hr
4(1−γw)Ar

increasing on γw < 1 ensure ∂Πc
w(nw,γw)
∂γw

< 0 for γw ∈ [0, 1).

Giving no bonus remains optimal;

(iii) nw ≥ n−cw : In contrast to the previous case, the stationary points are feasible. The

derivative is positive for γw ∈ [0, γ̄w (nw)), and negative on the set (γ̄w (nw) , 1). The optimal

bonus fraction is γ̄w (nw).

Combination of γ∗w (nw) and Problem (6.5.2) leads to the single variable Wholesaler profit

Πc
w (nw) = Πc

w (nw, γ
∗
w (nw)) in

max Πc
w (nw) = (Pw − Pm)D − 1{nw<n

−c
w }

(
Aw/nw

2Ar
+
hw (nw − 1)

2hr

)√
2ArhrD

− 1{nw≥n−c
w }
√

2 (Aw/nw +Ar) (hw (nw − 1)− hr)D
subject to: (6.5.3)

nw ∈ N

For nw < n−cw the optimal bonus fraction is 0, the Retailer responds by setting Q∗u and the

Wholesaler’s profit is just Πu
w (Q∗u, nw) (compare Equation (6.2.9)). Substitution of γ̄w (nw)

yields the profit for larger integers. After relaxing the domain restriction from nw ∈ N to

nw ≥ 1, the objective function is made up of two continuous curves intersecting at ν−cw > 1.

The derivative for the second one equals

∂Πc
w (nw)

∂nw |nw>ν
−c
w

= −
√
D
(
Aw (hw + hr) / (nw)2 +Arhw

)
√

2 (Aw/nw +Ar) (hw (nw − 1)− hr)

We now state which lot-sizing multiple and compensation level maximize profit in the first

stage of the game.

Proposition 6.5.1. The anarchy integer n∗uw solves Problem (6.5.3), and the Wholesaler

chooses γ∗w = 0.

Proof. Naturally, n∗uw with profit Π∗uw is optimal among all integers with γ∗w (nw) = 0. From

Equation (6.2.10) we have the inequality Π∗uw ≥ Πu
w (Q∗u, ν+u

w ). By concavity, the first

(non-coordination) curve declines beyond ν∗uw in Equation (6.2.11), and thus declines be-

tween ν+u
w and ν−cw . At the point of intersection we move to the other curve, where, since

∂Πc
w(nw)
∂nw |nw>ν

−c
w

< 0, profit further decreases. The zero bonus integer n∗uw thus outperforms

as well each integer with γ∗w (nw) > 0.

39



Equilibrium Since the benefits of being able to adjust the incoming order size never out-

weigh the costs of the mechanism, the Wholesaler never grants a bonus. On an equilib-

rium path resulting from Proposition 6.5.2, the non-coordination inventory policies persist

(Q∗c = Q∗u, n∗cw = n∗uw ). Each actor earns his default profit: Π∗cr = Π∗ur and Π∗cw = Π∗uw .

Proposition 6.5.2. All subgame perfect pure Nash equilibria in the order bonus game are

described by the strategy profiles Q∗c (γw)× [γ∗w = 0, n∗uw (Q)], which satisfy Equations (6.5.1)

and (6.2.4). The value γ∗w = 0 is the optimal bonus fraction associated with the integer

n∗cw = n∗uw solving Problem (6.5.3).
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Chapter 7

Conclusion

In order to investigate the potential of a quantity discount mechanism and an order bonus

scheme to align lot-sizing decisions in a 2 actor serial supply chain, we derived subgame

perfect pure Nash strategies using backward induction. It was shown that introduction of

an AQD schedule leads to full optimization of the supply chain, as the Wholesaler reaps all

the benefits of coordination, and, therefore, has an incentive to maximize surplus. For the

OB scheme we proved that it is completely ineffective in mitigating lot-sizing externalities.

The costs of the mechanism always exceed the benefits of adjusting the Retailer’s order size,

which precludes the Wholesaler from ever setting a positive order bonus.
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