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Abstract
In this research we investigated what effects are of an auction have on con-
gestion on the road. We used the VCG mechanism for the idea of rules for
the auction and we introduce a IP formulation which can be used to calcu-
late an optimal solution for the auction. We compared the IP formulation
to other combinatorial optimization problems in literature and we discuss
some of the characteristics of the solution of the IP formulation. We end
with a real data example of the A15, which shows it is possible to divide the
trucks of companies more over the day.
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1. INTRODUCTION

1.1 General Problem Description

Traffic jam is a common problem, especially in the Netherlands. The Dutch
government tries hard to reduce the congestion on the Dutch highways.
One of the problem areas is the A15 by Rotterdam, which is a busy route
for freight. This A15 leads directly to the port of Rotterdam and every day
many companies send their trucks over this route, besides the normal traffic.
This gives a lot of hold-up for these transports as well as the other traffic.
The public reaction which follows, is demanding a decrease in the number
of trucks at the busy hours. For this reason the government wants to reduce
the congestion on the A15. The government knows that congestion is due
to the fact that the trucks are traveling too much on the same time. So
the government is interested in methods to divide the driving trucks more
evenly over the day.

For this research the government considers a method which makes com-
panies willing to use the A15 for freight on other times than they do in the
current situation. In order to achieve this willingness from the companies,
the government chose to compensate the companies for transporting goods
on other hours. A possible way to achieve this compensation is by organiz-
ing an auction for time slots. Every company that is interested to transport
goods on the route can submit a bid. This bid contains information about
which starting time slot, on which trajectory and how many trucks they
want to send. This information is represented by the value of time (VOT),
which is the value the company associates with the information of the bid.
It is assumed that a bid of a company is in terms of VOT and thereby the
information about the starting time slot, trajectory and number of trucks is
known. The government wants to make sure that the capacity of the road
is never violated and that every company gets their total number of desired
trucks.

The goal of the research is to make a start with analyzing the impact
of an auction for time slots on the traffic congestion. We will describe a
model to find an optimal solution for the auction, test in which situations it
is possible to use it and apply the model on some real based data. We will
also link our model to models in literature for future heuristic development.
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1.2 Literature Research

The government wants to organize an auction in order to achieve compen-
sations for driving on different hours. The mechanism design that will be
used for this auction is the Vickey-Clarke-Groves (VCG) mechanism, which
comes from the field of game theory studies. A nice introduction to the field
of VCG mechanisms can be found in Nissan (2007)[13]. For the auction in
this research the VCG mechanism states that all companies have each a set
of valuations, in terms of VOT, given an outcome of the auction. This means
that for every bid, the companies have their own value. In Nissan (2007)[13]
also is proven that the VCG mechanism is incentive compatible. Incentive
compatible means that with an optimal solution, a player in a VCG mecha-
nism is always best off when he tells the truth. In this research the players
are the companies and so the companies are best off when they bid their
truth VOTs for the bids they make. The VOT is part of the utility function
of the company, which the companies want to maximize in the game. This
utility function consists of the VOT given the outcome of the auction and
an additional payment. This payment is defined by the Groves mechanism
(Groves (1973) [7]) and the Clarke pivot rule (Clarke (1971)[4]) which will
be explained in more detail in the next section. The Groves mechanism
also States that the outcome of the auction is given by a function which
maximizes the total valuation.

Nisan and Ronen (2007)[14] also discuss the general theory of the VCG
mechanism. However they also state that when the optimization problems,
which are used to calculate a optimal solution for the aution, become larger,
computers are incapable of solving the problem within polynomial time.
This means that the problem is ‘NP-hard’. NP-hard means that the compu-
tation time for finding the optimal solution is too long and so it is preferred
to find algorithms which can quickly find another, but still good solution
to the problem. However in the article of Nisan and Ronen (2007)[14] is
also shown that when such an algorithm is used, which means the problem
is not solved optimally, the VCG mechanisms are not necessary incentive
compatible anymore. This gives a problem, because then it is not known
what the real valuation of the companies are and thus is there no certainty
about reliability of the solution to the auction. Therefore in the article they
introduce a second chance mechanism which is feasible truthful and is a
modification of the VCG-based mechanism.

There is done a research to an auction for reducing traffic congestion
by Wada and Akamatsu (2010)[2]. They used the tradable network per-
mit (TNP) scheme (by their part proposed by Akamatsu, Sato and Nguyen
(2006)[1]) in combination with the VCG mechanism and the Vickrey pay-
ment (Vickrey (1961) [17]) to trade routes on different time slots. In their
case several players of the auction can win a permission to use a certain
part of the road on a certain time. This means that not every player is
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assigned to a time slot, which is contradictory to our research because in
this research every player (company) needs to be assigned to some time slot.
They also formulate an optimization problem for this problem. Furthermore
they show that for only one origin-destination combination this mechanism
works effectively but that otherwise the problem will be computationally
hard; i.e., the optimization problem is ‘NP-hard’. To avoid this NP-hard
problem that they propose an mechanism which is readily implementable.
This mechanism is called a day-to-day auction mechanism.

In the next chapter there will be a further explanation of what the VCG
mechanism means for this research. In chapter 3 we will describe the model
we will use, which maximizes the total valuation of the auction. In chapter
4 some theoretical examples of data are given, in order to investigate the
characteristics of the solution to the auction and to get an idea about when
the computation time gets too long. In chapter 5 there will be an example
of data inspired on real data about the A15. Finally we will finish with a
conclusion and recommendations.



2. THE VICKREY-CLARKE-GROVES AUCTION

The auction the government wants to organize to allocate the time slots, will
be organized as a Vickrey-Clarke-Groves (VCG) auction. This VCG mech-
anism (Parkes (2001) [16] and Nissan (2007) [13]) comes from game theory
studies and is based on the theories of the Vickrey auction (Vickrey (1961)
[17]), the Clarke pivot rule (Clarke (1971) [4])and the Groves mechanism
(Groves (1973) [7]). The Groves mechanism states that participants of the
game (from now on called players) have a quasi-linear utility function for
some set of possible alternatives, K. According to the Groves mechanism
this utility function is given by (Groves (1973) [7]):

Ui(k, pi, θi) = vi(k, θi)− pi (2.1)

Here Ui(k, pi, θi) stands for the utility of player i, given an alternative k,
the payment pi and the valuations of player i, θi. The utility of a player
depends on the player’s value for alternative k and on a payment from the
player to the mechanism. This is denoted by vi(k, θi) and pi respectively.
The payment is defined by the Groves mechanism as (Groves (1973) [7]):

pi(θ̂) = hi(θ̂−i)−
∑
j 6=i

vj(k
∗, θ̂j) (2.2)

In equation (2.2) θ̂ denotes the set of reported preferences by the players,
which are not necessarily their truth preferences. Also k∗ represents the
alternative which maximizes the total reported value over all players. So
the payment depends, given the set of reported preferences, on a function hi
and on the total valuation, given alternative k∗, minus the value of player
i itself. The θ̂−i in the function hi represents a function over all reported
preferences except the one of player i. The function hi is specified by the
Clarke pivot rule. The Clarke pivot rule states the function as (Clarke (1971)
[4]):

hi(θ̂−i) =
∑
j 6=i

vj(k
∗
−i, θ̂j) (2.3)

This function means that the payment also depends on the best solution
without player i. In equation (2.3) k∗−i represents the alternative which
maximizes the total reported value over all players except player i. With
this pivot rule of Clarke the payment for the auction becomes:

pi(θ̂) =
∑
j 6=i

vj(k
∗
−i, θ̂j)−

∑
j 6=i

vj(k
∗, θ̂j) (2.4)
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And now the utility function becomes (Parkes (2001) [16]):

Ui(k, pi, θi) = vi(k, θi)−
∑
j 6=i

vj(k
∗
−i, θ̂j) +

∑
j 6=i

vj(k
∗, θ̂j) (2.5)

The Vickrey auction (Vickrey (1961) [17])is a sealed-bid and second-price
auction. In this Vickrey auction the sealed-bids mean that the participants
of the auction only have information about their own bids and no information
about the others. Second-price auctions are auctions where the player with
the highest bid wins, but pays the second-highest bid.

The VCG mechanism has some nice properties. It is allocatively-efficient
which means that the total value over all players is maximized. For this
mechanism individual-rationality holds, which means that the utility for
player i for participation in a game is at least the value of the utility when not
participate. The most important property for this research however is that
the mechanism is incentive-compatible, which means that the players will
truthfully report information about their preferences for a optimal solution.
This incentive-compatible property does not depend on the function of hi
(Parkes (2001) [16]).

2.1 VCG for This Research

In this research the government wants to organize an auction for time slots.
This auction should ensure that the times on which the trucks are driving,
are spread more evenly over a the day. The companies in this research
are the players of the auction. The government changes some parts of the
VCG auction. First the government decided to compensate the companies
for having to drive on other times than they like. To ensure this we will
for simplicity set the function of hi to zero, which will change the utility
function of the companies change into:

Ui(k, pi, θi) = vi(k, θi) +
∑
j 6=i

vj(k, θ̂j) (2.6)

As can be seen now there will be a positive transaction from the mechanism
(the government) to the players. We can make this change because the form
of function hi does not have any effect on the property that the mechanism
is incentive-compatible (Parkes (2001) [16]).

Secondly the government wants that the auction gives a solution in which
exactly the amount of trucks is given to every companies, which they desires
to send onto the road. This has some consequences for the way to find the
solution for the auction. This will be discussed in the next chapter.

The companies need to offer bids in order to participate to the auction.
These bids will be in terms of Value of Time (VOT). This VOT is related
to a number of things:
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• The number of trucks

• The time slot on which the trucks are supposed to be starting.

• The origin and destination of the trucks. This will be referred to as
the used trajectory.

These details with the corresponding VOT form a bid for a company. From
now on there will be referred to a group of trucks as a bid with the above
properties. A group of trucks also contains information about which com-
pany the bid is from.

A company should bid for more than only the time slots a company
wants, otherwise the auction would make no sense. Further do the companies
need to give information about the number trucks they want to send on the
road in total, which from now will be referred to as the possessed number
of trucks. The groups of trucks with corresponding VOT will be offered to
the auction.

When the bids are placed, the government needs to find a way to allocate
time slots to the companies by maximizing the total VOT. The model which
is used for this is explained in detail in the next chapter.

Finally when the government found a solution, the companies will receive
the information about which group has ’won’ the auction. They also receive
information about the payment the company gets for that group. In this
research we will focus only on how to find the ’winning’ groups, so not on
the payment.

In the next chapter we will introduce the IP formulation, which will
be used throughout this research to try to find an optimal solution for the
auction.



3. IP FORMULATION

The VCG mechanism requires an optimal solution for the allocation prob-
lem as stated in the previous chapter. This solution should maximize total
VOT for all bids. Integer programming can be used to develop a model
which maximizes the total VOT and ensuring that the requirements of the
government are not violated. The following formulation gives the objective
function, which is the function which maximizes the total VOT, and the
constraints which will make sure that the requirements given by the govern-
ment will be satisfied. These requirements are that the capacity of the road
is never violated and that every company gets the number of trucks they
posses to send on a certain trajectory.

Objective function

max
∑
g

∑
s

V OTg,s yg,s

subject to: ∑
g

∑
s

Ng,s bg,a yg,s = Na for all a (3.1)

∑
g

∑
s

P h,k
g,s Ng,s Ig,k yg,s ≤ Ch,k for all h, k (3.2)

yg,s = {0, 1} for all g, s (3.3)

This formulation uses five different indices. These indices represent the fol-
lowing sets:

Sets:
G = Groups of trucks
S = Time slots for departure
A = Companies
H = Observation times
K = Segments of the road

An element of some set will be denoted by the same, small letter. The
set G contains for every bid a company makes the corresponding group of
trucks as explained in the previous chapter. Further does the set H contain
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the times on which the road is observed. With these sets the parameters
and variables of the formulation can be explained. Parameters stand for
data which is assumed to be known and the variables are supposed to be
calculated by the model.

Parameters:
V OTg,s = The valuation of a bid corresponding to a group trucks g,

departing on time slot s, in terms of Value Of Time.

Ng,s = Number of trucks in group g, departing on time
slot s.

Na = Number of truck that company a wants to send on the
road, which is referred to as the number of trucks the
company possesses.

P h,k
g,s = The percentage of trucks that will be on segment k

on time h, if group g departs on time slot s.

Ch,k = The capacity of segment k of the road on time h.

bg,a =


1 if group g belongs to company a.

0 else

Ig,k =


1 if group g has segment k in their trajectory.

0 else

Variables:

yg,s =


1 if the bid for group g, departing on time

slot s, is selected by the auction.

0 else

Constraints:
The first constraint (3.1) makes sure that each company exactly gets the
number of trucks to send on the road as the number of trucks they posses.
For every group is checked whether it is chosen by the auction and if it
belongs to company a. This is done by multiplying the number of trucks in
a group with the control parameters bg,a and the variable yg,s.

The second constraint (3.2) is to prevent exceeding the capacity of every
segment of the road, on every point of time. First it has to be checked
whether a group is picked and whether it uses the particular segment k of
the road. This is done by multiplying the the number of trucks in a group
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by the control parameter Ig,k and the variable yg,s. From an assigned group

of trucks is known that a percentage P h,k
g,s will be at time h on segment k.

The third constraint (3.3) tells that y is a binary variable.

3.1 Relations with other Combinatorial Optimization Problems

The previous described integer programming problem is related to other
well-known combinatorial optimization (CO) problems. In this section we
will describe these CO problems and explain what the similarities and dif-
ferences are with the IP formulation used in this research.

3.1.1 The Knapsack Problem

The IP formulation is strongly related to the knapsack problem. The knap-
sack problem is based on the idea of filling a knapsack with different objects.
This knapsack has a certain capacity, which results in having to make choices
regarding to which objects should be put into the knapsack. Every object
has its own weight and profit where these choices are based on. The objective
is to maximize the profit for the whole knapsack. The standard knapsack
problem is formulated as follows (Dantzig (1957) [8] and Kellerer, Pferschy
and Pisinger (2004) [11]):

max

n∑
j=1

pjxj (3.4)

subject to:
n∑

j=1

wjxj ≤ c (3.5)

xj ∈ {0, 1}, j = 1, . . . , n (3.6)

In equation (3.4) pj stands for the profit of object j and xj represents
whether a object is chosen or not. xj is 1 when object j is selected and 0
otherwise. In equation (3.5) wj stands for the weight of object j.

Although our IP formulation is also based on maximizing the profit (in
terms of VOT) and on the restriction of capacity (the capacity of the road),
it still differs much from the standard knapsack formulation. First of all our
IP formulation also has other, extra constraints. These constraints are to
make sure that all companies get the desired number of trucks. Further do
the capacities depend on the number of segments of the road and on the
number of observation times. This means there are more than one capacity
in our problem and so the IP formulation has not one, but more constraints
about the capacity (specifically: k ∗h). For this reason we take look at some
extended versions of the standard knapsack problem.
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3.1.2 Multidimensional Knapsack Problem

The multidimensional knapsack problem (MDKP) is also based on the idea
of filling the knapsack, but in this problem the knapsack has more dimen-
sions. This can be interpreted as that for every object j a number of rij
resource units are required. Each resource i having its own dimension in the
knapsack. So when an object is chosen, more than one capacity should be
taken into account. The problem was formulated by Weingartner and Ness
(1967) [18] as follows:

max

n∑
j=1

pjxj (3.7)

subject to:
n∑

j=1

rijxj ≤ ci, i = 1, . . . ,m (3.8)

xj ∈ {0, 1}, j = 1, . . . , n (3.9)

In this equation (3.8) rij stands for the resource units i that are needed for
object j. In our problem the objects j indicate the group of trucks, which
means that about this group is known which trajectory it uses, the number
of trucks that drive in the group and to which company the group belongs.
The dimensions of the knapsack can be seen as the different segment of
the road. When a group of trucks is selected, the trucks use a number of
segments for the trajectory that is known for the group. So for a chosen
group different dimensions of the knapsack are filled. The size of the object
is the number of trucks that use the road segment, because the capacity is in
terms of usage. When to the object is also added information about at which
time slot the group the MDKP resembles the IP formulation which is used
in this research. The last similar aspect of this MDKP formulation is that
possibility of filling the different dimensions depends on all the capacities of
the resources that are needed for an object j. This is similar to our problem
because when a group of trucks is send on a segment, the group will also
use another segment of the road. For example when the capacity is smaller
for the segment which follows next, it is not possible to put more trucks on
the current segment than that can be driven on the next segment.

The differences however are that the capacities of the knapsack do not
depend on the observation times, which means for our problem that the
trucks drive on several segments on the same time. This is not possible,
but we can change the interpretation of the dimensions. The dimensions
can also be indicated as the segments of the road at a certain time. Then
the objects still remain the groups of trucks with a associated starting time.
Then the only missing thing compared to our problem is the restriction
about assigning the groups of trucks to the companies.
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3.1.3 Multiple Knapsack Problem

The multiple knapsack problem (MKP), in stead of more dimensions in one
knapsack, has i different knapsacks. The difference with the MDKP is that
the objects are not split into different resources. It also does not matter
into which knapsack the object is packed. This means that for an object,
every knapsack can be chosen to pack the object, but the object can only
be packed once. One of the first to describe the MKP were Hung and Fisk
in 1978 [9]:

max

m∑
i=1

n∑
j=1

pjxij (3.10)

subject to:
n∑

j=1

wjxij ≤ ci, i = 1, . . . ,m (3.11)

m∑
i=1

xij ≤ 1, j = 1, . . . , n (3.12)

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n (3.13)

In the MKP the xij is 1 when object j is put into knapsack i and zero
otherwise. Equation (3.11) shows that there are more knapsack and that
when object j is put into knapsack i this give weight wj to knapsack i. This
problem has an extra constraint, which is given in equation (3.12). This
constraint makes sure that every object j is maximal once in one of the
knapsack. So it is not possible to put the objects more than once into a
knapsack.

In our problem the objects can be seen as the groups of trucks and in this
case the different knapsack can be seen as the different time slots. When it
is seen like this, it means that when a group of trucks is set to start on time
slot i it is packed in knapsack i. This knapsacks then still have capacities in
terms of number of trucks. However this gives a problem. When the trucks
are put into the knapsack corresponding to the starting time slot, they will
not be in the knapsack corresponding to the next time slot, however the
trucks are possibly still driving on the road. But this could be changed by
changing equation (3.12), to make sure that a group of trucks can fit in more
than one knapsack. This can be done by reformulation (3.12) as:

m∑
i=1

Pijxij ≤ 1, j = 1, . . . , n (3.14)

In equation (3.14) Pij is the probability that group j, for which is know the
trajectory, the start time slot and a road segment, is still driving on time slot
i. This probability sums up to one for every segment of the road. However
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even if we change equation 3.12 into equation 3.14 in the MKP problem, the
capacity of the road segments is still not taken into account. This means
that the formulation still has to be changed entirely.

When this MKP is seen with the knapsacks as the different segments of
the road and the objects are the group of truck with an associated starting
time slot, then according to the MKP formulation the groups of trucks can
only be send onto one segment. The capacity again is the number of trucks
on the road. However the trucks do not only use one segment, so also in
this interpretation equation (3.12) can be changed so that it possible to use
more than one segment of the road. This can be done as:

xij ≤ Iij , j = 1, . . . , n (3.15)

In equation 3.15 the Iij is 1 when segment i is used by group j an zero when
not. This gives that the groups can drive over more than one segment and
only on the segments they use. However also in this case this still means it
is not possible to keep in track of the trucks in terms of time which is one of
main things about the auction. So after all this formulation does not look
very useful, a lot needs to be changed.

3.1.4 Multiple-Choice Multidimensional Knapsack Problem

Hifi, Michrafi and Sbihi (2004) [8] discuss a model which is a combination
of the above two problems. It is called the multiple-choice multidimensional
knapsack problem (MMKP). This problem can be formulated as follows.
There are given n classes Ji of items. Every class has ri items. Every object
j of class i has a profit of pij . For object j of class i, k resources are needed
which means that the weight of every resource becomes wk

ij . Again the
resource k should be put in dimension k of the knapsack. Every dimension
of the knapsack has its own capacity which gives the capacities are denoted
by ck. The formulation is given to be:

max

n∑
i=1

ri∑
j=1

pijxij (3.16)

subject to:
n∑

i=1

ri∑
j=1

wk
ijxij ≤ ck, k = 1, . . . ,m (3.17)

ri∑
j=1

xij ≤ 1, i = 1, . . . , n (3.18)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , ri (3.19)
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Equation (3.16) makes sure that the capacities of every knapsack dimension
is not violated and equation (3.17) states that only one object can be chosen
for every class.

In this MMKP formulation the objects are interpreted as the groups of
trucks, the classes interpreted as the starting time slots and the resources
are seen as the segments of the road. xij represents then whether group of
trucks j is chosen for starting time slot i. The equation (3.16) makes sure
that the capacity of the segments is not violated. However there is also a
capacity on the time, so when we assume that the observation are equal to
the starting time we could change ck into cki .

Another is thing is that this formulation states that only one object can
be chosen for every class. This means that only one group of trucks can
drive at a certain time slot and this is not the case. However by changing
the capacities into cki there is already covered for how many group can start
at a certain time slot. If you would sum over all time slots, it is known how
many groups are selected. With this there can be made a restriction for the
number of trucks are needed for the company. However this means that the
problem changed completely.

After discussing these CO problems it seems that the most important differ-
ence with our problem is the fact that there are extra constrains for assigning
the groups of trucks to the companies.

In the next chapter we will investigate some characteristic of the IP
formulation as given in this chapter.



4. CHARACTERISTICS OF THE SOLUTION

In this section we will characterize the solution of the discussed model for
the time slot allocation (from now on we will refer to this as the IP solution).
First of all we are interested in the fairness of the solution. In particular
towards the small companies. This is interesting for future heuristic devel-
opment, because this can then be taken into account. In the first section this
is tested using some data examples and by using one-way lay out ANOVA.

Secondly it is interesting to see what happens with the IP solution when
the capacity halfway or at the end of a trajectory decreases. This capacity
decrease can be interpreted as a road for example going from a three lane
road to a two lane road, which is the case in our real based data at the
end of the road. Besides this straight forward interpretation, the capacity
decrease can also be seen as effects of weather conditions. Different weather
conditions are also very common and so we like to investigate the effects of
capacity decreases halfway or at the end of a trajectory on the solution of
the model.

Furthermore we are interested in the influence of the the size of the data
on the running time in the computer program. This program is AIMMS
and is a software designed for solving optimization problems. The number
of constraints and the number of variables are used as a measures for this
influence in the last section. The number of variables depends, as can be
seen in the previous chapter, on the number of groups and the number of
time slots. The number of groups it self depends on the number of compa-
nies, the number of trajectories and the number of time slots. The number
of constraints depend on the number of companies, the number of road seg-
ments and the number of observation times. In the last section those two
measures are used to see how large both can become to still make sure the
model is solved within reasonable time.

4.1 Data Sets

All sections use example data sets. In the data sets considered, there will
be two types of companies, small and large. The difference in the size of the
company is made by the number of trucks the company posses. The specific
number of trucks will differ in all sections.

The data is set to be the same for all possible situations, in order to get
a clear idea about changes in the IP solution. For this there is only one
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Tab. 4.1: Fixed numbers
# Road # Time # Observation Max VOT
segments slots times per truck

10 5 5 100

trajectory which is used, which contains all road segments. This is in order
to have no side effects due to the difference in used trajectories between the
groups. This similarity is also in the preferences of the companies. The
companies are set to all prefer the same time slots. This means that the
data is set such that the first time slot is favored most, the second time slot
secondly and so on. By all companies the time slots are preferred by the
same value. There is only one data part that is different for every situation:
the percentages P h,k

g,s . These are generated randomly in order to break the
symmetry of the solution, however it will stay the same in all data examples.
Table 4.1 presents the data that are set to be fixed. With these numbers
the preferences per time slots per truck can be given in terms of VOT and
they are presented in Table 4.2.

Tab. 4.2: Valuation of time slots per truck in terms of VOT

Time slot 1 Time slot 2 Time slot 3 Time slot 4 Time slot 5

100 90 80 70 60

A last feature that is important for the whole chapter is the capacity. In
order to get a useful IP solution, the capacity can not be fixed for all different
situation. A certain capacity can have three different consequences for the
IP solution. It can either be that the capacity is that large that all companies
can have their first choice and thus will drive all on the same time (because
they all prefer the same time slot most). Or it could be that a certain
capacity is too small and results in no possible solution. This means the
problem is infeasible. As last it can be that the capacity results in a IP
solution, which is not the trivial one. This kind of IP solution is the only one
which is useful to say anything about the characteristics of the IP solution,
otherwise there will be nothing to say. The more companies there will be
in the data examples, the more trucks there will be on the road, the higher
the capacity will have to be set in order to get a feasible solution other then
the trivial. By this should be noted that in in all realistic situation the
capacities are a given fact and we can now only change the capacity because
we make our own data examples.
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4.2 Fairness of the Solution

In this section we are interested in the fairness of the IP solution towards
the small companies. It might be that the large companies are favored over
the small companies. The model maximizes the total VOT and therefor it
might be that higher bids are favored over smaller bids. When the difference
between the bids becomes larger, bids from small companies might become
unimportant because bids of large companies give much higher values. To
test whether this is the case we will use some small data examples.

The small data example consist the following data:

• One large company.

• Two small companies.

• The small company possesses 10 trucks.

• The number of trucks that the large company possesses will be chang-
ing from 50 to 500.

• For every company, the number of trucks in the bid will be the max-
imum number of trucks and half of that maximum number for every
time slot.

• The capacity will be the same for all road segments.

To test whether the bids of the small companies become unimportant we
investigate what the effect is of increasing the difference in bid between the
two types of companies. When the number of trucks of the large company
(this from now on will be called the size) will change this will also cause
a change in the size of the bids of the large companies. The bids for all
companies are set to the maximum number of trucks they can bid for, and
half of that maximum number. This is in order to have a structured bid
system. The capacity is the set to be the same to make sure there are no
side effect due to the capacity differences.

Now the first step is to see how the IP solution reacts on an increase in
the size of the large company. The results are given in Table 4.3.

In Table 4.3 the first column gives the number of the runs. In the second
column the size of the large company is presented, as can be seen it is set
to be increasing. In the third column the capacities are given, which are
used for every run. These capacities are as low as possible and are the
first two that lead to a feasible solution (recall from the beginning of the
chapter). The next column gives the total VOT of the solution in euros.
Then the fifth column gives the calculation time it took AIMMS to solve it
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Tab. 4.3: Data set 1
Size large Capacity Solution Time VOT VOT VOT AC AC AC
company of road (sec) S1(%) S2(%) L1(%) S1 S2 L1

1 50 60 e6,950 0.20 95 100 100 1.5 1.0 1.0
2 50 50 e6,150 0.22 75 90 90 3.5 2.0 2.0
3 70 80 e8,950 0.19 85 100 100 2.5 1.0 1.0
4 70 70 e8,450 0.25 85 95 95 2.5 1.5 1.5
5 100 100 e11,500 0.17 100 100 95 1.0 1.0 1.5
6 100 90 e10,650 0.25 85 80 90 2.5 3.0 2.0
7 200 180 e21,000 0.17 100 100 95 1.0 1.0 1.5
8 200 170 e19,600 0.19 90 70 90 2.0 4.0 2.0
9 500 430 e49,500 0.19 100 100 95 1.0 1.0 1.5
10 500 420 e26,800 0.19 90 90 90 2.0 2.0 2.0

in seconds. The next three columns present the percentage VOT the solution
gives of the maximal possible VOT per company. S1 and S2 represent the
small companies and L1 the large company. The last three columns give
the average choice (AC) per company, which gives an idea of how far the
solution is from the first choice for each company.

The results of the runs in Table 4.3 have some notable properties. First,
the difference in capacity leads to differences in the solution. By this we
mean that when the size of the large company remains the same and only
the capacity decreases, the IP solution also decreases. This seems reasonable
because when the capacity decreases the trucks will have to be more divided
over all hours and so the total VOT will decrease. Secondly, the calculation
times are very short, this fact is promising because this is a very small
example.

Another thing to note is what difference the percentages P h,k
g,s make for

the solution. When we would not have these percentages the value of the op-
timal solution could be higher. For example look at run 5 in Table 4.3. The
large company does not get the best possibility unlike the small companies,
who do get the best possibility. However the capacity of the road is even to
the size of the large company. So when we would have no percentages and
use the greedy algorithm we would get that the large company gets the best
possibility (which is the first time slot) and the two small companies get
the second best bid (which is the second time slot). This would give a IP
solution of e11,800. This is a larger solution than the IP solution in Table
4.3. But due to the percentages this is not possible because the capacity of
the second time slot will be violated.

To test whether the small companies are in a disadvantage against the
large company we use the ANOVA one-way lay-out, which tests whether
the mean of the observations in columns nine till eleven in Table 4.3 do not
differ significantly.
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• H0: µS1 = µS2 = µL1

• Ha: at least one of the means differ.

The results are in Table 4.4.

Tab. 4.4: ANOVA one-way lay out for differences between companies

Test Degrees of Significance Critical Conclusion
Statistic Freedom Level Value

0.48 2, 27 0.05 3.35 not reject H0

From Table 4.4 it follows that the null Hypothesis is not rejected which
means there is no significant difference in the results of Table 4.3. By this
it should be noted that the number of observations is small for this test,
therefor it could be that the test is not completely correct. However a good
reason for not rejecting H0 could be that when the difference between the
size of the companies becomes larger also the differences between the bids
become larger. By this is meant that, with taking the bids as maximum
and half of that when the size increases from 50 to 200 the bids increase
from 25 and 50 to 100 and 200. Keeping in mind the fact, as mentioned
before, that if the capacity is low in comparison with the number of trucks
the problem may be infeasible. Or if the capacity is too high the solution is
trivial since everyone gets the desired time slot. This might result in such
a large capacity that it is always possible to fit in the trucks of the small
companies. This is a nice result for future heuristic development but we like
to investigate what happens when the bids do become closer to each other.

In order to test with less difference between the bids we use the same data
with as only difference the number of bids. The bids that are used in the
next runs all begin with the bid of ten trucks and then increase every bid
with 10 when possible. This means that the small companies have for every
time slot only the bid of ten trucks and the large company has bids from
ten, twenty, up to the maximum number of trucks. We call this increase in
bids of ten trucks an bid step of ten trucks. The results are in Table 4.5.

The columns in Table 4.5 represent the same as in Table 4.3. Again we
test whether there is no difference between the results in Table 4.5, columns
nine till eleven.

• H0: µS1 = µS2 = µL1

• Ha: at least one of the means differ.

The results are presented in Table 4.6.
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Tab. 4.5: Data set 2
Size large Capacity Solution Time VOT VOT VOT AC AC AC
company of road (sec) S1(%) S2(%) L1(%) S1 S2 L1

11 50 60 e7,000 0.17 100 100 100 1.0 1.0 1.0
12 50 50 e6,600 0.23 95 100 94 2.0 1.0 1.6
13 70 70 e8,900 0.33 100 95 100 1.0 2.0 1.0
14 70 60 e8,300 0.27 100 100 90 1.0 1.0 2.0
15 100 90 e12,000 0.19 100 100 100 1.0 1.0 1.0
16 100 80 e11,700 0.19 100 100 97 1.0 1.0 1.5
17 200 140 e20,500 0.79 100 60 94.5 1.0 5.0 1.6
18 200 130 e17,400 2.34 90 100 77.5 2.0 1.0 2.2
19 500 290 e47,100 14.32 80 100 90.6 3.0 1.0 1.9
20 500 280 e43,700 12.06 100 80 93.8 1.0 3.0 2.6
21 500 280 e44,600 14.67 100 100 85.2 1.0 1.0 2.6

Tab. 4.6: ANOVA one-way lay out for differences between companies

Test Degrees of Significance Critical Conclusion
Statistic Freedom Level Value

7.49 2, 30 0.05 3.32 reject H0

From Table 4.6 it follows that the null hypothesis is rejected and that there
is a difference between the companies. The results in Table 4.5 however
suggest that the large company is not significantly better off. This is not a
bad result because we wanted to know whether the small companies are in
a disadvantage and this is not the case. By this test it should also be noted
that the number of observations is small, and it therefor could be that the
test is not completely correct.

It should be noted that in Table 4.5 there are eleven runs, which means
that an extra run is added. This run is exactly the same as the one before
(so number 20) the only thing that differs is the way the data is put into
the program AIMMS. All runs that are done before had the data matrices
sorted in the way that first all data from the first small company, next from
the second small company and last all data from the large company was
in it. It sometimes looks like the two small companies were favored in the
program because they were in the top of the data matrices. This could be
the case because of the Branch and Bound algorithm the program is partly
build on. When the start position is always on the top of the data matrix
it might be the first data is favored by the Branch and Bound algorithm.
To investigate this the matrix was sorted differently. First all first choices
were put into the matrices and after that all second choices and so on. This
means for this data example that first all bids for the first time slot are
filled in, followed by all bids for the second time slot and so on. Table
4.5 shows that the program gives a different solution. So it might be that
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the Branch and Bound issue is influencing the solution, but it is also due
to the fact that the percentages (P h,k

g,s ) did change in order since the data
was generated randomly. For similar phenomena see the article of Jans and
Desrosiers (2011) [10], but we will not investigate this subject any further
and the data will be sorted in the way we used to order it before.

4.3 Influence of Road Capacity

In this section it is investigated what the influence is on the optimal solution
when there is a decrease in the capacity at the end of the road. An example
of a capacity decrease is the A15, which at the end of the road has a decrease
in capacity. Recall from the introduction that a decrease in capacity can
also be seen as the consequences of the weather conditions. It is possible
that when the capacity at the end of the trajectory decreases that it is no
longer possible to find a feasible solution.

The example data we will use for this consist the following numbers:

• 50 small companies.

• 10 large companies.

• The small companies possesses 50 trucks.

• The large companies possesses 200 trucks.

• The bid size (recall from previous section) is 50.

• The capacity is the same for every segment of the road, except for the
last one. The capacity of the last segment will be changing.

In order to see what the influence of the capacity change is, the other data
are kept the same. In Table 4.7 the results are shown. The program is run
with different road capacities and it is stopped after half an hour running
time. The first column represents the number of the corresponding run. The
second column contains the capacity of all segment without the last segment.
The column ’Decrease’ shows the percentage of which the capacity of the
last road segment decreases. The next column presents the IP solution for
that run. If the solution in NO, this means that no solution is possible or
no solution is found within the half hour. The fifth column gives the gap
of the solution. Recall that when the program is running half an hour, we
stop it. When the program has found a solution this is not necessarily the
optimal solution. The gap represents the distance between the solution and
the Linear Programming solution in percentages. This should give an idea
how close the solution is to the optimal solution. The last column gives the
average number of time slots the solution assigns to the large companies.
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Only of the large company because the small companies can only be assigned
one time slot due to the fact that the bid step is the number of trucks the
small companies possesses.

Tab. 4.7: testing effect of capacity decrease
Capacity Decrease (%) Solution Time (sec) Gap Average #

time slots
1 2,500 0 e450,000 3.14 0 1
2 2,500 5 e449,500 0.69 0 1,1
3 2,500 10 e449,000 1.04 0 1
4 2,500 15 e446,500 1.22 0 1,2
5 2,500 20 e442,000 1.78 0 1,2
6 2,500 25 e435,000 6.71 0 1,3
7 2,500 30 e424,500 43.49 0 1,4
8 2,500 35 e407,500 66.28 0 1,5
9 2,500 40 e371,000 130.37 0 1,7
10 2,500 45 NO 0.39

11 2,400 0 e447,500 1.54 0 1,2
12 2,400 5 e447,000 4.82 0 1,3
13 2,400 10 e445,000 2.92 0 1,2
14 2,400 15 e442,000 7.21 0 1,2
15 2,400 20 e436,000 45.75 0 1,4
16 2,400 25 e426,500 500.65 0 1,4
17 2,400 30 e413,000 89.67 0 1,3
18 2,400 35 e387,000 1800.08 0.14 1,5
19 2,400 40 NO 0.36

20 2,300 0 e442,000 20.81 0 1,4
21 2,300 5 e441,000 19.58 0 1,5
22 2,300 10 e438,000 311.69 0 1,3
23 2,300 15 e433,000 695 0 1,5
24 2,300 20 e424,500 1,800 0.23 1,3
25 2,300 25 e412,000 1,800 0.43 1,4
26 2,300 30 NO 1,800
27 2,300 35 NO 0.59

28 2,200 0 NO 1,800

Table 4.7 starts with a run with no decrease so it is possible to analyze
the effect of decreasing capacity. In run 1 we get to the maximum solution
possible. When decreasing the capacity of the last segment, the table shows
that the solution also decreases. An important thing to notice is that the
larger the capacity starts, the easier it is to solve the problem when the end
capacity decreases. This is what is expected. When the start capacity is
getting smaller it takes longer calculation times. Table 4.7 shows that when
the end capacity decreases with the percentages in the third column, it will
come to the point where the data no longer has a feasible solution. It can also
be seen that when the start capacity decreases, there are less possibilities to
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decrease the end capacity. This is what we expected, however even by the
smallest start capacity it is possible to decrease the end capacity with 25%.
Another important thing to note is that when the end capacity decreases the
average number of time slots that are assigned to the companies increases.
For furthers heuristic development this is a result that should be taken into
account.

So we can conclude that when decreasing the end capacity of the road,
this influences the solution. It might be possible that the solution is no
longer feasible. Also can be concluded that the calculation times and the
average number of time slots assigned to the companies increase when the
end capacity decreases.

4.4 Solvability with AIMMS

In this last section we are interested in the solvability with AIMMS. For
this research the program AIMMS version 3.11 is used with an AMD R©

AthlonTM 64 x2 Dual-Core processor with 2GB DDR2. Because it is known
that the problem is NP-Hard, it would be nice to see with how many vari-
ables and constraints AIMMS is able to calculate a solution within reason-
able time. And so with how many variables and constraints is AIMMS not
able to do this. Reasonable calculation time is set to be half an hour. Recall
also from the beginning of this chapter, that we will use two measures: the
number of variables and the of constraints of the problem. These numbers
will change depending on the data. The number of variables depends on
the number of groups and the number of time slots. The number of groups
itself depends on the number of companies, the number of trajectories, the
number of time slots and the bid step size. The number of constraints de-
pend on the number of companies, the number of road segments and the
number of observation times. The number of constraints and the number of
variables are easy to calculate:

# Variables = # g ∗ # s (4.1)

# g = # a ∗ # trajectories ∗ # s ∗ (company size/bid step) (4.2)

# Constraints = # a ∗ # k ∗ #h (4.3)

In equations (4.1) till (4.3) the g stand for groups, s for departure time slots,
a for companies, k for road segments and h for observation times. # means
’number of’, so # g means the number of groups.

The example data which will be used contains the following data:

• The small companies possesses 50 trucks.
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• The large companies possesses 200 trucks.

• The capacity is the same for every segment of the road.

The number of companies will be changing in order to change the number
of variables and the number of constraints. The bid step size will also be
changed, which changes only the variables. Recall that bid steps are the step
within the bids of a companies. So if the bid step is ten, a small company
bids for 10, 20, 30, 40 and 50 trucks for every time slot.

In Table 4.8 the results of the tests are proposed. The first column gives
the corresponding run number. The second and third column denote the
number of companies that are used in that run. Followed by the number of
constraints and the number of variables. The sixth column presents the bid
step and the seventh column the capacity of the road. Again recall that the
capacity changes to get an useful solution. In the last three columns present
the solution, the running time and the gap of the solution.

Tab. 4.8: Testing solvability with AIMMS
# Small # Large # Con- # Var- Bid Capacity Solution Time Gap

companies companies straints iables step (sec)

1 2 1 53 300 25 180 e25,000 0.6 0

2 2 1 53 750 10 170 e27,400 3.3 0

3 50 10 110 1,250 50 2,200 e442,000 19.9 0

4 50 10 110 4,500 25 2,300 e449,250 30.2 0

5 50 10 110 11,250 10 2,150 e450,000 977.4 0

6 50 20 120 2,250 50 3,300 e644,500 201.8 0

7 50 20 120 6,500 25 3,300 e650,000 56.0 0

8 50 20 120 16,250 10 3,100 e650,000 57.9 0

9 50 30 130 3,250 50 4,250 e841,500 1,800 0

10 50 30 130 8,500 25 4,200 e849,250 1,800 0.09

11 70 10 130 1,350 50 2,900 e545,000 11.1 0

12 70 10 130 5,500 25 2,800 e548,000 77.6 0

13 70 20 140 2,350 50 3,800 e741,000 392.7 0

14 70 20 140 7,500 25 3,800 e750,000 153 0

15 70 30 150 3,350 50 4,800 e941,000 1,800 0.15

16 70 30 150 9,500 25 4,700 e947,000 1,800 0.32

17 100 20 170 2,500 50 4,500 e887,500 594.1 0

18 100 20 170 9,000 25 4,500 e895,000 1,800 0.14

19 100 40 190 4,500 50 6,400 e1,284,000 1,800 0.20

20 100 40 190 13,000 25 6,400 e1,295,250 1,800 0.33

21 100 60 210 6,500 50 8,300 e1,674,500 1,800 0.64

22 100 60 210 17,000 25 8,250 e1,698,000 1,800 0.12

As mentioned before, it can be seen in Table 4.8 that the size of the compa-
nies and the bid step differ. By this, the number of constraints and variables
also differ. This is shown in the first six columns. The capacities are set to
the smallest capacity where the model can find an optimal solution. When
there is a gap, it is not possible to find an optimal solution within half an
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hour. There are four runs which have the trivial answer as optimal solution.
Runs 5, 7, 8, 14 have the maximal solution possible for that problem. This
means for run 7 that when the capacity is set smaller, within half an hour
we get an answer but with a gap. For the other three is this not the case.
For runs 5, 8, 14 is it is not possible to get another solution (even with a
gap) than the trivial one in half an hour. This is also the reason why the
calculation time of run 14 is shorter than that of run 13. Run 13 can get
to a solution with a gap but this takes half an hour and run 14 will give no
answer for a smaller capacity after half an hour.

We started with a bid step of ten and twenty-five, but because run 5
and 8 show that with that number of variables it is not possible to get an
solution other than the trivial, the bid step is increased.

After knowing this, we can seen that runs 12, 13 and 17 are the runs with
the highest number of constraints/ variables which can still be solved within
half an hour (and not having the trivial solution). So we can state that when
the number of constraints are 130 or less the problem can be solved within
half an hour with a maximal number of variables around 5000. When the
number of constraints are more than 130 it is save to say that the maximal
number of variables is around 2000 to solve the problem. There needs to be
noted that when one of the two measures decreases the other can increase.
However we can say that the number of constraints have more impact on
the solution than the number variables. When the number of constraints
increase by 10 the effect on the solution is the same as a increase in number
of variables in thousands.

In the next chapter we will describe and run a real based data example to
see whether auctions do have any effect on the spreading of driving trucks.
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We started this paper with the problem of the traffic congestion on the A15.
We will now apply the described model on the data which is based on the
data of that A15. First we will present and explain the known data for
the A15. This data will need to be transformed in order to use it with the
model. This will be explained in the second section and the results will be
presented in the last section.

5.1 Available Data

Fig. 5.1: Picture of A15

The available data is about the A15 from Hoogvliet (exit 17) to Haven
(exit 15). Figure 5.1 is a picture of this part of the A15. From this part of
the road the following facts are known:

• The traffic demand is known on 8 time slots over 7 road segments.

• 20% of this traffic demand is freight traffic.

• The 8 time slots are divided over the time interval: 6.00am till 8.00am
which means there is every 15 minutes a new time slot.

• There are 130 small, 62 medium and 1 large companies that use this
road on the 8 time slots.
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• The capacity of the road segment is known and stays the same over
time.

• The probabilities that the trucks will be on a certain segment on a
certain time, given all origin, destination and departure time slot com-
binations.

The demand is given in a three-dimensional matrix, with the demand for
all origin, destination, departure time slot combinations. The percentages
are given in a two-dimensional matrix with in the first column the origin, in
the second the destination, next the departure time slot, then the number
of the road segment, next the observation time and last the percentage.

As mentioned the available data is information about the demand from
6.00am till 8.00am with intervals of fifteen minutes. The investigated part
of A15 is split into parts of 500 meters and this gives seven road segments.
An graphical representation of the road is given in Figure 5.2.

Fig. 5.2: Graphical representation of A15

From Figure 5.2 it follows that the road has four on-ramps, called in 1, in
2, in 3 and in 6, and four off-ramps, called out 4, out 5, out 7, out 8. The
on-ramps are defined as possible origins and the off-ramps as possible des-
tinations. The given probabilities represent the probability that the trucks
are on one of the seven segment on one of the eight time slots, given that
a group of trucks start at one of the four origins on one of the eight time
slots, with one of the off-ramps as destination. These probabilities will be
seen as percentages. The distribution of the demand for the eight time slots
is given in Figure 5.3. As can be seen there is a peak in the demand around
6.00am and 6.15am. The goal for this data is to flatten peak of the demand
within these eight time slots.
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Fig. 5.3: Distribution of demand current situation

5.2 Data Transformation

In order to make it possible to use the data for the IP formulation it needs
to be transformed. First the percentages are transformed. We got a two-
dimensional matrix which needs to become a four-dimensional matrix for
our program. We begin with changing the numbering of the road segment,
so that segment 1 is after origin 1. This is done to get no confusing later. Af-
ter this it is made into a five-dimensional matrix, with the first five columns
used as coördinates. In Appendix A the used Matlab function is given. The
data is first transformed to a five-dimensional matrix because in the matrix
are given the origin and destination. In our IP formulation we only need to
know the trajectories they use and so this will be changed later. In this data
case we know that there are fourteen possible trajectories, with a known ori-
gin and destination. With this we can transform the five-dimensional matrix
into a four-dimensional matrix by changing the origin, destination combi-
nations to a numbers 1 till 14 for every trajectory. The Matlab function is
given in Appendix B. This matrix is for only one group so for every group
in the data, this matrix should be added to the matrix which will be used.
This final matrix can be read into AIMMS.

The demand data is used in a different way. It is used to determine
the number of trucks a company possesses for every type of company. It
is assumed that the demand is distributed over the companies as given in
Table 5.1:
The number of trucks per company is calculated simply by taking the per-
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Tab. 5.1: Demand distribution
Size company Number of companies Total percentage of demand

Small 130 40%

Medium 62 50%

Large 1 10%

centage of the total demand, dividing it by the number of companies and
then rounding off. The result of this are in Table 5.2

Tab. 5.2: Number of trucks per company

Size company Number of companies Number of trucks per company

Small 130 10

Medium 62 25

Large 1 320

In order to develop the bids for every company, a bid step needs to be deter-
mined. The bid step for this data will be different for every type of company,
because otherwise it would not be possible to get all data into AIMMS. For
the small and medium companies the bid step is the number of trucks they
possesses, which means that they only bid the maximal number of trucks.
However the bids are for every time slot and every trajectory. The bid step
for the large company is 40 and also all bids are for every time slot and
every trajectory.

The demand data is also used to determine a ranking for the time slots
and the trajectories. This is needed because the bids for every company
have to be made and there need to be different VOTs for different bid. In
order to know how to value different bid we chose to use the demand data to
determine a ranking. The demand is summed over all trajectories and then
the ranking is based on highest total demand for the time slots. So the time
slot with the highest demand has the highest rank and so on. For the ranking
of trajectories the same procedure is used. The demand is summed over all
time slots and the trajectory with the highest demand gets the highest rank
and so on.

After ranking the departure time slots and the used trajectories we had
to set a value to all different ranks. The VOT per truck per rank for the
trajectories are given in Table 5.3.

Tab. 5.3: VOT per truck per rank for time slots

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14

VOT per truck 100 97.5 95 92.5 90 87.5 85 82.5 80 77.5 75 72.5 70 67.5

The VOT as given in Table 5.3 are given to every bid. So now for every
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time slots the values are the same. So that needs to be changes. We decided
to given a penalty to every time slot which is not the best and every lower
ranks should give a higher penalty. The penalties per truck per rank for the
time slots are given in Table 5.4.

Tab. 5.4: Penalty per truck per rank for time slots

Rank 1 2 3 4 5 6 7 8

VOT per truck 0 -5 -10 -15 -20 -25 -30 -35

When comparing Table 5.3 and 5.4 it can be seen that a difference between
the ranks for the trajectories are smaller than the difference between the
ranks of the time slots. This is because we do not want punish to hard for
different trajectories so these can differ more but we do want to punish for
different time slots. We want the possibility for more difference within the
trajectories because companies might have to drive certain routes, however
we have no information what so ever about this so we cannot make use of
it.

In the next section we will present the results of the IP solution.

5.3 Results

The results of the auction are given in Figure 5.4.

Fig. 5.4: Distribution of demand after the auction

The first thing that falls into attention from Figure 5.4 is that at the end
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od the graph is a peak. The reason for this is that the groups can start on
any time slot, so also on the eighth time slot, and that after time slot eight
the road has no capacity any more. This results in a very large number of
groups starting at the last time slot. Besides this we can see that the peak
around 6.15am is gone. This means the the program works for all time slot
except for the last one.

Although the number of variables are 1,792,200 and the number of con-
straints are 10,808, we were able to find a solution within 300 seconds. The
total value of time of this solution is e311,202.50 with only a gap of 0.02%.
This has a few reasons. First of all many of the percentages we used were
zero, where in the example data every percentage was a random number, so
there where far more possibilities. Besides that in order to get every thing
into AIMMS the small and medium companies where only able to bid for
the total number of trucks they posses, which also means that the number of
possible solutions decrease. As last is there no difference between the com-
panies, so it does not matter which company gets a less favored bid. This
means that there are many solutions which give the same optimal solution
and so AIMMS only has to find one. This does not really matter because
there is no information about differences between companies and if there
were it would be implemented and then there would be no same possible
solution.



6. CONCLUSION AND RECOMMENDATIONS

In this research we were interested in the question what effects an auction
have on congestion on the road. We discussed the VCG auction for this
research and we introduced a IP formulation which would calculate an opti-
mal solution for the auction. However we know that the problem is NP-hard
so we compared our IP formulation with known combinatorial optimization
problem for literature. This might be useful for future heuristic development
for a other then optimal, but good solution. In order to understand the so-
lution of our IP formulation better we described a number of characteristic
in chapter 4. We found that small companies are not is a disadvantage
against large companies. Also that when the capacity at the end of the road
decreases the solution might become infeasible, but certainly has longer cal-
culation times and the average number of time slots that are assigned to
the the companies increases. The solvability with AIMMS is tested and it
followed that it is when using under 130 constraints and 5000 variables it
is possible to get to a solution within half an hour. When we tried the IP
formulation on the real based data we found that the VCG mechanism is
possible to divide the trucks of companies more even over the day. However
it should be taken into account that road capacities do not stop at the last
starting time slot. We would recommend to invent some heuristic for the
IP formulation because the problem is NP-hard and in reality there much
more data than used in this research.
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Appendix A

MATLAB FUNCTION 1: TRANSFORMING 2D MATRIX INTO
5D MATRIX

function P = RealP(Pnieuw)

P = zeros(4,4,8,7,8);

for n = 1:size(Pnieuw,1)
P(Pnieuw(n,1),Pnieuw(n,2),Pnieuw(n,3) ...

,Pnieuw(n,4),Pnieuw(n,5))= Pnieuw(n,6);
end

In this function the two-dimensional data matrix with the probabilities are
used as input. In this matrix the segment numbering is already changed.



Appendix B

MATLAB FUNCTION 2: TRANSFORMING 5D MATRIX INTO
4D MATRIX

function Pdef = PdefMaken(P,g)

Pdeff(1,:,:,:) = P(1,4,:,:,:);
Pdeff(2,:,:,:) = P(2,4,:,:,:);
Pdeff(3,:,:,:) = P(3,4,:,:,:);
Pdeff(4,:,:,:) = P(1,5,:,:,:);
Pdeff(5,:,:,:) = P(2,5,:,:,:);
Pdeff(6,:,:,:) = P(3,5,:,:,:);
Pdeff(7,:,:,:) = P(1,7,:,:,:);
Pdeff(8,:,:,:) = P(2,7,:,:,:);
Pdeff(9,:,:,:) = P(3,7,:,:,:);
Pdeff(10,:,:,:) = P(1,8,:,:,:);
Pdeff(11,:,:,:) = P(2,8,:,:,:);
Pdeff(12,:,:,:) = P(3,8,:,:,:);
Pdeff(13,:,:,:) = P(6,7,:,:,:);
Pdeff(14,:,:,:) = P(6,8,:,:,:);

Pdef = Pdeff;
for i = 1:(g/14)-1

Pdef = [Pdef; Pdeff];
end

In this function the input is the output of the previous function and the
number of groups. It transforms the five-dimensional matrix, based on the
fourteen trajectories we have, into a four-dimensional matrix which only
contains information about which segment of the road is used.


