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Abstract 

This paper studies the forecasting accuracy of individual models and 

combinations of those in different practical settings. Historical volatility models 

and models of the GARCH-family are used to perform this research. This  

research strives to answer the question whether combinations are superior to 

individual models. It seems this is only the case when looking at an error 

measure for over predictions and the mean absolute error. The individual models 

tend to outperform combinations in a VaR setting and with the error measure for 

under predictions. The performance of the new MAE-method provides evidence 

for the observation that the chosen individual models tend to over predict the 

actual volatility.  
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Chapter 1 Introduction 

 

 

Forecasting of financial volatility is extensively researched in empirical literature. It is also used in 

practice for many financial activities, including option pricing and the calculation of the Value at Risk. 

When one compares the function for the volatility forecasting for option pricing and Value at Risk, a 

difference occurs. While for option pricing, one would be more interested in over predictions or under 

predictions or vice versa. For Value at Risk on the other hand, one would be interested in the tails of 

the return distribution. This example points out that forecasting financial volatility is not only a matter 

of minimizing the forecast error. They also have a different purpose for different financial activities. 

This article focuses on forecasting volatility in combination with the financial activities option pricing 

and Value at Risk. 

As said before, there is an extensive amount of empirical literature on this topic. Firstly, this 

article discusses individual forecast models. Two sorts of individual models are used, namely the 

historical volatility models and models of the GARCH-family. In a review of Poon and Granger 

(2003) about 93 studies, it came forward that there is no superior sort of individual models. Historical 

volatility models were superior to models of the GARCH family in 56% in the cases. Brailsford and 

Faff (1996) back up the results of Poon and Granger (2003). They state that they could also not find a 

superior model using both sorts of models for the Australian Stock Exchange. Subsequently, 

Brailsford and Faff (1996) also say that the choice for error statistic is highly relevant for the ranking 

of models. The results of Brailsford and Faff (1996) and McMillan et al. (2000) (research on 

FTSE1000) indicate that the individual models seem to over predict the actual volatility more than 

they under predict.  

 Secondly, Timmermann (2005) states that combinations of individual models could lead to 

superior models. He states several reasons to work with combinations. To begin with, different 

individual models react differently to structural breaks, where in a combination different adaptabilities 

for those structural breaks could be combined. Secondly, individual models could be biased by 

misspecification, whereas the combination of models could be more robust versus that 

misspecification. When working with combinations, it is important to choose individual models that 

(1) are based on different methods and/or information and (2) make different assumptions of how the 

different variables are related to each other (Bates and Granger, 1969).  There are many combination 

methods for combining individual forecasts. This article focuses on the regression based combination 

technique of Granger and Ramanathan (1984) and relative performance methods. Results of Shin and 
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Sohn (2007) and Becker and Clements (2008) indicate that combinations of individual models are 

superior to a single individual model.  

 Thirdly, a combination of models or an individual model could be superior in an empirical 

setting. However, it also needs to work in a practical setting like Value at Risk. Research on 

individual models in a Value at Risk setting is extensive. In researches of Angelidis and Degiannakis 

(2005) and Veiga et al. (2005), the exponential GARCH model seems to be superior over GARCH and 

EWMA in a Value at Risk setting. Combination of models seems to be superior to individual models in an 

empirical setting. This paper contributes to the existing literature by also examining combinations of 

models in a Value at Risk setting. 

 The main purpose of this study is to evaluate and compare the performances of single 

individual forecasting models and forecast combination of individual models. The main research 

question of this study is: are combinations of individual models superior to a single individual model? 

This paper contributes to the existing literature in several ways. Firstly, forecast combinations are 

evaluated in a Value at Risk setting. Secondly, a new forecasting combination model that 

incorporates the tendency of individual models to over predict rather than under predict is introduced. 

Thirdly, individual models and combinations are evaluated in different time periods, with different 

distributions and with different backtesting methods. The S&P 500 is the market that is researched in 

this paper. 

The methodology used in this research contains five stages. The first stage describes the 

individual volatility models. These are moving average (20) and (60), EWMA, GARCH-N, GARCH-

T, NAGARCH, NAGARCH-VIX and CGARCH. These models are used for forecasting the volatility. 

The encompassing tests are described in the second stage. These test tests which models could be 

combined to make the volatility forecast more accurate. The third stage lists several ways to combine 

the individual models into one combination model, namely the regression based combination (50 days 

and 250 days), the MSE performance method, the switching model and the new MAE model with a 

correction for over prediction. The backtesting methods are stated in the fourth stage. The last stage 

discusses a practical implementation of volatility models. For this, Value at Risk and the 

accompanying backtesting methods are used. 

The main finding of this study is that there is no superior model between individual models 

and combinations for every context. Combinations seem to perform better in terms of over prediction, 

whereas individual models seem to do better in terms of under prediction. This is an important 

difference in the option context. When examining both groups of models in a VaR context, individual 

models seem to outperform the combinations, especially in high volatility periods. It is also worth 

mentioning that the assumption for a normal distribution does not seem to be accurate in high 

volatility periods. 
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 This paper continues as following. In the next chapter, the methodology is described, which is 

divided into five sections. Firstly, the individual models are discussed. Secondly, the encompassing test is 

stated. Thirdly, the different combination techniques are described. Fourthly, the different backtesting 

methods are explained. Lastly, the practical application of Value at Risk is discussed. The third chapter 

elaborates on the data that is used for this study. In the fourth chapter, the results are presented and 

interpreted. The fifth section concludes. 
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Chapter 2 Methodology 

 

 

This section describes the methodology that is used in this research. There are five stages. The 

first stage names the individual volatility models that are used for forecasting the volatility. In 

the second stage, the encompassing test that tests which models could be combined in order to 

improve the accuracy of the volatility forecast, are described. The third stage lists different ways 

of combining the individual models into one combination model. The fourth stage discusses the 

backtesting methods.  Lastly, a practical implementation of volatility models is discussed using 

Value at Risk and the accompanying backtesting methods. 

2.1   Individual models 

The first stage of the research contains seven individual volatility models. It is important that each 

individual model can add something in a combination of models.  Poon and Granger (2003) mention 

several findings about volatility in financial markets, namely that returns have fat tail distributions, 

that volatilities are likely to cluster, that volatilities show asymmetric reactions and that volatilities 

show mean reversion. These findings are further explained below with their accompanying models. 

The returns of all models are calculated in line with Hull (2008) using Equation (1): 

       
  

    
             (1) 

Where ut is the daily return at time t, St is the daily spot closing price at time t and St-1 is the yesterday 

spot closing price. Christoffersen (2003) assumes that the mean value of the returns is zero because the 

standard deviation of the returns dominates the mean of returns at daily horizons. This assumption is 

adopted in this research. 

2.1.1 Moving average  

The first two individual models imply the simple moving average (hence forth MA). In this model 

(Christoffersen, 2003), the variance of tomorrow,     
  , is the average of the past m observations. 

Equation (2) is used for this calculation. 

 t  
     

 

 

 

   

 ut    
  

(2) 

The choice for the number of past observations is arbitrary. According to Jorion (2001), the choice of 

m is a trade-off between stability in the case of m = 60 and the ability of capturing the volatility‟s 
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variation in the case of m = 20. For this research, both choices are examined (m = 20 and m = 60). The 

disadvantage of this model is that it equally weights the past m returns. So the model assumes that 

older data is just as important as recent data. This assumption may not hold.    

2.1.2 EWMA 

The third model is the exponentially weighted moving average (hence forth EWMA). An advantage of 

EWMA in comparison to MA is that EWMA gives more weight to recent returns than to distant 

returns.   

 t  
       

         
      (3) 

Equation (3) states that to orrow‟s forecasted variance is the weighted  average of the variance and 

the squared return of today. Another feature of EWMA is that only one parameter needs to be 

estimated, namely lambda. In line with JP Morgan (1996), the value of lambda is set to 0.94, which is 

assumed to be appropriate for daily variance forecasting.  

2.1.3 GARCH with normal distribution 

The generalized autoregressive conditional heteroskedasticity (1,1) (hence forth GARCH) of 

Bollerslev (1986) is the fourth individual model that is researched. The model expands the ARCH-

model of Engle (1982). This model incorporates one of the findings of Poon and Granger (2003), 

namely mean reversion. This is also the main difference between GARCH and EWMA. GARCH is 

estimated with Equation (4). 

 t  
            

     
  

     
(4) 

Where   is equal to γVL and where VL is the long-run variance. As a result, the variance of tomorrow 

is calculated as a weighted average of the long-run variance (VL), today‟s squared return and today‟s 

variance. GARCH is reduced to EWMA when γ   0,       -   and β    . That  eans that EWMA does 

not incorporate a long-run variance. GARCH also allows for mean reversion, which means that the 

model assumes that the future variance will return to the long-run variance. Mean reversion happens 

when     β <   and γVL > 0. On the other hand, when γVL turns out to be negative, then GARCH is 

unstable.  

A disadvantage of GARCH in comparison to EWMA is that one has to estimate three 

parameters instead of one. The quasi-maximum likelihood approach (Christoffersen, 2003) is used to 

estimate those parameters (5).  

              
 

 
     

 

 
     

   
 

 

  
 

  
   

 

   

 

    (5) 
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The approach is used to estimate the parameters that maximize the probability of the data appearing. 

Eviews is used to perform Equation (5). According to Angelidis et al. (2004), the estimated parameters 

include information about trading behavior that varies through time. Therefore, the parameters of this 

and the upcoming models from the GARCH family are re-estimated on a daily basis. Christoffersen 

(2003) states that the number of observations that is suited for estimating the parameters is arbitrary. It 

is a trade-off between a large number of observations with more accurate estimates (no structural 

breaks) and a small number of observations that reduces the risk of crossing a structural break. Taking 

this trade-off into account, a large number of observations (1500 observations) is used for estimating 

the parameters of a certain point in time for all the models of the GARCH family. For example, for 11 

March 2008 an estimation period of 11 June 2002 until 10 March 2008 (1500 trading days) is used. 

2.1.4 GARCH with student-t distribution 

The fourth individual model, GARCH with student-t distribution, captures the finding that the returns 

have fat tail distributions. A student-t distribution is considered to better fit the fat tail distribution. 

Equation (4) remains the same with this model. Only the equation for the estimation of the parameters 

changes into the following maximum likelihood approach (6) (Angelidis et al., 2004). 

                  
   

 
      

 

 
  

 

 
           

 
 

 
       

             
  

 

   
  

 

   

 

(6) 

Where v stands for the degrees of freedom. Eviews is used to estimate Equation (6). The degrees of 

freedom are also estimated for each day. They are used for the practical application of value at risk.  

2.1.5 NAGARCH 

Non linear asymmetric GARCH (hence forth NAGARCH) of Engle and Ng (1993) captures the 

asymmetric reactions of volatility of returns. This phenomenon is also called the leverage effect by 

Black (1976). The leverage effect indicates that negative returns influence the volatility more than 

positive returns.  Black (1976) states that the leverage effect exists because negative returns lead to a 

decrease in the equity of a company, while it is assumed that the debt remains constant. This means an 

increase in the debt/equity ratio of that company. An increase in the debt/equity ratio means that the 

firm is more leveraged and the co pany‟s future becomes more uncertain. More uncertainty leads to 

more volatility in the equity price.  

With the implication of NAGARCH, this leverage effect is captured. NAGARCH is expressed 

in Equation (7) (Christoffersen, 2003).  

 t  
                  

     
      (7) 
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The para eters ( , β,   and γ) are estimated with Equation (5). A positive value of θ signifies the 

existence of the leverage effect.  

2.1.6 NAGARCH-VIX 

Another way to expand a GARCH model is to add an explanatory variable to the equation. This is 

done in the seventh individual model, NAGARCH-VIX.  

 t  
                  

     
             (8) 

NAGARCH is extended with the implied volatility index of the Chicago Board Options Exchange 

(hence forth VIX). VIX could play a significant role when forecasting the future volatility. The VIX 

variable in Equation (8) is calculated in line with Hao and Zhang (2010), as done in Equation (9). 

     
 

   
  

  

   
 

 
      (9) 

VIXt is calculated on a daily basis using Equation (9), where Vt is the value of the VIX-index on time 

t. The parameters are estimated with Equation (5) in Eviews.  

2.1.7 CGARCH 

The eight model is component GARCH (hence forth CGARCH) that is established by Engle and Lee 

(1999). CGARCH makes a distinction between a short-run component and a long-run component. In 

normal GARCH, the long-run component is ω and the conditional variance reverts to this constant 

long-run variance. In CGARCH, ω is replaced by ϖt+1 that stands for a time-varying long-run variance. 

The to orrow‟s volatility is given by Equation (10).  

 t  
               

      β   
          (10) 

The time-varying long-run component is calculated using Equation (11). 

                    
    

      (11) 

Where ϖt+1 stands for the long-run component and the short-run component could be calculated by 

 t  
       .  

2.2 Encompassing tests 

In the first stage, the eight individual models are described with their characteristics. Before 

combinations of those models can be tested, an encompassing test has to be performed. Encompassing 

tests examine whether a model or a combination of models incorporate(s) all the information in 

comparison to another model that was excluded from the combination. If it does not incorporate all the 

information, then the excluded model needs to be incorporated in the combination of models.  
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In order to run the upcoming test and to backtest the models in the fourth stage, the conditional 

variance of the returns is needed. The problem with the conditional variance is that it is unobservable. 

A simple way to overcome this problem is to use the squared returns as a proxy for the conditional 

variance. However, Parkinson (1980) states that a range-based variance is a better estimator of the 

actual variance than the squared returns. The range-based variance is also used by Bannouh et al. 

(2009) for calculating co variances between assets. They also find that the range-based variance is a 

better estimator than the squared returns. The range-based variance is calculated as in Equation (12) 

(Hung et al., 2009). 

  
   

          

    
      (12) 

Where ht and lt are the highest and the lowest price observed on day t. This range-based variance is 

used as a proxy of  the unobserved conditional variance in the rest of the article.  

The encompassing test is from Chong and Hendry (1986). It is a simple regression, as is presented in 

Equation (13). 

                    
           

            (13) 

Where yt+1 is the actual volatility at time t + 1 and          
  and          

  are the forecasted volatilities 

of models 1 and 2 made on time t for time t + 1. If model 1 incorporates all the relevant information of 

yt+1, then β0   β2   0 and β1 = 1. This means that model 1 encompasses model 2 with forecasting 

power. But if both β1 and β2 are significantly different from zero, both models contain relevant 

forecasting infor ation. SPSS‟ function “forward” is used to estimate Equation (13). Firstly, this 

function selects the model with the highest correlation with yt+1. Secondly, the function selects the 

model that explains the most of the unexplained variation the first model could not explain. It is 

important to note that the added model is significantly different from zero. The other models are 

examined in the same way.   

Multicollinearity 

It is important to note that there is a danger for multicollinearity in performing regression (13). 

Multicollinearity happens when two or more independent variables in a regression have a high 

correlation with each other. This could lead to bias in the estimates of the standard errors of the 

regression. One way to detect multicollinearity is to look at the Variance Inflation Factor (hence forth 

VIF). Although there are some rules of thumb for the value of VIF that indicate multicollinearity (i.e. 

 0 or even lower 4), O‟Brien ( 007) argues that values for VIF higher than 10 or even 40 do not have 

to lead to a bias in the results of the regression. This report follows the findings of O‟Brien and only 

 entions the VIF‟s and the possibility of a  ulticollinearity proble . Besides the VIF, one can look at 

the correlations between the models to detect a cause for multicollinearity. If the correlation is higher 
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than 0.995 between two individual models, this report assumes that the last added model in the SPSS-

procedure does not have added value to the combination of models.  

2.3 Combination of models 

After the encompassing test in the second stage, individual models for combinations are chosen. 

Subsequently, the third stage of this research examines several methods of combining individual 

forecasts into one combination model. In this research, two sorts of methods are explored, namely the 

regression based method and the relative performance methods. The first combination model that is 

researched, does not belong to the two sorts above. The combination model gives equal weight to each 

individual model.  

2.3.1 Regression based methods 

There is a large number of regression models to combine individual forecasts. A simple regression 

model of Granger and Ramanathan (1984) is used. This is shown in Equation (14). 

                                
                  (14) 

Where               is the weight of individual model i multiplied with the forecasts of individual model 

i and the same happens until model n. This regression has been chosen because this one does not need 

the assumption of unbiased individual models because of the intercept term,     . It is now important 

to choose an estimation window for this model. Of course, this choice is subjective. A short window 

can capture the variation in the variance and a long window follows a more stable path. Therefore, two 

estimation windows are selected, namely 50 days (short) and 250 days (long). For example, suppose 

one wants to estimate the individual weights for 19 August 2009. Then the short window would be 

from 10 June 2009 until 18 August 2009 and the long window would be from 3 September 2008 until 

18 August 2009.  

2.3.2 Relative performance methods 

Unfortunately, regression based methods have disadvantages. For example, Bates and Granger (1969) 

discuss the probability that correlations between the individual forecasts are badly estimated. 

Therefore, regression based models could perform insufficiently. A method that pays no attention to 

correlations between individual forecasts is the Mean Squared Error (hence forth MSE) performance 

method of Stock and Watson (2001). They use Equations (15) and (16) to calculate the weights for the 

individual models.  

           
    

         (15) 

           
  

         
  

   
         

   
   

     (16) 
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    (17) 

Where SE is the squared error. In Equation (16) the inverse of the SE of model i is divided by 

the sum of the inverse of SE of n models. The inverse of the SE is taken because that way the models 

that performed well according to SE receive higher weights than models that performed badly. Lastly, 

Equation (17) combines the individual forecasts and the estimated weights into one combination 

forecast,       
 .  Another difference between the relative performance methods and the regression 

based methods lies in the absence of negative individual weights. 

The second relative performance method is derived from the switching mechanism of Frijns et 

al. (2008). The model is based on Equation (18) that describes the way that the individual weights are 

calculated with the switching mechanism. 

           
    

        
    

   
 
  

     
        

    
   

 

  
 
   

   (18) 

Where   lies between zero and infinity. When   = 0, all investors are equally distributed 

among  the individual models. On the other hand, when   goes to infinity, the investors are switching 

to the model that best performed in the past 50 days.   is estimated by minimizing the mean absolute 

error of the volatility forecast of the combination over the past 50 days prior to time t with a value for 

 . This estimation is done at a daily basis by solver in Excel. Again, the inverse is taken to give higher 

weights to the better performing models. The volatility of the total combination (Equation (17)) is 

again a combination of individual forecasts and the estimated weights of Equation (18). A difference 

between this model and the model of Frijns et al. (2008) is that Frijns et al. (2008) use the absolute 

percentage error to calculate the individual weights, whereas this model uses absolute error.  

The last relative performance method uses an unexplored (as far as known) characteristic of 

the GARCH models which i plies that GARCH  odels have a tendency to over predict the „actual‟ 

volatility more than they under predict. This characteristic is retrieved from the results of Brailsford 

and Faff (1996) and McMillan et al. (2000) which indicate that the number of over predictions is 

significantly higher than the number of under predictions for GARCH models. In line with this 

characteristic, the new model starts with the volatility of the individual models. If the forecasted 

variances really over predict instead of under predict the actual volatility, then it is possible that the 

over predictions are clustered. To partly avoid the clustering of over predictions, Equation (19) is used. 

        
          

                (19) 

Where         
   is the new forecasted volatility of individual model i and    is a dummy variable that 

equals one if the individual model over predicts the actual volatility on time t and zero if this is not the 

case.   is the coefficient that is estimated with a regression based on Equation (19). 1500 past 
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observations are used to estimate   for each individual model separately. This estimation is performed 

on a trimester basis. After that, the trimester estimations are turned into daily estimations using linear 

interpolation. Once   is estimated, the         
  is calculated. These steps are done for each individual 

model separately.  

After this first step, the individual weights are calculated using the absolute errors as shown in 

Equations (20) and (21). Subsequently, the volatility of the combination is calculated using Equation 

(22).  

           
    

       (20) 

           
  

         
  

   
         

   
   

    (21) 

      
                      

                        
    (22) 

Equations (21) and (22) work in the same way as the equations of the MAE-model.  

2.4  Backtesting methods 

The fourth stage includes the backtesting of the individual models as well as the combination of 

models. The backtesting methods described in this section are divided into two parts, namely „error‟ 

measures and regression based evaluation. The different models are ranked based on the results of 

these backtesting methods 

2.4.1 Error measures 

There is a large number of error measures to choose from. In line with Kovačić ( 008), the following 

four error measures have been chosen. The following statement goes for all error measures: the higher 

the error, the worsen the model is.  

Mean absolute error 

The mean absolute error (hence forth MAE) is the average absolute difference between the forecasted 

volatility and the actual volatility, as shown in Equation (23) (Kovačić,  008). 

     
 

 
     

     
  

 

   

 

(23) 

Where    
  is the forecasted volatility and   

  is the actual volatility (range based volatility).  

Root mean squared error 

The root mean squared error (hence forth RMSE) is calculated as in Equation (24) (Kovačić,  008). 
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         (24) 

A reason why MAE and RMSE are both chosen, is the convenience that both can be used to analyze 

the variation in the errors. It is a rule that RMSE is equal to or larger than MAE. Also, the larger the 

difference between both measures, the larger the variance in the individual forecasting errors in the 

sample. 

Mean mixed error (under and over) 

Besides the two symmetric measures MAE and RMSE, it is also interesting to look at two asymmetric 

measures. Brailsford and Faff (1996) argue that the symmetric assumption of the previous two 

measures does not necessarily have to hold because it could be that investors do not value under- and 

over prediction equally. Therefore,  Brailsford and Faff (1996) came up with the mean mixed error 

(under) (hence forth MME(U)) and the mean mixed error (over) (hence forth MME(O)). MME(U) and 

MME(O) are calculated with Equations (25) and (26) (Brailsford and Faff, 1996). 

        
 

 
      

    
   

          
    

   
        (25) 

        
 

 
      

    
   

          
    

   
       (26) 

Where U is the total number of under predictions and O is the total number of over predictions. 

MME(U) gives more weight to the absolute errors of the under predictions than to the absolute errors 

of the over predictions. MME(O) does this vice versa. These asymmetric measures exist because 

investors do not equally value under- and over predictions.  

2.4.2 Regression based evaluation 

Another way to backtest and subsequently rank the different models is the regression based evaluation. 

The first regression is presented in Equation (27). 

  
          

          (27) 

The R2 of regression (27) measures the proportion of the actual volatility that is explained by the 

forecasted volatility. The higher R2, the better the model. However, Engle and Patton (2000) argue that 

this regression model could be influenced by excessive values of the actual returns. Therefore, Engle 

and Patton (2000) came up with a log regression as a solution (Equation (28)). 

      
               

          (28) 

In this regression, the large values receive less weight than in the first regression. Again, the R
2
-values 

are used for the ranking of the models.  
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2.5  Practical application (Value at risk) 

Volatility forecasting is commonly used in practice. This research points out Value at risk (hence forth 

VaR). The 5% VaR is the amount of money that a company does not expect to lose in 95 percent of 

the cases. In this section, the calculation of the VaR and the accompanying backtesting methods are 

described.  

2.5.1 VaR calculation 

The VaR is a combination of an applied distribution and the volatility forecast, as can be seen in 

Equation (29). 

                       (29) 

Where    is the probability density function of a normal distribution. The p stands for the quantile 

from the distribution that is set to 1% and 5% in this report. The (one-sided) z-values that correspond 

with an alpha of 1% and of 5% are 2.33 and 1.645. However, the normality assumption does not have 

to hold. Therefore, the alpha is replaced by the student-t distribution with v degrees of freedom. The 

degrees of freedom are collected while estimating the parameters of the GARCH with a student-t 

distribution. All the models are examined under two scenarios, namely the normal distribution and the 

student-t distribution.  

2.5.2 Backtesting methods (Haas) 

Once the VaR is calculated, backtesting methods are necessary in order to calculate the accuracy of the 

different  odels. In this research, the  ixed Kupiec‟s test fro  Haas ( 00 ) and Christoffersen ( 003) 

is used. The  ixed Kupiec‟s test can be divided into three different tests, na ely the unconditional 

coverage test, the independence test and the conditional coverage test. This research speaks of a 

violation when the actual volatility exceeds the VaR.  

 

Unconditional coverage test 

Firstly, the unconditional coverage test of Christoffersen (2003) investigates whether the proportion of 

violations of a  odel(π) significantly differs fro  the expected probability (p). To test the null 

hypothesis of π   p, Christoffersen (2003) constructed the following likelihood ratio test (hence forth 

LC) (30). 

          
       

                    
     

    (30) 

Where T1 is the number of violations and T0 is the number of non-violations. The null hypothesis is 

rejected when the LRUC is larger than the   
 -statistic with a 10% significance level. The 10% 

significance level is chosen in line with Christoffersen (2003), who argues that a Type 2 error 

(accepting an incorrect model) is more damaging in risk management than a Type 1 error (rejecting a 

correct model).  
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Independence test 

Secondly, the independence of the violations has to be tested. It is important that the violations are not 

clustered, because clustering could lead to a bankruptcy (among other things). The independence test 

from Christoffersen (2003) only looks at the clustering of two violations, whereas the independence 

test of Haas (2001) examines the independency of the violations. In a perfect scenario with 1,000 

observations and 1% VaR, a violation occurs after 100 observations. The null hypothesis is that the 

violations occur independent of each other. The test statistic measures the time between two 

violations. This is calculated as in Equation (31) (Haas, 2001).  

       

 
 
 
 
     

          

 
 
  

    
 
  

 
     

 
 
 
  

   

     
         

 
 
 
    

 
 
 

        
  

(31) 

Where v is the time between two violations. The null hypothesis is rejected when the LRind exceeds the 

  
  with a 10% significance level.  

 

Conditional coverage test 

Lastly, the unconditional coverage test and the independence test are co bined in the  ixed Kupiec‟s 

test of Haas (2001). The null hypothesis of this test is that the violations occur independent of each 

other and the proportion of violations does not differ from the expected probability. Haas (2001) 

formulated Equation (32). 

                       
     (32) 

 

The null hypothesis is rejected when LRMix is larger than     
  with a 10% significance level. 
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Chapter 3 Data 

 

 

Now that the methodology for this research is explained, the data is described in this chapter. Returns 

of the S&P 500 stock index are chosen to perform this research. The S&P 500 is selected because of 

the high liquidity of the index. The data for the S&P 500 and the VIX variable are collected from 

DataStream. The total sample period is from 5 April 1993 to 31 December 2010.  The out of sample 

period that is researched is the period from 3 January 2005 to 31 December 2010. The in-sample 

period is defined as the period from 5 April 1993 to 31 December 2004. 

According to Brunnermeier (2009), the financial crisis started around July 2007. Therefore it 

is assumed that the period before 2007 (from 3 January 2005 to 29 June 2007) is a low volatility 

period and the period after 2007 is a high volatility period (from 2 July 2007 to 31 December 2010). 

This can also be seen in Table 1, in which the descriptive statistics are presented. For the 

encompassing test, an equally large period of 4 January 1999 until 31 December 2004 has been 

chosen. This period also captures periods of high (internet bubble burst) and low volatility and is 

assumed to be a good estimation of the out of sample period that is examined.  

Table 1 Descriptive statistics 

  Period No. Of Obs. 

Mean 

(x1/1,000) 

Std. Dev. 

(x1/1,000) Skewness Kurtosis Jarque Bera 

Returns 2005-2007 650 0.332 6.428 -0.294 4.818 98.851 

  2007-2010 915 -0.195 17.967 -0.175 9.310 1,522.91 

  2005-2010 1565 0.024 14.348 -0.249 13.466 7,158.96 

  1993-2010 4630 0.226 12.009 -0.205 12.059 15,864.8 

Squared 2005-2007 650 0.041 0.080 6.829 85.550 189,614 

Returns 2007-2010 915 0.323 0.931 7.247 70.127 179,802 

  2005-2010 1565 0.206 0.727 9.355 116.085 856,728 

  1993-2010 4630 0.144 0.479 12.229 219.690 9,173,741 

Range based 2005-2007 650 0.032 0.038 7.441 109.135 311,083 

Variance 2007-2010 915 0.211 0.458 5.476 38.491 52,595.9 

  2005-2010 1565 0.137 0.362 7.056 63.233 249,562 

  1993-2010 4630 0.102 0.242 9.219 117.554 2,597,129 

(The null hypotheses of the Jarque Bera statistic is rejected in every case with a 5% significance level)  
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Figure 1 Graph of the volatility of the S&P500  

 

From Table 1 and Figure 1, one can conclude that the first period (2005-2007) is a low 

volatility period and the second period (2007-2010) is a high volatility period. This conclusion is 

drawn because of the difference in the two standard deviations. Another reason for this conclusion is 

the average VIX-values of the two periods. The first and second period have an average VIX-value of 

12.84 and 27.86. This indicates that the first period is less volatile than the second period. This 

conclusion has been given more strength by looking at Figure 3 of the appendix, where the average 

yearly VIX-values are drawn.  

According to the standard deviations in Table 1, the range based variance is less volatile than 

the squared returns as a proxy for the conditional variance. Furthermore, returns of S&P500 do not 

seem to follow a normal distribution when looking at the values of skewness and kurtosis. Also, the 

null hypothesis of normality of the Jarque Bera test is rejected in every case.  This leaves room to test 

with a student-t distribution. 

Figure 1 shows the ARCH effect if one looks at the time-varying amplitude of the returns. The 

ARCH effect also comes back in the positive significant autocorrelations in Tables 13 and 14 in the 

appendix. Another interesting point that comes from Table 13 is that there is a difference between the 

two periods. The first period (2005-2007) shows less signs of autocorrelation (no significant results in 

the first nine lags excluding lag 5 and 6) than the second period (2007-2010), where every lag is 

positively significant.  
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Chapter 4 Results 
 

 

In this section the results are discussed and analyzed. Firstly, the results for the individual 

models are interpreted. Secondly, a select number of individual models are chosen for the 

combinations of models with an encompassing test. Thirdly, the results for the combination of 

models are discussed. Lastly, the results of the practical application Value at Risk are analyzed. 

4.1 Individual models 

Firstly, the model coefficients of the GARCH models are given and explained. Secondly, the 

backtesting results for the individual models are shown and interpreted. 

4.1.1 Model coefficients 

The parameters of the GARCH models are estimated using the quasi maximum likelihood procedure 

in order to calculate the forecasted volatilities. The results of the estimations over the total period 

(1993-2010) are stated below in Table 2. 

Table 2 Coefficients of the GARCH models 

   GARCH-N GARCH-T NAGARCH NAGARCH-VIX CGARCH 

  0.000 *** 0.000 *** 0.000 *** 0.000 0.000 *** 

 

[0.000] [0.000] [0.000] [0.000] [0.000] 

  0.071 *** 0.067 *** 0.065 *** 0.062 *** -0.045 *** 

 

[0.005] [0.007] [0.005] [0.010] [0.008] 

β 0.923 *** 0.932 *** 0.851 *** 0.518 *** -0.564 *** 

 

[0.005] [0.007] [0.008] [0.033] [0.142] 

      1.099 *** 2.008 ***   

 

    [0.087] [0.264]   

    

 

  0.113 ***   

 

  

 

  [0.012]   

          0.995 *** 

 

        [0.002] 

    

 

  

 

0.074 *** 

 

        [0.005] 

(Number in parenthesis indicates standard error. The symbols *,** and *** indicate statistical significance at 

the 0.10, 0.05 and 0.01 levels.) 
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Table 2 states the results of the estimations in terms of coefficients and standard errors. Some 

interesting points arise from Table 2. Firstly, there is only a minor difference between the coefficients 

of GARCH with a normal distribution and GARCH with a student-t distribution. Only the standard 

errors are larger with GARCH-T than in GARCH-N. The assumption of another distribution does not 

make a difference in model coefficients, but could make a difference in the calculation of the VaR. As 

one can see in Figure 2, the analyzed out of sample period does not seem to follow a normal 

distribution. Figure 2 gives the number of degrees of freedom for the out of sample period.  

Figure 2 Variation over time in degrees of freedom 

 

After January 2007, the degrees of freedom decrease. This means that the tails of the student-t 

distribution are fatter. That is important to know for the application of value at risk.  

Further on Table 2. The positive values for theta indicate the existence of a leverage effect. 

This means that negative returns influence the volatility more than positive returns, which is in line 

with Black (1976). Once VIX is added to NAGARCH, the average leverage effect increases from 

1,099 to 2,008. This means that with the VIX-effect integrated into the model, negative returns receive 

even more weight compared to NAGARCH. Overall, the coefficients are all significant except for the 

  of NAGARCH-VIX. 
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4.1.2 Backtesting 

After the model coefficients are estimated, the forecasted volatilities are calculated. Subsequently, 

these forecasted volatilities are back tested and the results of those backtests are stated in Tables 3 and 

4.  

Table 3 Regression based evaluation of individual models 

   Normal regression  Log regression 

Model Alpha Beta R-square Wald Rank Alpha Beta R-square Wald Rank 

MA (20) 0.000*** 0.546*** 0.403 0.000 7 -1.116*** 0.801*** 0.399 0.000 7 

  [0.000] [0.017] 

 

*** 

 

[0.101] [0.025] 

 

*** 

 MA (60) 0.000*** 0.488*** 0.236 0.000 8 -1.196*** 0.788*** 0.339 0.000 8 

  [0.000] [0.022] 

 

*** 

 

[0.112] [0.028] 

 

*** 

 EWMA 0.000 0.612*** 0.410 0.000 5 -0.959*** 0.844*** 0.405 0.000 6 

  [0.000] [0.019] 

 

*** 

 

[0.105] [0.026] 

 

*** 

 GARCH-N 0.000 0.685*** 0.413 0.000 3 -0.523*** 0.957*** 0.406 0.000 5 

 

[0.000] [0.021] 

 

*** 

 

[0.183] [0.044] 

 

*** 

 GARCH-T 0.000 0.622*** 0.407 0.000 6 -0.654*** 0.928*** 0.407 0.000 4 

 

[0.000] [0.019] 

 

*** 

 

[0.114] [0.028] 

 

*** 

 NAGARCH 0.000 0.663*** 0.502 0.000 2 -0.663*** 0.911*** 0.439 0.000 2 

  [0.000] [0.017] 

 

*** 

 

[0.106] [0.026] 

 

*** 

 NAGARCH-VIX 0.000*** 0.946*** 0.564 0.000 1 -0.488*** 0.955*** 0.463 0.000 1 

  [0.000] [0.021] 

 

*** 

 

[0.106] [0.026] 

 

*** 

 CGARCH 0.000* 0.661*** 0.412 0.000 4 -0.493*** 0.961*** 0.407 0.000 3 

  [0.000] [0.020] 

 

*** 

 

[0.118] [0.029] 

 

*** 

 
 (Number in parenthesis indicates standard error. The Wald test tests for the null hypothesis that α=0 and β=1. 

The p-value is given for each Wald test. The symbols *,** and *** indicate statistical significance at the 0.10, 

0.05 and 0.01 levels.) 

Table 3 states the results of the regression based evaluation of the individual models. The ranking of 

the individual models is based on the R-squares. Several conclusions can be drawn from Table 3. 

Firstly, the capturing of the volatility‟s variation see s to do inate stability, because MA(20) seems 

to perform better than MA(60) in both evaluation methods. MA(20), EWMA, GARCH-N, GARCH-T 

and CGARCH are almost equal in their performance based on these two regression methods. This 

could mean that the long run variance adds little to the forecasted volatilities. Otherwise, the difference 

between MA(20) and EWMA in comparison to GARCH-N, GARCH-T and CGARCH would have 

been larger. It is also worth mentioning that the Wald test is rejected for each individual model. 

Subsequently, that means there is no proof for a perfect predictor among the individual models. 

The addition of the leverage effect in NAGARCH seems to have the desired effect because the 

model is ranked second with a gap to the models that performed worse. When the VIX-variable is also 

added to the equation for forecasted volatility in NAGARCH-VIX, the results become even better 
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(0.564 and 0.463). So, the conclusion for the regression based evaluation is that NAGARCH-VIX is 

the best model.  

It is important to rely on more backtesting methods instead of only one backtesting method 

because one method could give biased results. So, Table 4 gives the results for the error measures.  

Table 4 Error measures of individual models 

Model 

MAE 

(/10,000) Rank 

RMSE 

(/10,000) Rank 

MME(U) 

(/1,000) Rank 

No. of 

under 

predictions 

MME(O) 

(/1,000) Rank 

No. of 

over 

predictions 

Bin. 

Prob. 

MA (20) 1.358 7 3.460 7 2.135 6 409 6.712 5 1,156 0.000 

  

           
MA (60) 1.516 8 3.722 8 2.286 8 378 7.173 8 1,187 0.000 

  

           
EWMA 1.321 6 3.215 6 1.999 3 359 6.885 6 1,206 0.000 

  

           
GARCH-N 1.224 4 3.016 3 2.051 5 337 6.702 4 1,228 0.000 

            
GARCH-T 1.315 5 3.190 5 1.912 1 319 7.132 7 1,246 0.000 

            
NAGARCH 1.162 2 2.920 2 2.013 4 377 6.279 2 1,188 0.000 

  

           
NAGARCH- 1.018 1 2.418 1 1.982 2 356 6.061 1 1,209 0.000 

 VIX 

           
CGARCH 1.218 3 3.058 4 2.185 7 364 6.528 3 1,201 0.000 

  

           
(The binominal probability tests whether the number of under predictions equals the number of over 

predictions.) 

The results of the error measures give almost the same results as the regression based evaluations. 

MA(60) is also the worst performing model with all the error measures. The differences between 

MA(20), EWMA, GARCH-N, GARCH-T and CGARCH seem a bit larger than with the regression 

based evaluations. But NAGARCH-VIX still stands out as a winner by three out of four error 

measures. Also, NAGARCH-VIX shows the lowest variance in the individual forecasting errors 

because of the lowest difference between MAE and RMSE. 

Only with MME(U), NAGARCH-VIX is the second best model behind GARCH-T. The 

reason why GARCH-T performs better with MME(U) lies in the number of under predictions, which 

is the lowest number of all models. On the other hand, GARCH-T performs second worst with 

MME(O) because of the high number of over predictions. This difference in results is exactly the 

reason why multiple backtesting methods have been chosen. For example, a seller of a call option is 

more worried about under prediction than a buyer of the same call option. Vice versa with a put option 

(Brailsford and Faff (1996)). The seller of a call option would prefer GARCH-T, whereas the buyer of 
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the call option would prefer NAGARCH-VIX. So, there is not one best model for every context. An 

investor has to make his own choice regarding his own purposes with the forecasted volatilities.  

The binominal probability of an equal distribution between over- and under predictions is 

lower than 0.05, which indicates inequality between the number of over- and under predictions. The 

conclusion can be drawn that all models give more over predictions than under predictions. In terms of 

Brailsford and Faff (1996), these individual  odels are „biased‟ forecast  odels. This leaves room for 

the new model of this report which incorporates that characteristic.  

4.2 Encompassing test 

After the evaluation of the individual models, the results of the encompassing test are discussed in this 

subsection. The encompassing test is needed to evaluate which individual models will be combined in 

the third stage of this research. Table 5 states the SPSS-output as a result of the encompassing test. 

Table 5 SPSS output of the encompassing test 

 
 Coefficient Std. Error VIF R-square 

1 (Constant) 0.000 0.000 
 

0.310 

NAGARCH-VIX 0.821*** 0.031 1.000  

2 (Constant) .000** 0.000 
 

0.316 

NAGARCH-VIX 0.591*** 0.071 5.361 

 NAGARCH 0.236*** 0.066 5.361  

3 (Constant) 0.000** 0.000 
 

0.317 

NAGARCH-VIX 0.577*** 0.072 5.390 

 NAGARCH 0.189*** 0.068 5.740 

 MA (20) 0.087*** 0.033 1.595  

4 (Constant) 0.000 0.000 
 

0.319 

NAGARCH-VIX 0.540*** 0.073 5.709 

 NAGARCH 0.279*** 0.080 7.901 

 MA (20) 0.244*** 0.080 9.663 

 GARCH-N -0.272** 0.127 13.291 

 
(The symbols *,** and *** indicate statistical significance at the 0.10, 0.05 and 0.01 levels.) 

As expected from the evaluation of the individual models separately, NAGARCHVIX is the model 

that is first selected in the forward-procedure of SPSS. This is done because NAGARCH-VIX has the 

highest correlation with range based variance in the period where the encompassing test is performed. 

Table 15 in the appendix reports the correlations with the range based variance as well as the 

correlations between the individual models. NAGARCH-VIX, NAGARCH, MA(20) and GARCH-N 

were added to the combination of models in that order. It is important to note that the added value of a 

combination is only 0.9 when looking at the R square changes.  

The other models were not added because they did not add value at a 5% significance level 

after GARCH-N was added. They could not add value because of the high correlations between 
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several individual volatilities. When the other individual models would have been added, the VIF-

values would also have been very high. The R square also did not increase significantly when the other 

models were added. So in the third stage, NAGARCH-VIX, NAGARCH, MA(20) and GARCH-N are 

used for the combinations of models. 

4.3 Combination models 

Now, the individual models for the combinations are chosen, the five different combinations of 

individual models are constructed. In order to construct the switching method and the MAE method,   

and   were estimated. Table 6 describes the results for these estimations. The estimation over the 

whole out of sample period is given for  . 

Table 6 Coefficients of the switching model and the MAE-model 

Switching model 

   

 

Mean Std. Dev. Min Max 

  368,229.2 465,592 0 1,500,000 

     
MAE-model with over prediction correction 

  
  Ma (20) GARCH-N NAGARCH NAGARCH-VIX 

  0.502*** 0.399*** 0.387*** 0.163*** 

  [0.016] [0.021] [0.017] [0.024] 

 ((Number in parenthesis indicates standard error. The symbols *,** and *** indicate statistical significance at 

the 0.10, 0.05 and 0.01 levels. Due to limitations of the Excel solver, the maximum value for   was set to 

1,500,000.) 

When looking at the estimation results of the  , one can notice that there are times that an equal 

distribution between the individual models seems to be the best method (    , but there are also 

times where   seems to go to infinity whereby the best model of time t is chosen as model for time t + 

1. The positive significant values of    indicate a possibility for improvement of the forecasted 

volatilities of the individual models that are used in the combinations. The estimation of   for 

NAGARCH-VIX shows the lowest value, which could indicate that NAGARCH-VIX is less 

vulnerable for clustering of over predictions.   

After the estimations for those two models, the forecasted volatilities for all combinations 

were calculated. Tables 7 and 8 give the backtesting results for the combinations. 
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Table 7 Regression based evaluation of combinations 

   Normal regression  Log regression 

Model Alpha Beta R-square Wald Rank Alpha Beta R-square Wald Rank 

Equal combination 0.000 0.726*** 0.489 0.000 5 -0.552*** 0.945*** 0.446 0.000 3 

  [0.000] [0.019] 

 

*** 

 

[0.108] [0.027] 

 

*** 

 Regression  0.000*** 0.265*** 0.213 0.000 6 -1.430*** 0.696*** 0.357 0.000 6 

(50 days) [0.000] [0.013] 

 

*** 

 

[0.100] [0.024] 

 

*** 

 Regression  0.000*** 0.741*** 0.580 0.000 1 -0.876*** 0.828*** 0.427 0.000 5 

(250 days) [0.000] [0.016] 

 

*** 

 

[0.103] [0.024] 

 

*** 

 MSE performance  0.000 0.849*** 0.525 0.000 3 -0.533*** 0.937*** 0.448 0.000 1 

method [0.000] [0.020] 

 

*** 

 
[0.108] [0.026] 

 

*** 

 Switching method 0.000 0.878*** 0.529 0.000 2 -0.547*** 0.929*** 0.447 0.000 2 

  [0.000] [0.021] 

 

*** 

 

[0.108] [0.026] 

 

*** 

 
MAE method (o.c.) 0.000 0.977*** 0.507 0.634 4 -0.527*** 0.915*** 0.439 0.000 4 

  [0.000] [0.024] 

   

[0.110] [0.026] 

 

*** 

 
(Number in parenthesis indicates standard error. The Wald test tests for the null hypothesis that α=0 and β=1. 

The p-value is given for each Wald test. The symbols *,** and *** indicate statistical significance at the 0.10, 

0.05 and 0.01 levels.) 

The first thing worth mentioning from Table 7, is the bad performance of the regression combination 

(50 days). It performs even worse than the individual model MA(20). So it can be concluded that 50 

days is a too small period for the regression combination. Regression combination (250 days) is the 

only combination model that performs better than every individual model with the normal regression 

based evaluation.  

With the log regression based evaluation, the MSE performance method performs the best. It 

seems that the MSE performance method does have more outliers than the regression combination 

(250 days). This conclusion is drawn by looking at the difference in performance between the normal 

regression and the log regression based evaluation. The same holds for the switching method and the 

MAE method. Another interesting point from Table 7 is that the null hypothesis of the Wald test only 

holds for the MAE method in the normal regression. That is the only model in this research where the 

null hypothesis is not rejected.  

Based on these regression based evaluations of the combinations, one could argue the 

relevance of combinations of forecasted volatilities. However, using more complex techniques seems 

to pay-off when comparing the equal combination with the other five combinations. In Table 8, the 

error measures for the combinations are stated. 
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Table 8 Error measures of combinations 

              No. of     No. of   

  MAE   RMSE   MME(U)   under MME(O)   over Bin. 

Model 

 

(/10,000)  

 

Rank  

 

(/10,000)  

 

Rank   (/1,000)  

 

Rank  

 

predictions   (/1,000)  

 

Rank  

 

predictions  

 

Prob.   

Equal 1.153 5 2.808 5 1.902 1 338 6.536 6 1.227 0.000 

combination 

           
Regression  1.473 6 5.661 6 3.050 6 615 4.961 3 950 0.000 

(50 days) 

           
Regression  0.924 2 2.539 2 2.773 4 575 4.407 2 990 0.000 

(250 days) 

           
MSE performance  1.025 4 2.555 4 2.207 2 405 5.710 5 1160 0.000 

method 

           
Switching method 0.993 3 2.520 1 2.350 3 438 5.434 4 1127 0.000 

  

           
MAE method (o.c.) 0.898 1 2.540 3 2.948 5 578 4.267 1 987 0.000 

  

           
 (The binominal probability tests whether the number of under predictions equals the number of over 

predictions.) 

In Table 8, the regression combination (50 days) is again the worst performing model except for the 

MME(O)-measure, where it is ranked as third combination model. The regression combination (250 

days), the switching method and the MAE method perform better than the individual models based on 

the mean absolute error. The performance of the MAE method is especially worth noting because of 

the lowest MAE whereas the model was ranked fourth with both regression based evaluations. A 

reason for this observation could be that the MAE method uses the absolute error of individual models 

to minimize the forecasting error. The RMSE of the four best ranked models are almost equal but still 

higher than the NAGARCH-VIX. Also, the variation in the individual forecasting errors is the lowest 

for NAGARCH-VIX and not for the combinations.  

The power of the combinations lies in the MME(O)-measure. The numbers of over predictions 

of the combinations are lower than the individual models. This leads to a better performance of the 

combinations based on MME(O). Again, the MAE method performs the best based on MME(O). To 

recall the option story, the MAE method is most preferred by buyers of call options and sellers of put 

options. The purpose of the MAE method is thereby partly accomplished by reducing the number of 

over predictions and increasing the number of under predictions. Based on MME(U), the MSE 

performance method is the best performing combination model. However, it is dominated by all 

individual models except for MA(60). So, the power of the combinations does not lie in the MME(U)-

measure. 

Besides the out of sample period, the in-sample period is also briefly researched. The results 

are stated in Tables 16 and 17 in the appendix. The results indicate that the MSE performance 
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performs the best with all evaluation criteria except the MME(O). Another conclusion that can be 

drawn, is that the combinations seem to outperform the individual models in the in-sample period. 

Furthermore, the relative differences between the results of the models of the in-sample period and the 

out of sample period are small. NAGARCH-VIX still seems to be the best individual model whereas 

the other individual models do not seem to differ from each other, just like in the out of sample period.  

4.4 Value at Risk 

In the previous subsection, theoretical backtesting methods were used to evaluate the models, whereby 

the option context is used to make the connection with the practicalities of forecasted volatilities. In 

this subsection, another practical application of forecasted volatilities is used to evaluate the individual 

models as well as the combinations and in different time periods. Firstly, the numbers of violations are 

stated. Secondly, the results of the different backtesting methods for VaR are analyzed.  

4.4.1  Number of violations 

Before the results of the backtesting methods are analyzed, the number of violations for each model is 

stated. In Table 9, the number of violations under the assumption of a normal distribution is stated.  

Table 9 Number of violations (normal distribution) 

Period Period 1 (2005-2007) Period 2 (2007-2010) Total period (2005-2010) 

VAR 1% 5% 1% 5% 1% 5% 

Number of observations 650 650 915 915 1565 1565 

Expected number of violations 7 33 10 46 16 79 

Individual model:             

Moving Average (20) 12 38 30 67 42 105 

Moving Average (60) 14 33 27 70 41 103 

EWMA 14 35 28 62 42 97 

GARCH-N 8 28 33 69 41 97 

GARCH-T 8 27 29 62 37 89 

NAGARCH 11 31 38 75 49 106 

NAGARCH-VIX 12 37 31 75 43 112 

CGARCH 8 28 30 70 38 98 

Combination model:             

Equal combination 11 30 32 66 43 96 

Regression combination (50 days) 23 59 61 96 84 155 

Regression combination (250 days) 22 52 54 89 76 141 

MSE performance method 12 34 37 81 49 115 

Switching method 13 38 43 83 56 121 

MAE method (over prediction correction) 20 52 52 100 72 152 

From Table 9, it can be concluded that the number of violations is higher in the period of high 

volatility (period 2) than in the period of low volatility (period 1). Another observation is the 

difference in the number of violations of individual models and combinations. The number of 

violations is higher for the combinations than for the individual models. Therefore, the combinations 

seem to be more influenced by negative outliers than the individual models. A reason for this could lie 
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in the observation that combinations have more under predictions than individual models. The chance 

for an extreme under prediction could be increased because of this. 

 During the first period, the individual models seem to perform accurately when looking at the 

small difference between the actual number of violations and the expected number of violations. 

However, in the second period and therefore also in the total period, the difference between the actual 

number of violations and the expected number of violations increases. This could be caused by the 

possibility that the range based variance is not an accurate estimator of the actual variance during 

periods of high volatility. Another reason for this difference could lie in the assumed normal 

distribution in the calculation of VaR. Therefore, Table 10 denotes the number of violations under the 

assumption of a student-t distribution. 

Table 10 Number of violations (student-t distribution) 

Period Period 1 (2005-2007) Period 2 (2007-2010) Total period (2005-2010) 

VAR 1% 5% 1% 5% 1% 5% 

Number of observations 650 650 915 915 1565 1565 

Expected number of violations 7 33 10 46 16 79 

Individual model:             

Moving Average (20) 10 27 10 50 20 77 

Moving Average (60) 9 27 13 48 22 75 

EWMA 6 27 7 53 13 80 

GARCH-N 3 20 10 56 13 76 

GARCH-T 4 20 7 54 11 74 

NAGARCH 5 24 14 63 19 87 

NAGARCH-VIX 6 30 8 56 14 86 

CGARCH 4 21 10 60 14 81 

Combination model:             

Equal combination 3 24 7 54 10 78 

Regression combination (50 days) 15 50 32 80 47 130 

Regression combination (250 days) 13 41 27 71 40 112 

MSE performance method 5 27 13 63 18 90 

Switching method 6 30 15 68 21 98 

MAE method (over prediction correction) 10 36 29 81 39 117 

The difference between the actual number of violations and the expected number of violations 

decreases when the student-t distribution is used in the calculation of VaR. In the first period, six 

individual models and two combinations even show a lower number of violations than expected. The 

majority of the number of violations of combinations is higher than those of the individual models, 

which is the same conclusion as when the normal distribution was used. However, it seems that the 

importance of the assumption for the distribution outweighs the importance of the forecasted volatility 

when comparing Tables 9 and 10. 
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4.4.2  VaR backtesting methods 

The violations are used in the backtesting methods for VaR. The results for backtesting methods for 

VaR with the normal distribution are presented in Tables 11 (first period), 12 (second period) and 20 

(appendix) (total period). The results of the backtesting with the student-t distribution are stated in 

Tables 18, 19 and 21 in the appendix. 

Table 11 Results backtesting VaR, first period, normal distribution 

Period Period 1 (2005-2007) 

Alpha 1% 5% 

Test statistic LRuc LRind LRcc LRuc LRind LRcc 

Individual model:             

Moving Average (20) 3.762 10.930* 14.691* 0.931* 49.342* 50.273* 

Moving Average (60) 6.571 22.165 28.736 0.008* 55.580 55.588 

EWMA 6.571 21.403 27.974 0.198* 49.981 50.179 

GARCH-N 0.326* 5.881* 6.207* 0.687* 39.874 40.561 

GARCH-T 0.326* 5.881* 6.207* 1.037* 37.677 38.714 

NAGARCH 2.606* 18.965 21.570 0.074* 36.446* 36.520* 

NAGARCH-VIX 3.762 19.250 23.012 0.629* 36.347* 36.976* 

CGARCH 0.326* 4.797* 5.123* 0.687* 35.310* 35.997* 

Combination model:             

Equal combination 2.606* 16.158* 18.763 0.208* 36.275* 36.483* 

Regression combination (50 days) 25.557 58.758 84.314 18.517 94.670 113.187 

Regression combination (250 days) 23.023 46.459 69.482 10.503 74.376 84.879 

MSE performance method 3.762 15.340* 19.102* 0.072* 36.554* 36.626* 

Switching method 5.088 18.432* 23.520 0.931* 39.088* 40.019* 

MAE method (over prediction correction) 18.242 31.284 49.527 10.503 75.421 85.924 

(The symbol * means that the model is accepted by that backtesting method with a 10% significance level) 

The backtesting results for the first period indicate that only CGARCH is accepted by each test with a 

10% significance level. All other models are rejected either for lack of independence between the 

violations or the number of violations is too high. When the assumption of a normal distribution is 

replaced by the assumption of a student-t distribution in Table 18 in the appendix, more models are 

significant at a 10% level for all tests, namely MA(20), EWMA, GARCH-T, NAGARCH, NAGARC-

VIX, the equal combination, the MSE performance method and the switching model. 

 It may seem strange that CGARCH is not significant anymore for all tests when the student-t 

distribution is applied, but it is not. The unconditional coverage test is not only rejected when the 

number of violations is too high, but also when it is too low in the case of CGARCH. A reason for this 

rejection lies in the overabundance of costs that is related to a too high VaR-value. For example, banks 

and financial institutions have to hold a capital reserve based on the VaR. When the calculated VaR is 

too high, it brings unnecessary cost with it. Therefore, a too low number of violations is also rejected 

by the unconditional coverage test.  
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Lastly, it seems that the regression combinations do seem to perform accurately for VaR 

purposes in a period of low volatility with both distributional assumptions, where as the regression 

combination (50 days) performed badly in the regression based evaluation and error measures. To 

come back at the bank-example, the VaR for banks in the Basel requirements are based on the 1% 

VaR. Subsequently, that means that all individual models seem to be an accurate model for banks to 

use. 

Table 12 Results backtesting VaR, second period, normal distribution 

Period Period 2 (2007-2010) 

Alpha 1% 5% 

Test statistic LRuc LRind LRcc LRuc LRind LRcc 

Individual model:             

Moving Average (20) 30.030 80.853 110.883 9.145 81.739* 90.884 

Moving Average (60) 23.087 89.263 112.350 11.725 111.606 123.332 

EWMA 25.328 85.413 110.742 5.495 72.711* 78.205 

GARCH-N 37.595 87.115 124.711 10.834 81.678* 92.511 

GARCH-T 27.644 77.209 104.853 5.495 71.941* 77.435* 

NAGARCH 51.440 102.667 154.107 16.640 91.776 108.416 

NAGARCH-VIX 32.486 78.265 110.751 16.640 80.978* 97.618 

CGARCH 30.030 73.037 103.068 11.725 81.275* 93.001 

Combination model:             

Equal combination 35.008 79.198 114.206 8.349 74.380* 82.729 

Regression combination (50 days) 130.775 197.094 327.869 44.765 130.883 175.648 

Regression combination (250 days) 104.283 151.341 255.624 34.138 111.602 145.740 

MSE performance method 48.555 89.197 137.752 23.493 92.794* 116.287 

Switching method 66.661 107.556 174.217 25.997 102.583 128.580 

MAE method (over prediction 

correction) 97.059 151.311 248.369 51.354 135.517 186.872 

(The symbol * means that the model is accepted by that backtesting method with a 10% significance level) 

Table 12 describes the results of the backtesting for the second period. The first thing one can see, is 

the rejection of all unconditional coverage tests. Although, the individual models show some 

significance in the independence test with the 5% VaR, the assumption of normality does not seem to 

be accurate in a VaR-setting. Table 19 in the appendix seems to show more proof for that observation. 

The results for the backtesting with the student-t distribution give more significant results in Table 19. 

The unconditional coverage test is accepted for all individual models with the 1% VaR. However, the 

independence between the violations seems to be the problem in a high volatility period for some of 

the models. Only MA(20), EWMA, GARCH-T and NAGARCH-VIX show significance at a 10% 

level for all tests.  

The change from a normal distribution to a student-t distribution did not help the combination 

much. Only the unconditional coverage test of MSE performance method and the equal combination 

in the 1% VaR is accepted but it seems that the violations do not happen independently of each other. 

So, the conclusion could be drawn that (some) individual models outperform the combinations in a 

VaR setting in a high volatility period.  
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The previously drawn conclusion also seems to hold when one looks at the total period results 

in Table 20 and Table 21 in the appendix. MA(20), EWMA, GARCH-T and NAGARCH-VIX are the 

only four models that passed each test with the assumption of student-t distribution. The importance of 

the choice for distribution seems to be large when comparing the results of both distributions. The 

assumption of the distribution seems to be more important than the forecasted volatility in the VaR-

setting. It is also important to notice that the results of the backtesting of the practical application VaR 

give different results than the other backtesting methods. There does not seem to be a best model for 

every context. It depends on the context and purposes of the user of forecasted volatilities.  
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Chapter 5 Conclusion 

 

 

This paper studies the forecasting accuracy of individual models and combinations. In 

particular, it studies whether combinations are superior to individual models in forecasting the 

volatility in an out of sample period. The results of the different backtesting methods show that there is 

not one conclusive answer to this question. Based on an evaluation by the mean absolute error, the 

MAE method (with a correction for over prediction) is superior to the other models. This could be 

caused by minimizing the forecast errors with the absolute errors of the individual models in the MAE 

method. The good performance of the MAE-measure provides evidence for the observation that the 

chosen individual models seem to over predict the actual volatility more than they under predict. This 

observation is captured in the new MAE-model of this paper. 

The MAE method does also seem to be the best model with the MME(O)-measure. So, it is 

assumed that the MAE method is the model that is preferred by buyers of call options and sellers of 

put options. Sellers of call options and buyers of put options worry more about under predictions. 

Subsequently, looking at the MME(U)-measure, individual models are superior to combinations. So it 

is important to think about the purpose of the forecasted volatility before a model is chosen.  

Besides the option context, this study focuses on another practical application, namely Value 

at Risk. In the VaR context, the choice for the distribution seems more important than the forecasted 

volatility. The student-t distribution outperforms the normal distribution, especially in periods with 

high volatility. Furthermore, the individual models seem to predict the tails of the return distribution 

more accurate than the combinations.  

So based on this study, it seems that there is no superior model between individual models and 

combinations for every context when examining the forecasted volatilities. In further research, other 

individual models could be used to form combinations. Some of the individual model that have been 

used for this study, seem to have many similarities when examining at the correlation matrix. A way to 

extend this study in further research, is to take a look at emerging markets and see if the conclusions of 

this study still holds.  
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Appendix 

 

 

Table 13 Autocorrelation of the squared returns 

  Total out of sample period 2005-2007 2007-2010 

Lag AC   Q-Stat  Prob. AC   Q-Stat  Prob AC   Q-Stat  Prob 

1 0.198 61.507 0.000 0.003 0.0056 0.940 0.169 26.096 0.000 

2 0.382 290.46 0.000 0.002 0.0089 0.996 0.360 145.46 0.000 

3 0.180 341.35 0.000 0.068 30.105 0.390 0.149 165.96 0.000 

4 0.281 465.54 0.000 0.086 78.949 0.096 0.255 225.66 0.000 

5 0.354 662.12 0.000 0.079 11.955 0.035 0.330 326.16 0.000 

6 0.312 814.85 0.000 0.041 13.040 0.042 0.286 401.88 0.000 

7 0.349 1006.3 0.000 0.009 13.088 0.070 0.325 499.69 0.000 

8 0.260 1112.9 0.000 -0.017 13.284 0.102 0.233 549.91 0.000 

9 0.325 1279.1 0.000 0.032 13.963 0.124 0.300 633.34 0.000 

10 0.277 1400.2 0.000 0.235 50.655 0.000 0.249 690.98 0.000 

11 0.384 1633.5 0.000 0.008 50.695 0.000 0.362 812.91 0.000 

12 0.318 1793.3 0.000 0.025 51.096 0.000 0.293 892.73 0.000 

13 0.261 1901.2 0.000 0.030 51.710 0.000 0.234 943.48 0.000 

14 0.140 1932.1 0.000 0.017 51.903 0.000 0.107 954.10 0.000 

15 0.219 2007.7 0.000 -0.011 51.980 0.000 0.189 987.50 0.000 

 

Table 14 Autocorrelation of the range based variance 

  Total out of sample period 2005-2007 2007-2010 

Lag AC   Q-Stat  Prob. AC   Q-Stat  Prob AC   Q-Stat  Prob 

1 0.637 635.30 0.000 0.126 10.326 0.001 0.616 347.89 0.000 

2 0.552 1113.9 0.000 0.167 28.552 0.000 0.525 601.41 0.000 

3 0.564 1613.8 0.000 0.122 38.235 0.000 0.538 867.76 0.000 

4 0.578 2138.1 0.000 0.105 45.424 0.000 0.552 1148.8 0.000 

5 0.563 2636.6 0.000 0.156 61.345 0.000 0.536 1414.1 0.000 

6 0.484 3005.1 0.000 0.066 64.195 0.000 0.452 1602.9 0.000 

7 0.513 3418.6 0.000 0.061 66.642 0.000 0.483 1818.1 0.000 

8 0.495 3805.2 0.000 0.034 67.383 0.000 0.464 2017.6 0.000 

9 0.522 4234.5 0.000 0.074 70.973 0.000 0.492 2242.1 0.000 

10 0.423 4516.3 0.000 0.204 98.563 0.000 0.386 2380.0 0.000 

11 0.429 4807.0 0.000 0.073 102.05 0.000 0.393 2523.4 0.000 

12 0.540 5266.8 0.000 0.078 106.12 0.000 0.511 2765.9 0.000 

13 0.413 5535.9 0.000 0.055 108.16 0.000 0.375 2896.9 0.000 

14 0.335 5713.0 0.000 0.069 111.29 0.000 0.292 2976.1 0.000 

15 0.376 5936.6 0.000 0.042 112.44 0.000 0.336 3081.2 0.000 
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Figure 3 Average yearly VIX-values 

 

 

 

Table 15 Correlation of the individual models 

  
RBV MA(20) MA(60) EWMA 

GARCH-

N 

GARCH-

T NAGARCH 

NAGARCH-

VIX CGARCH 

RBV 1.000 0.379 0.338 0.411 0.413 0.408 0.534 0.557 0.411 

MA(20)  0.379 1.000 0.772 0.956 0.936 0.944 0.608 0.574 0.924 

MA(60) 0.338 0.772 1.000 0.878 0.779 0.818 0.519 0.593 0.753 

EWMA 0.411 0.956 0.878 1.000 0.967 0.980 0.678 0.665 0.946 

GARCHN 0.413 0.936 0.779 0.967 1.000 0.996 0.737 0.656 0.982 

GARCHT 0.408 0.944 0.818 0.980 0.996 1.000 0.712 0.646 0.974 

NAGARCH 0.534 0.608 0.519 0.678 0.737 0.712 1.000 0.902 0.728 

NAGARCHVIX 0.557 0.574 0.593 0.665 0.656 0.646 0.902 1.000 0.645 

CGARCH 0.411 0.924 0.753 0.946 0.982 0.974 0.728 0.645 1.000 
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Table 16 Regression based evaluation of the in sample period 

   Normal regression  Log regression 

Model Alpha Beta R-square Wald Rank Alpha Beta R-square Wald Rank 

MA (20) 0.000*** 0.495*** 0.173 0.000 12 -1.268*** 0.759*** 0.282 0.000 12 

  [0.000] [0.020] 

   

[0.091] [0.022] 

   MA (60) 0.000*** 0.561*** 0.145 0.000 13 -1.138*** 0.797*** 0.260 0.000 13 

  [0.000] [0.025] 

   

[0.100] [0.024] 

   EWMA 0.000*** 0.619*** 0.207 0.000 9 -1.009*** 0.826*** 0.298 0.000 9 

  [0.000] [0.022] 

   

[0.095] [0.023] 

   GARCH-N 0.000*** 0.648*** 0.215 0.000 8 -0.488*** 0.962*** 0.300 0.000 8 

  [0.000] [0.022] 

   

[0.109] [0.027] 

   GARCH-T 0.000*** 0.639*** 0.204 0.000 10 -0.668*** 0.918*** 0.297 0.000 10 

  [0.000] [0.023] 

   

[0.104] [0.026] 

   NAGARCH 0.000 0.732*** 0.310 0.000 4 -0.507*** 0.953*** 0.321 0.000 6 

  [0.000] [0.020] 

   

[0.103] [0.025] 

   
NAGARCH-VIX 0.000*** 0.958*** 0.356 0.000 3 -0.128 1.039*** 0.353 0.000 2 

  [0.000] [0.023] 

   

[0.105] [0.025] 

   CGARCH 0.000*** 0.612*** 0.197 0.000 11 -0.661*** 0.920*** 0.292 0.000 11 

  [0.000] [0.022] 

   

[0.106] [0.026] 

   Equal combination 0.000 0.764*** 0.282 0.000 5 -0.364*** 0.988*** 0.336 0.000 4 

  [0.000] [0.022] 

   

[0.103] [0.025] 

   Regression  0.000 1.000*** 0.358 0.000 2 -1.005*** 0.798*** 0.337 0.000 3 

(total period) [0.000] [0.024] 

   

[0.087] [0.020] 

   MSE performance  0.000*** 0.989*** 0.388 0.000 1 -0.097 1.041*** 0.390 0.000 1 

method [0.000] [0.022] 

   

[0.098] [0.024] 

   Switching method 0.000* 0.810*** 0.281 0.000 6 -0.553*** 0.926*** 0.326 0.000 5 

  [0.000] [0.023] 

   

[0.100] [0.024] 

   
MAE method (o.c.) 0.000*** 0.911*** 0.274 0.000 7 -0.746*** 0.862*** 0.307 0.000 7 

  [0.000] [0.027] 

   

[0.100] [0.023] 
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Table 17 Error measures of the in sample period 

              No. of     No. of   

  MAE   RMSE   MME(U)   under MME(O)   over Bin. 

Model 

 

(/10,000)  

 

Rank  

 

(/10,000)  

 

Rank   (/1,000)  

 

Rank  

 

predictions   (/1,000)  

 

Rank  

 

predictions  Prob.  

MA (20) 0.762 12 1.486 13 2.047 10 876 5.300 6 2186 0.000 

  

           MA (60) 0.769 13 1.440 12 1.997 9 809 5.538 10 2253 0.000 

  

           EWMA 0.730 8 1.384 9 1.921 8 785 5.392 7 2277 0.000 

  

           GARCH-N 0.739 9 1.373 8 1.779 6 688 5.714 11 2374 0.000 

  

           GARCH-T 0.753 10 1.386 10 1.760 4 679 5.791 13 2383 0.000 

  

           NAGARCH 0.684 7 1.276 6 1.734 2 719 5.458 9 2343 0.000 

  

           NAGARCH-VIX 0.611 4 1.181 3 1.860 7 756 4.947 5 2306 0.000 

  

           CGARCH 0.757 11 1.402 11 1.775 5 688 5.783 12 2374 0.000 

  

           Equal 0.677 6 1.282 7 1.744 3 713 5.398 8 2.349 0.000 

combination 

           Regression  0.540 2 1.164 2 2.572 12 1182 3.567 1 1880 0.000 

(total period) 

           MSE performance  0.514 1 1.148 1 1.515 1 816 4.319 3 2246 0.000 

method 

           Switching method 0.615 5 1.252 5 2.145 11 909 4.564 4 2153 0.000 

  

           MAE method (o.c.) 0.575 3 1.240 4 2.718 13 1175 3.645 2 1886 0.000 
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Table 18 Results backtesting VaR, first period, student-t distribution 

Period Period 1 (2005-2007) 

Alpha 1% 5% 

Test statistic LRuc LRind LRcc LRuc LRind LRcc 

Individual model:             

Moving Average (20) 1.635* 5.040* 6.675* 1.037* 27.957* 28.994* 

Moving Average (60) 0.867* 11.854* 12.722* 1.037* 49.469 50.506 

EWMA 0.040* 3.717* 3.757* 1.037* 33.112* 34.149* 

GARCH-N 2.380* 2.482* 4.861* 5.831 19.866* 25.697* 

GARCH-T 1,126* 2,580* 3,705* 5,831* 19,866* 25,697* 

NAGARCH 0.380* 4.486* 4.865* 2.564* 20.934* 23.497* 

NAGARCH-VIX 0.040* 6.415* 6.455* 0.208* 24.614* 24.821* 

CGARCH 1.126* 2.580* 3.705* 4.871 29.019* 33.890 

Combination model:             

Equal combination 2.380* 2.482* 4.861* 2.564* 17.591* 20.155* 

Regression combination (50 days) 8.200 29.861 38.061 8.579 63.345 71.924 

Regression combination (250 days) 5.088 24.400 29.488 2.169* 52.849* 55.018 

MSE performance method 0.380* 1.594* 1.973* 1.037* 17.305* 18.342* 

Switching method 0.040* 2.428* 2.468* 0.208* 22.166* 22.374* 

MAE method (over prediction correction) 1.635* 18.141 19.776 0.384* 34.253* 34.637* 

(The symbol * means that the model is accepted by that backtesting method with a 10% significance level) 

 

Table 19 Results backtesting VaR, second period, student-t distribution 

Period Period 2 (2007-2010) 

Alpha 1% 5% 

Test statistic LRuc LRind LRcc LRuc LRind LRcc 

Individual model:             

Moving Average (20) 0.077* 10.782* 10.859* 0.404* 54.865* 55.269* 

Moving Average (60) 1.447* 40.490 41.937 0.115* 77.268 77.383 

EWMA 0.555* 9.130* 9.686* 1.153* 57.350* 58.503* 

GARCH-N 0.077* 23.517 23.594 2.263* 63.631* 65.894* 

GARCH-T 0,555* 9,130* 9,686* 1,484* 61,088* 62,572* 

NAGARCH 2.235* 26.472 28.707 6.157 70.811* 76.968* 

NAGARCH-VIX 0.152* 9.729* 9.881* 2.263* 50.661* 52.924* 

CGARCH 0.077* 24.143 24.221 4.273 65.579* 69.852* 

Combination model:             

Equal combination 0.555* 14.806 15.362 1.484* 55.382* 56.866* 

Regression combination (50 days) 35.008 77.900 112.908 22.281 106.574 128.855 

Regression combination (250 days) 23.087 59.314 82.401 12.648 76.721* 89.369 

MSE performance method 1.447* 28.627 30.074 6.157 63.485* 69.642* 

Switching method 3.167 28.046 31.213 9.973 62.069* 72.042* 

MAE method (over prediction correction) 27.644 67.228 94.872 23.493 90.183* 113.676 

(The symbol * means that the model is accepted by that backtesting method with a 10% significance level) 

 

 

 



41 

 

Table 20 Results backtesting VaR, total period, normal distribution 

Period Total period (2005-2010) 

Alpha 1% 5% 

Test statistic LRuc LRind LRcc LRuc LRind LRcc 

Individual model:             

Moving Average (20) 30.675 91.783 122.458 8.735 131.081 139.816 

Moving Average (60) 28.691 111.428 140.120 7.527 167.186 174.713 

EWMA 30.675 106.816 137.491 4.409 122.692 127.101 

GARCH-N 28.691 92.997 121.688 4.409 121.552 125.961 

GARCH-T 21.269 83.091 104.359 1.491* 109.617 111.109 

NAGARCH 45.875 121.632 167.507 9.370 128.222 137.591 

NAGARCH-VIX 32.708 97.515 130.224 13.596 117.325* 130.921* 

CGARCH 23.045 77.835 100.879 4.875 116.585 121.460 

Combination model:             

Equal combination 32.708 95.356 128.064 3.965 110.656* 114.621* 

Regression combination (50 days) 148.659 255.852 404.511 62.422 225.553 287.975 

Regression combination (250 days) 121.882 197.800 319.682 43.243 185.978 229.221 

MSE performance method 45.875 104.537 150.413 15.971 129.349* 145.320 

Switching method 63.147 125.988 189.135 21.225 141.671 162.895 

MAE method (over prediction correction) 109.147 182.595 291.742 58.068 210.939 269.007 

(The symbol * means that the model is accepted by that backtesting method with a 10% significance level) 

 

Table 21 Results backtesting VaR, total period, student-t distribution 

Period Total period (2005-2010) 

Alpha 1% 5% 

Test statistic LRuc LRind LRcc LRuc LRind LRcc 

Individual model:             

Moving Average (20) 1.123* 15.822* 16.944* 0.021* 82.822* 82.843* 

Moving Average (60) 2.311* 52.344 54.655 0.144* 126.737 126.881 

EWMA 0.481* 12.848* 13.329* 0.041* 90.462* 90.503* 

GARCH-N 0.481* 25.998 26.479 0.069* 83.497* 83.565* 

GARCH-T 1,557* 11,710* 13,267* 0,247* 80,953* 81,201* 

NAGARCH 0.678* 30.958 31.636 0.995* 91.745* 92.740* 

NAGARCH-VIX 0.182* 16.144* 16.326* 0.784* 75.274* 76.058* 

CGARCH 0.182* 26.723 26.905 0.101* 94.597* 94.698* 

Combination model:             

Equal combination 2.363* 17.288 19.651 0.001* 72.973* 72.974* 

Regression combination (50 days) 41.308 107.761 149.070 30.305 169.919 200.224 

Regression combination (250 days) 26.757 83.715 110.472 13.596 129.570* 143.166 

MSE performance method 0.340* 30.220 30.560 1.775* 80.789* 82.565* 

Switching method 1.669* 30.474 32.143 4.875 84.235* 89.110* 

MAE method (over prediction correction) 24.875 85.369 110.244 17.649 124.436* 142.085 

(The symbol * means that the model is accepted by that backtesting method with a 10% significance level) 


