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Abstract 

In this thesis we will construct a new robust crew schedule at NS for extreme winter days. On such days 

there are often a lot of disruptions and rescheduling of the crew and rolling stock is in such case 

impossible. Therefore, it is necessary to construct a crew schedule which is easily to reschedule. In the 

robust crew schedule presented in this thesis, all crew members are commuting between two relief 

locations on a part of a line, but the rolling stock are assigned to the whole line. But implementing this 

idea needs about 20% more crew members. So in this thesis we discussed a mathematical model and a 

heuristic to select the optimal part of the tasks. In these methods we used some different sets of profit 

of tasks. The results of these methods and profits are compared. 
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1. Introduction 

People are continuously looking for comfortable and easy ways of travelling. Attractive public transport, 

good connections and flowing transport junction points contribute to this. Public transport is also 

important for sustainable and reliable transport in the densely populated areas of Europe. One of the 

most densely populated areas of Europe is the Netherlands. In this country, Netherlands Railways (in 

Dutch: Nederlandse Spoorwegen or NS) is able to connect people with each other. NS is the main 

railway operator in the Netherlands, having the exclusive right to operate passenger trains on the so-

called Dutch Main Railway Network until 2015.   

Every weekday the NS transfers more than 1.1 million people to their work, to school or for recreation. 

NS operates about 4,800 trips per day. 

Travelers expect, especially if they travel by train, to arrive at their destination around at the time 

published in the timetable. However, unforeseen events often take place, which cause delays or even 

cancellations of trains. As a result, passengers will arrive later than expected at their destination. In case 

of disruptions, it is the case to reschedule the crew and the rolling stock. Sometimes this is impossible, 

for example during the extreme weather circumstances in December 2009. The Dutch railway network 

incurs a lot of disruptions by these circumstances, leading to many canceled trains. During this whole 

period, dispatchers were far behind in rescheduling the crew, which made the situation even worse.  

Therefore, during the year 2010 an alternative timetable for days with extreme weather conditions is 

created. In this alternative schedule the trains and therefore the drivers and the conductors as well 

commute between two relief locations. This timetable differs a lot from the standard timetable, so when 

it is chosen to set up this schedule, it is necessary to follow the alternative schedule during the whole 

day. To test this timetable it is set up on a Sunday in October. Since the weather forecasts are 

sometimes incorrect, it was a too large risk to set up this alternative schedule during the winter period 

of 2010. Therefore, it is necessary to investigate for a robust crew schedule which does not differ so 

much from the normal timetable.  

While investigating for robust rescheduling of railway crew schedules, Vlugt (2010) discussed the idea of 

assigning the drivers to a part of a line and let them commute, but assigning the trains to the whole line. 

In this timetable the passengers do not have to switch and the crew schedule is robust. When there are 

disruptions on a route between two bases, the drivers on that route have no tasks on other routes. 

Therefore other trips are not disrupted by the absence of a driver, which makes the crew schedule 

robust.  

We will describe the problem of this thesis in Chapter 2. In Chapter 3 a mathematical model will be 

presented, which will be used to solve this problem. Afterwards, in Chapter 4, we will discuss some 

methods for the sets and parameters of the model. We will discuss a heuristic to solve the problem in 

Chapter 5. In the next chapter we will give the data description. We will finish with the results and 

conclusions in Chapter 7 and 8. 
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2. Problem description 

In this thesis we will focus on constructing a robust crew schedule at NS in case of an extreme winter 

weather forecast.  

2.1 Crew scheduling at NS 
In this section we will discuss the way NS is normally dealing with crew scheduling.  

Throughout the Netherlands, NS operates a set of lines, where a line is defined as a route between a 

start station and an end station. A line has a number of intermediate stops and is operated with a 

certain frequency. 

Each train needs a driver and a number of conductors, depending on the length of the train for example. 

This means that crew planning can only be done when the timetable and the rolling stock schedule is 

determined. Constructing the timetable and scheduling the rolling stock are problems that will not be 

considered in this thesis.  

Crew scheduling at NS is a complex problem. On a weekday, about 4,800 timetabled trips are scheduled. 

A trip is a train operating on a line between a start and end location having a departure and arrival time. 

For the operation of these trips, about 2,800 rolling stock carriages are used, and there are about 3,000 

drivers and 3,500 conductors employed. There are 29 crew bases across the country from which the 

crew members operate. Each crew member has to perform tasks. A task is the smallest amount of work 

that has to be assigned to one crew member and starts and ends at a relief location, which is either a 

crew base or another location where a change of a crew member is allowed. At most relief locations it is 

possible for the crew to have a meal break. Besides trips or parts of trips, a task can also be a passenger 

task, a shunt task of a task where the crew member has to walk or taxi from one station to another. A 

passenger task means that a crew member travels as a passenger on a certain train. A sequence of tasks, 

possibly interrupted by breaks, is called a duty.   

In this thesis we will only focus on train drivers and not on conductors, since the scheduling of 

conductors is done similarly to the scheduling of drivers.  

For the duties there are some constraints that have to be satisfied. These constraints describe, for 

example, the length of the duties, the presence and the length of a (meal) break and the maximum 

working hours before and after the break. There are constraints at crew base level as well. These 

constraints consider a minimum or maximum percentage of duties which meet some constraint. In our 

case there are no constraints at crew base level. There are only some restrictions for the duties:   

+ Duties have to start and finish at the same base.  

+ The length of a duty is at most 9.5 hours and at least 6 hours.  

+ A crew member starts with his first task 10 minutes after starting his shift and he finishes driving 5 

minutes before the end of the shift, so his effective working time is at most 9.25 and at least 5.75 hours.  

+ Each duty has a break of at least 30 minutes. This break must begin at most 5.5 hours after beginning 
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or before ending the shift.  

+ Between two tasks in a duty there must be a break of at least 5 minutes.   

To optimize the set of selected duties and schedule the crew, the problem is defined as a Crew 

Scheduling Problem (CSP), which is based on a Set Covering Problem (SCP). Since there are a lot of extra 

constraints compared to a standard SCP, the following problem with additional constraints for crew 

scheduling is introduced. 

Sets 

𝑇: Set of all tasks to be covered, with 𝑡 ∈ 𝑇  

𝐷:  Set of all potential feasible duties, with 𝑑 ∈ 𝐷  

𝑅: Set of all additional restrictions to be satisfied, with 𝑟 ∈ 𝑅  

Parameters 

𝑎𝑡𝑑 =  
 1, if task 𝑡 is covered by duty 𝑑
 0, otherwise

   

𝑏𝑟𝑑 =  parameter of restriction 𝑟 for duty 𝑑  

𝑙𝑟 =  lower bound of restriction 𝑟  

𝑢𝑟 =  upper bound of restriction 𝑟   

Decision variables  

𝑥𝑑 =  
 1, if duty 𝑑 is selected in the final selection
 0, otherwise

  

(CSP): 

min  𝑐𝑑𝑥𝑑                                                                          (2.1)

𝑑∈𝐷

 

s. t.  𝑎𝑡𝑑 𝑥𝑑  ≥ 1                       ∀𝑡 ∈ 𝑇

𝑑∈𝐷

                           (2.2) 

       𝑙𝑟  ≤   𝑏𝑟𝑑𝑥𝑑

𝑑∈𝐷

 ≤  𝑢𝑟         ∀𝑟 ∈ 𝑅                            (2.3) 

       𝑥𝑑 ∈   0,1                               ∀𝑑 ∈ 𝐷                           (2.4) 

  

Restrictions  
(2.1)  The objective is to minimize the total costs  
(2.2) This restriction indicates that every task is covered by at least one duty. When more drivers are 
 on the same train, one of the crew members is the real driver, the others are passengers.  
(2.3)   This restriction represents the constraints at crew base level, since the rules for individual duties 
 are used for the generation of set 𝐷.  
(2.4) The decision variable 𝑥𝑑 , is binary. 
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2.2 Crew scheduling for extreme winter days 
In this section we will develop a method to construct a robust crew schedule for extreme winter days.  

In this alternative crew schedule drivers and therefore conductors as well, are assigned to tasks between 

two relief locations. One of these cities has to be their own base. After having meal break in their own 

base, it is possible to switch to another pair of relief locations. Again, one of these locations has to be 

their own base.  

From previous research it has been turned out that to fulfill all trips of the original timetable, 1125 

duties has to be scheduled. This means that about 20% more drivers and conductors are needed. Since it 

is impossible for NS to hire crew members for just one day, it is necessary to determine which part of 

the existing trips has to be operated. Therefore each task has a profit and the objective is to maximize 

the total profit. Furthermore, a crew member cannot be assigned to only one task; therefore it is 

necessary to select duties which cover the most unique tasks.   

Another restriction on the selected part of trips is that the timetable must be cyclic. Since most of the 

lines have a frequency of an hour, all trips at that certain line operate or not.  So when the intercity of 

11:28 operates, the intercity of 12:28 at that station has to depart as well.   

Furthermore, all tasks in the same trip have to be performed or the complete trip has to be canceled. 

When a train is driving from Rotterdam CS to Leeuwarden, it is not possible to operate only the parts 

from Rotterdam CS to Utrecht CS and from Zwolle to Leeuwarden, because the rolling stock is not 

available in Zwolle to operate this trip.  

In this thesis we will investigate the decision which tasks to perform. The main research question in this 

thesis is: ‘What is the maximal set of trips, which can be operated by the available drivers and 

conductors?’ Therefore, we will determine an adjusted CSP, which is adjusted for this specific situation. 

After that, we will determine a value for the profit of each task which depends on for example of the 

mean number of passengers on that trip. Since a CSP is an NP-hard problem, we will propose a heuristic 

to solve this problem.  
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3. Mathematical model 

3.1 Adjusted CSP 
In this section we will describe the adjusted Crew Scheduling Problem (Adjusted CSP) and we will explain 

the restrictions.  

To meet the restrictions, described in section 2.2, the following Mixed Integer Programming (MIP) 

model is formulated:  

Sets 

𝑇: Set of all tasks, which can be covered, with 𝑡 ∈ 𝑇 

𝑆: Pseudo set of all tasks, which can be covered, with 𝑠 ∈ 𝑆  

𝐷:  Set of all potential feasible duties, with 𝑑 ∈ 𝐷  

𝐶:  Set of all base cities, with 𝑐 ∈ 𝐶  

Parameters 

𝑎𝑡𝑑 =  
 1, if task 𝑡 is covered by duty 𝑑
 0, otherwise

   

𝑠𝑐𝑑 =  
 1, if city c is the start city of duty 𝑑
 0, otherwise

   

𝑝𝑡 = Profit of covering task t   

𝑀 = Big number  

𝑁 = Number of available drivers   

𝑁𝑐 = Number of available drivers with base city c  

𝑆𝑇𝑡 = Start time of task t  

𝑆𝐶𝑡 = Start city of task t  

𝑇𝐶𝑡 = Destination city of task t  

𝑇𝑁𝑡 = trip number of task t  

Decision variables  

𝑥𝑑 =  
 1, if duty 𝑑 is selected in the final selection
 0, otherwise

   

𝑣𝑡 =  
 1, if task t is covered by at least one duty in the final selection 
 0, otherwise

   

 (Adjusted CSP): 

max  𝑝𝑡𝑣𝑡                                                                                                                                                  3.1 

𝑡∈𝑇

 

s. t.  𝑎𝑡𝑑 𝑥𝑑  ≥ 𝑣𝑡         ∀𝑡 ∈ 𝑇

𝑑∈𝐷

                                                                                                                3.2  

        𝑥𝑑  ≤ 𝑁                           

𝑑∈𝐷

                                                                                                                (3.3) 

        𝑠𝑐𝑑𝑥𝑑  ≤ 𝑁𝑐         ∀𝑐 ∈ 𝐶      

𝑑∈𝐷

                                                                                                        (3.4) 
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       𝑣𝑡 = 𝑣𝑠                        ∀ 𝑡, 𝑠 ∈  𝑇, 𝑆  | 𝑆𝑇𝑡 + 60 = 𝑆𝑇𝑠 & 𝑆𝐶𝑡 = 𝑆𝐶𝑠 & 𝑇𝐶𝑡 = 𝑇𝐶𝑠              (3.5) 

       𝑣𝑡 = 𝑣𝑠                        ∀ 𝑡, 𝑠 ∈  𝑇, 𝑆  | 𝑇𝑁𝑡 = 𝑇𝑁𝑠                                                                        (3.6) 

       𝑣𝑡 , 𝑥𝑑 ∈   0,1             ∀𝑡 ∈ 𝑇, ∀𝑑 ∈ 𝐷                                                                                               (3.7) 

Restrictions  
(3.1)  The objective is to maximize the total profit.  
(3.2) This restriction indicates that if a task is covered by at least one duty in the final selection, 𝑣𝑡  
 could be one. When more drivers are on the same train, one of the crew members is the real 
 driver, the others are passengers.  
(3.3)   This restriction provides that the total number of selected duties is at most equal to the number 
 of available drivers.  
(3.4) This restriction takes care of the fact that the number of selected duties for each base city is at  
 most equal to the number of available drivers in that city.  
(3.5) The selected part of tasks has to be cyclic. Therefore, this restriction makes sure that every 
 hour the same trips are covered.  
(3.6) A train has to go a trip, which is from a start station to an end station. So when tasks are at the 
 same trip, all these tasks have to be covered or not covered.  
(3.7) The decision variables 𝑣𝑡  and 𝑥𝑑 , are binary. 

3.2 Extra Restriction 
While executing the model given in section 3.1, it is possible to cover tasks in the final solution for 

which 𝑣𝑡 = 0. Restriction (3.2) states that  𝑣𝑡  could only be equal to one, when task 𝑡 is covered by at 

least one of the selected duties. Although, when task 𝑡 is covered by selected duties, restriction (3.3) 

does not require that  𝑣𝑡  is equal to one.   

Since the timetable has to be cyclic by restriction (3.5), it is necessary that 𝑣𝑡 = 𝑣𝑠. So when it is not 

possible to cover  𝑣𝑠 , it is profitable to set  𝑣𝑡  equal to zero. Restriction (3.5) is in this case a soft 

constraint.  

When it is necessary to have a strictly cyclic timetable, the following restriction has to be added to the 

model given in section 3.1.     

        𝑎𝑡𝑑 𝑥𝑑  ≤ 𝑀𝑣𝑡     ∀𝑡 ∈ 𝑇

𝑑∈𝐷

                                                                                                                3.8  

 

Restriction (3.8) requires that when task 𝑡 is covered by at least one duty  𝑣𝑡  has to be equal to one, 

since  𝑣𝑡  is a binary variable. So by adding (3.8) to the adjusted CSP, restriction (3.5) is a hard constraint 

and the timetable will be cyclic.  
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4. Methodology  

In this chapter we will discuss the determination of some sets and parameters of the mathematical 

model, given in section 3.1. 

4.1 Tasks 
In the alternative crew schedule a task is the shortest trip between two relief points. A trip could be 

from one station to another or from a base to another city (which is not a base) and then back to the 

base.   

All these tasks are numbered on their starting time. Therefore, the first driving train has index number 1 

and so on.  

4.2 Duties 
The set of duties contains all possible duties with all tasks, which are discussed in section 4.1. These 

duties are restricted by the constraints for duties given in section 2.1. In our particular case there is an 

extra restriction for the duties; this restriction is based on the idea of Vlugt (2010). 

+ A driver has to commute between two bases; therefore a duty contains only trips between two bases. 

The set of all possible duties for each couple of bases is constructed, according to the following method. 

First all tasks between a given couple of bases are selected. These tasks are ordered on their start time. 

After that, for each task in the subset, it is determined by which of the tasks it can be followed. With 

these opportunities there are chains constructed. When the duration of a chain is too long, the chain is 

cut and thrown away. All chains with a too short duration of which the duration is too short, are also 

thrown away.   

Finally, it is necessary to verify that there is a break of at least 30 minutes in each chain. When this is not 

the case, there is determined which tasks are located 5.5 hours after beginning and before ending of the 

chain.  Each of these tasks can be removed from the chain for 30 minutes break, since the length of a 

task is in our case at least 20 minutes. So there are several possible duties with this chain of tasks. These 

adjusted chains and the remaining chains are all possible duties with the tasks in the subset between 

two bases. So for each couple of bases all possible duties are constructed.  

When the total number of possible duties is too large, it is necessary to reduce it. Since a task can be 

operated several times, in that case one crew member is a driver and the others are passengers, we can 

assume that it is always possible to select a duty with more tasks. Therefore, when all tasks of a duty are 

in at least one other duty, we can throw this duty away. So for example Duty 1 contains task 1 and 3 and 

Duty 2 contains task 1, 2, 3 and 4, it is possible to remove Duty 1 of the set of all possible duties without 

loss of optimality, because the other tasks of Duty 2 can be covered twice.  
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5. Heuristic 

Since the standard CSP and also the adjusted CSP are NP-hard problems, it is useful to find a heuristic to 

solve the model. In this section we will propose a heuristic which is based on the optimal selection of 

duties.  

5.1 Basic idea 
The main idea of this heuristic is, like the objective function of the mathematical model, to maximize the 

total profit. Therefore, we will search for the optimal selection of duties. For this heuristic we use the 

methods of Chapter 4 to create a reduced set of all possible duties. Every time the duty with the highest 

contribution to the total profit is chosen. If there are more duties with the same profit, the selected duty 

is randomly chosen. The duties which contain one or more of the new covered tasks are less profitable 

next time and duties which contain one or more tasks which are cyclic with the new covered tasks are 

more profitable next time.  

Since the selected duties are randomly chosen, when their profit is equal, it could be useful to run the 

heuristic several times to optimize the set of selected duties.  

The cyclic restriction is a soft constraint in this case, since it is not guaranteed that all tasks which are 

cyclic with the covered tasks are also covered.  

5.2 Algorithm 
While there are drivers which are not yet performing a duty, do the following: 

1. Determine for each task the additive profit to the total profit. This means that the profit is 

adjusted for the already chosen tasks and for the cyclic tasks. 

2. Choose the duty with the highest additive profit and check there is still a driver available in the 

start base of this duty. When there are more duties with the same additive profit, one of these 

duties is randomly chosen. If there are no drivers left in that base, the additive profit of the 

chosen duty is set to zero and the again the duty with the highest additive profit is chosen.  

3. If the additive profit of all duties is equal to zero, but there are drivers left. It is not necessary to 

select more duties, although it is still possible.  
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6. Data 

In this chapter we will discuss the data we use in this thesis. Furthermore, we select tasks and determine 

all possible duties and the number of available drivers. 

6.1 Data 
There is data available about all the trips NS operates. For each trip the trip number, the starting and 

finishing station, the intermediary stations and the departure and arriving times for each intermediary 

station are given. In total there are 4726 trips. With the methods presented in this thesis, there are too 

many trips to calculate the optimal part under the restrictions given in section 2.2. Therefore, it is 

necessary to determine a test case of the total available trips. This can be a part of the lines or a part of 

the Netherlands. There is only one condition; the trips in the test case must influence each other.  

6.2 Test Case     
For testing the mathematical model, given in section 3.1, we select a part of the trips. We have chosen 

to use the part of the trips operated in the southwest of the Netherlands. These are the trips between 

Vlissingen (Vs), Roosendaal (Rsd), Bergen op Zoom (Bgn), Tilburg (Tb), Dordrecht (Ddr), Breda (Bd), Den 

Bosch (Ht) and Eindhoven (Ehv). Breda, Bergen op Zoom and Tilburg are not bases, so in these cities 

crew members can neither change trains nor have a break.  

In this area the following lines are operated:  

- 1900-serie, between Ddr <-> Bd <->Tb <-> Ehv   

- 2100-serie, between Ddr <-> Rsd <-> Vs  

- 2200-serie, between Ddr <-> Bd <-> Ddr  

- 2400-serie, from Vs -> Rsd -> Ddr (only during the morning rush-hours)  

- 3600-serie, between Rsd <-> Bd <->Tb <-> Ht  

- 5100-serie, between Ddr <-> Rsd <-> Bgn <-> Rsd  

- 14600-serie, Rsd <-> Vs  

There are some 70000-serie and 80000-serie trips operated in this area, which are covered in the test 

case as well. These trips are trips with empty rolling stock and they are not strictly necessary for the 

timetable.   

In figure 6.1 the considered area of the Netherlands is shown.  
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Figure 6.1: The map of the south-west of the Netherlands with the covered stations. 

 

6.3 Tasks 
Based on the definition in section 4.1, the total number of trips during a weekday in this area is 320. In 

the Table 6.2 one can see the distribution between the trips and the bases. All these trips are individual 

tasks in this set.   

Bases Number of trips 

Ddr -> Bd -> Ddr  26 

Ddr -> Ehv 37 

Ddr -> Rsd 50 

Ehv -> Ddr 37 

Ehv -> Rsd 1 

Ht -> Rsd 37 

Rsd -> Bgn -> Rsd 8 

Rsd -> Ddr 50 

Rsd -> Ehv 1 

Rsd -> Ht 39 

Rsd -> Vs 15 

Vs -> Rsd 19 
Table 6.2: The bases in the test case with their incoming and outgoing trips. 
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6.4 Duties 
For each couple of bases is all possible duties are constructed with the method given in section 4.2. In 

total there are 1219797 possible duties which can be selected.  In table 6.3 the numbers of possible 

duties per couple of bases are reported.  

Bases Number of 
possible duties 

Reduced number 
of duties 

Ddr <-> Ddr  557 452 

Ddr <-> Ehv 11834 7143 

Ddr <-> Rsd 1171077 305640 

Ehv <-> Rsd 0 0 

Ht <-> Rsd 35868 17320 

Rsd <-> Rsd 0 0 

Rsd <-> Vs 461 340 

Total 1219797 330895 
Table 6.3: The couples of bases in the test case with the (reduced) number of possible duties. 

After reducing, in according to the method described in section 4.2, the total numbers of duties, 330895 

duties remain. The distribution of these duties over the routes is also given in shown table 6.3. 

We have to remark that not all tasks of the subset are covered by at least one duty. There are no 

possible duties with the trips between Ehv and Rsd and no duties that start and end in Rsd.  

6.5 Profit 
The profit of a trip is for example based to the mean number of passengers on that trip. We have not 

the data to determine profits for each trip. Therefore, we test our model with two different sets of 

profits for each task. In the first set, Profit 1, we assume that the profit of each task is the same and 

equal to one. The second set, Profit 2, makes a difference between Intercity tasks and tasks on slow 

trains. We assume that Intercity tasks are more important, so the profit of these tasks is equal to two 

and the profit of tasks on slow trains is equal to one.  

In our test case tasks of the 1900, 2100, 2400 and 3600-series are Intercity tasks. Tasks of other series 

are slow train tasks.  

6.6 Number of drivers 
The total number of drivers can be determined by counting the number of existing duties in the original 

crew schedule. When the existing duties are count by base, the number of drivers per base can be 

determined.  

Since a test case is a part of the total number of trips, we cannot assume that the number of drivers for 

each base is the same as when we select all trips. So since we have covered all tasks which depart or 

finish from some bases, we may assume that all drivers with these cities as base are working on the 

covered duties.  For the other bases we just cover a part of their trips, so we have to take a part of the 

drivers. To determine the number of available drivers per base, we count all tasks which depart from a 
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given base in all data. We also count the number of tasks which are covered by the test case. 

Furthermore, we determine the part of tasks which are covered by the test case. The number of 

available drivers of this base is the same part of the total number of drivers with this city as base. Since 

the number of drivers has to be integer, this number is rounded up.  

In formula:  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑑𝑟𝑖𝑣𝑒𝑟𝑠 =  
𝑇𝑎𝑠𝑘𝑠  𝑐𝑜𝑣𝑒𝑟𝑒𝑑  𝑏𝑦  𝑡𝑒𝑠𝑡  𝑐𝑎𝑠𝑒

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑎𝑠𝑘𝑠
 ∙ 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑟𝑖𝑣𝑒𝑟𝑠                 (6.1)       

Since we have covered all tasks which depart in Vlissingen and Roosendaal, all drivers from these cities 

are working on the covered duties.  For the other three bases, Dordrecht, Eindhoven and Den Bosch, not 

all trips are covered by the test case, so we have to determine a reduced number of drivers. 

According to formula (6.1), we have determined the number of available drivers. The results can be 

found in Table 6.4. 

Base Number of tasks 
covered by test case 

Total number 
of tasks 

Part of tasks 
covered by test case 

Total number of 
drivers 

Number of 
available drivers 

Ddr 113 291 0.39 23 9 

Ehv 38 322 0.12 46 6 

Ht 37 351 0.11 18 2 

Rsd 135 135 1.00 38 38 

Vs 36 36 1.00 8 8 
Table 6.4: The determining of the number of available drivers per base 

In section 2.2 the statement is made that about 20% more drivers are needed when the drivers 

commute between two relief locations. In order to check this statement we also design a set of numbers 

of available drivers where there are in each base about 20% more drivers available.  

So the two variations for the set of numbers of available drivers are displayed in Table 6.5. Since the 

number of available drivers +20% crosses the total number of drivers in some bases, namely Rsd and Vs, 

the second set of numbers is only used as a test and is not feasible in reality.  

Base Number of 
available drivers 

(Set 1) 

Number of  
available drivers +20% 

(Set 2) 

Ddr 9 11 

Ehv 6 8 

Ht 2 3 

Rsd 38 46 

Vs 8 10 

Total 63 78 
Table 6.5: The numbers of available drivers in both sets per base 
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7. Results 

In this chapter we will define 12 different cases of the problem and for each case we will give the 

number of covered tasks and the distribution of these tasks over the given routes. 

Given the remark in section 6.4 that there are ten tasks which are not covered by the defined duties, the 

maximum total number of covered tasks is 310 tasks. 

There are two variations of the adjusted CSP model. The model given in section 3.1 with restrictions 

(3.1)-(3.7)(Model 1) and with (3.1)-(3.8)(Model 2). Model 2 is strictly cyclic and Model 1 is not.  

There are also two sets with the numbers of available drivers. These sets are discussed in section 6.6. 

The difference between these two sets is that Set 1 is feasible and Set 2 not. Therefore, Set 2 is only 

used as a test for the determining of the number of available drivers. 

Furthermore, we have discussed in section 6.5 two variations in determination of the profits. In Profit 1 

the profit of all tasks is the same and equal to one and in Profit 2 the profit of the Intercity tasks is equal 

to two and for all other tasks it is equal to one.  

Therefore, there are in total eight different cases. In Table 7.1 and 7.2 all possibilities are displayed.  

Model 1 With Profit 1 With Profit 2 

With Set 1 Case 1 Case 3 

With Set 2 Case 2 Case 4 

 

Model 2 With Profit 1 With Profit 2 

With Set 1 Case 5 Case 7 

With Set 2 Case 6 Case 8 

 

Besides these eight cases with the mathematical model there are also four cases with the heuristic, 

given in section 5.2. This heuristic can be combined with Set 1 and Set 2 and also with Profit 1 and 2. The 

possibilities are displayed in Table 7.3. 

Heuristic With Profit 1 With Profit 2 

With Set 1 Case 9 Case 11 

With Set 2 Case 10 Case 12 
Table 7.3: The possible cases with the heuristic and the different sets of profit and number of available drivers 

The total number of tasks covered in each case is displayed in Figure 7.4. 

In Case 1 and 3 the number of covered tasks is not equal to the sum over all 𝑣𝑡  from Model 1. This sum 

is the same as the number of covered tasks is Case 5 and 7. The number of covered tasks is these cases 

are equal to the number of tasks which is covered by the selected duties. This number is larger than the 

sum over all 𝑣𝑡 , since there are tasks covered which are not cyclic with the other tasks and therefore is 

for these tasks 𝑣𝑡  equal to zero. Since they are covered by the selected duties, we count them to the 

sum of all 𝑣𝑡 . 

 

Tables 7.1 & 7.2: The possible cases with the different models, sets of profits and sets number of available drivers 
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We can see in Figure 7.4 that, as we had expected, with Model 1 not all tasks are covered with Set 1, but 

with the test set, Set 2, all tasks which can be covered, are covered. We also expected that when we 

require a strictly cyclic timetable, fewer tasks can be covered by the available drivers. That’s also the 

case, but when we execute Model 2 with Set 2, all tasks are again covered. When we use Profit 2 with 

Set 1, like in Case 3 and 7, we see that with Model 1 there are more tasks covered then with Profit 1, but 

with Model 2 there are less tasks covered than in Case 5.   

When we solve the problem with the heuristic with Set 1, we can see that there are more tasks covered 

than in Case 1, 3, 5 and 7, which have the same set of available drivers. Even if there are 20% more 

drivers available, like in Case 10 and 11, the heuristic cannot cover all tasks.  

 

 
Figure 7.4: The number of covered tasks in different cases 

 

When not all tasks which can be covered, are covered, it is interesting to know on which route there are 

less trains. In Table 7.5 on next page for the cases where not all tasks are covered, the number of trips 

covered on each route can be found.  

  

283

310

287

310

274

310

266

310

287

303

289

300

240

250

260

270

280

290

300

310

320

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12

N
u

m
b

e
r 

o
f 

co
ve

re
d

 t
as

ks

Number of covered tasks in different cases



18 
 

Bases Total Trips Case 1 Case 3 Case 5 Case 7 Case 9 Case 10 Case 11 Case 12 

Ddr -> Bd  
-> Ddr  

26 26 8 26 0 21 22 12 24 

Ddr -> Ehv 37 23 32 19 37 28 35 34 32 

Ddr -> Rsd 50 50 50 50 50 50 50 50 50 

Ehv -> Ddr 37 24 37 19 19 28 36 33 34 

Ehv -> Rsd 1 0 0 0 0 0 0 0 0 

Ht -> Rsd 37 37 37 37 37 37 37 37 37 

Rsd -> Bgn  
-> Rsd 

8 0 0 0 0 0 0 0 0 

Rsd -> Ddr 50 50 50 50 50 50 50 50 50 

Rsd -> Ehv 1 0 0 0 0 0 0 0 0 

Rsd -> Ht 39 39 39 39 39 39 39 39 39 

Rsd -> Vs 15 15 15 15 15 15 15 15 15 

Vs -> Rsd 19 19 19 19 19 19 19 19 19 

Table 7.5: The number of covered tasks per route in the cases where not all tasks are covered.  

We can see in Table 7.5 that when all trips have the same profit, like in Case 1 and 5, first the trains on 

the route between Ddr and Ehv are not covered. In Case 1 there are 27 uncovered trips between Ddr 

and Ehv and in Case 5 there are 36 uncovered trips. In Case 9 and 10 there are uncovered trips between 

Ddr and Ehv and on the route from Ddr to Bd and back to Ddr. It seems that there are too less drivers 

available in Ddr.  

When the Intercity tasks have a profit equal to two, like in Case 3, 7, 11 and 12, there are more trains 

scheduled on the route between Ddr and Ehv, but less on the route from Ddr to Bd and back to Ddr. In 

Case 3 there are only eight trips on the route between Ddr and Bd covered and in Case 7 none of these 

26 trips are covered. In Case 11 and 12 there are respectively 12 and 24 of the 26 trips on this route 

covered.  
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8. Conclusions 

From our research we can concluded the following: 

We can adjust the standard CSP-model to create an adjusted timetable for days with extreme winter 

weather. With this model we can create both a strictly cyclic timetable and a timetable which is not 

strictly cyclic. A heuristic is proposed which can be used to solve the problem.  

After executing the adjusted CSP we can conclude that with the first set of numbers of available drivers 

per base not all tasks can be covered. When we execute the model with the set with 20% more drivers, 

all tasks in the test case are covered. So the statement in Vlught (2010) that there are about 20% more 

drivers needed to cover all tasks in the entire whole country seems to be right.   

The solution of the heuristic cover more tasks than the solution of the mathematical model. Intuitively 

this seems to be wrong, because the results of the executing of the model are optimal. The main reason 

for this is that we do not strictly require that the selected part of tasks has to be cyclic. So since we relax 

the problem, the solution could be better than the cyclic solution.  

When we consider the distribution of the selected tasks over the different routes, we can see that the 

route between Ddr en Ehv is the first route which is cancelled. It seems that there are too less drivers 

available in these bases. This is common in crew scheduling at NS. In the far corners of the country there 

are too many drivers and in the busy areas there are too less. When a driver has to commute between 

two bases where one of them has to be his home base, he stays in the area of his base and cannot 

perform tasks be useful in the other areas.  

When we assume that the Intercity trains are more important than the slow trains and therefore the 

profit of the Intercity trains is larger equal to two, we can see that nearly all trains on the route between 

Ddr and Ehv are covered. In this case there are trains cancelled between Ddr and Bd. The reason for this 

is that the trains between Ddr and Bd are slow trains and between Ddr and Ehv the most trains are 

Intercity trains. So when the total profit is maximized, it is better to cancel slow trains than Intercity 

trains, when the Intercity trains are more profitable than the slow trains. 

In total we can concluded that in our test case most of the trips are covered, but when we transfer the 

test area to the busy areas of the Netherlands, it will be more difficult to cover all trips.  
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