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Abstract

In this paper we investigate whether the portfolio policy creating method, called the
Jurek & Viceira method, performs optimal. We calculate optimal portfolio weights
for investors with long investment horizons with this method. Particularly, our aim
is to find how optimal this method performs for longer horizons. We construct
different scenarios concerning different risk aversion levels, horizons and different
combinations of state variables. The performance of this method is measured using
several benchmarks, including the out-of-sample performance of the Jurek & Vi-
ceira method. Using these benchmarks and the results of these, we find that the
Jurek & Viciera method does not perform optimal for investors with long investment
horizons.
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1 Introduction

In recent years research on portfolio strategies (how much to invest in equities, bonds,
stocks, etc.) of long-term investors such as pension funds is a popular topic in the world
of long-term investors. There are several reasons for this. The first reason is the finding
that stock returns are may be predictable using several variables such as the dividend-
price ratio. If this is the case, then the optimal portfolio weights vary over time and the
long-term investors need to invest more in stocks on average. The second reason are the
faster computers. These can solve more complex problems in less time.

There are many financial economists who have researched many solution methods for
the long-term portfolio choice problem. One of them are Campbell and Viceira (2002),
who developed a analytical method. They also showed that the standard method to
obtain the optimal weights of the assets in the portfolio is to first specify an econometric
model and to calculate the weights according to the implications of the specified model
afterwards. Usually, a Vector Autoregressive (VAR) model is used for this.
Jurek & Viciera (2010) provide an analytical recursive solution to the dynamic portfolio
choice problem of an investor whose utility is defined over wealth at a future date.
However, the method extended by Jurek & Viciera (JV-method henceforth) is said to
be powerful in predicting the optimal portfolio weights if the econometric model is well
specified, but very sensitive to misspecifications.

Because of the stated sensitivity of this JV-method, our main purpose of this research is
to investigate whether this method performs optimal for long investment horizons. Thus
our main research question is formulated as: Is the JV-method an optimal method to
solve long-term portfolio problems?

This research is relevant and the research question is important to answer because of
several reasons. A person is not able to work forever. What will a person do when the
time comes to retire? If we look at the recent news, we see that our health insurance is
in trouble. It is uncertain what happens in the future. Long term investments gives the
security to know that in bad circumstances, money is there.

This paper has been organized in the following way. First, we describe the JV-method in
detail in the section named ’Methods’. In this section we also explain some benchmarks.
This research is about constructing portfolio weights and as a portfolio consists of a cer-
tain amount of assets there is data needed for this. These data is described in the section
named ’Data’. Then we have a section in which the JV-method in order to construct
portfolio weights is applied.
The results of our research are provided in the section called ’Results’. And finally we
end up with the section ’Conclusion’, in which we summarize our results and draw our
conclusions.
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2 Methodology

As the purpose of this paper is to discover if the JV-method performs optimal for long
investment horizons, we will describe the JV-method in detail in the first subsection of
this section. And in the second subsection we will explain the benchmarks to see how
sensitive the JV-method is and how optimal this method performs in the long run.

2.1 Weight construction

In this section the method that we will use in this research will be explained. As said
before, we will focus on the recently derived analytical procedure by Jurek & Viciera
(2010) to solve portfolio choice problems. This method is basically an extension of the
classical approach for estimating portfolio weights.
The main feature of the classical approach is that it assumes an econometric model for
assets and state-variables. Campbell & Shiller (1987) already used Vector-Autoregressive
(VAR) models in this context, but their work was not especially about portfolio choice
problems. Nowadays the VAR-approach is still the most common approach in modeling
returns, in this way contributing to the solving of portfolio choice problems. Not sur-
prisingly, the JV-method also assumes a VAR-model for the returns and state-variables.
This model is our first step in calculating the optimal portfolio weights.

A VAR(1)-model estimates zt+1, which is a (1 + n + m) × 1 vector with asset returns
and state variables on time t+ 1, in the following way:

zt+1 = Φ0 + Φ1zt + vt+1, (1)

where Φ0 is a (1 +n+m) × 1 vector of intercepts. n denotes the number of risky assets
and m denotes the number of state variables. Φ1 is a (1 + n+m) × (1 + n+m) square
matrix of slope coefficients and vt+1 is a (1 + n+m) × 1 vector with error terms which
are assumed to be homoskedastic and normally distributed:

vt+1
i.i.d.∼ N (0,Σv), (2)

The vector zt+1 is structured as

zt+1 =

 rtbill,t+1

rt+1 − rtbill,t+1ι
st+1

 =

 rtbill,t+1

xt+1

st+1

 . (3)

Here, rtbill,t+1 denotes the log real return on the T-bill that is used as a benchmark in
excess return computations, xt+1 is a vector of excess log returns on all other assets with
respect to the benchmark and st+1 is a vector with the realizations of the state variables.
Now the covariance matrix Σv can be written as

Σv =

 σ2tbill σ>tbill,x σ>tbill,s
σtbill,x Σxx Σ>xs
σtbill,s Σxs Σs

 . (4)
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The elements on the main diagonal are the variances of the real return on the benchmark
asset (σ2tbill), Σxx is the variance-covariance matrix of unexpected excess returns and Σs

denotes the variance-covariance matrix of the shocks to the state variables. σtbill,x and
σtbill,s are the covariances of the real return and Σxs is the covariance of excess returns
with shock to the state variables.

Before we proceed to the next step, let us first briefly summarize the most important
outcomes of the VAR-model. In the first way, the model generates the vector Φ0 and
the matrix Φ1 as output. These elements contain information about the evolution of
the returns and the state-variables, which are important determinants for explaining the
dynamics of the weights. Secondly, the residuals matrix Σv also contains information
that is crucial for estimating the optimal portfolio weights. Finally, the structure of the
z vector is defined in (3).
Now we will discuss the objective of an investor or portfolio manager. The JV-method
considers an investor with initial wealth Wt at time t who chooses portfolio weights in
such a way that the expected utility of wealth H periods ahead is maximized. After
these H periods, the investor will abandon the portfolio and consume the final wealth
at the terminal date, t+H. The investor’s wealth evolves over time as

Wt+1 = Wt(1 +Rp,t+1)∀t (5)

where Rp,t+1 is the portfolio return at t+ 1.
Further on, the investor has a constant coefficient of risk aversion γ. Formally, the
investor chooses a sequence of portfolio weights αt+H−τ between time t and (t+H − 1)
such that{

α
(τ)
t+H−τ

}τ=1

τ=H
= argmaxEt

[ 1

1− γ
W 1−γ
t+H

]
. (6)

The function between brackets is called the utility function. The form of utility pre-
sented here is called power utility. Keeping the investor’s objective in mind, our next
step is to present the closed-form formula to calculate the weights.

Jurek & Viceira (2010) derived a iterative solution for the weights. Their method com-
putes the optimal portfolio weights by first optimizing the power utility function over
a 1-period horizon. Secondly, they solved the problem for two periods remaining and
by using these solutions, they developed a general recursive solution for horizons with
arbitrary lengths. As the derivations are beyond the scope of this paper, we will just
present the formula. It is given by

α
(τ)
t+H−τ = A

(τ)
0 +A

(τ)
1 zt+H−τ . (7)

From this formula we see that the weights at time t+H−τ , which means the weights at

τ time periods prior to the terminal time period, depend on A
(τ)
0 , A

(τ)
1 and zt+H−τ . The
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derivations of A
(τ)
0 and A

(τ)
1 can be found in the Supplementary Appendices of Jurek &

Viceira (2010).

2.2 Sensitivity of the JV-method

2.2.1 Parameters

In order to look how sensitive the JV method is and how optimal this method performs
for longer periods, we will construct several scenarios concerning the horizon (H), the
coefficient of relative risk aversion (γ) and state variables.

The parameter γ is the relative risk aversion, for this parameter we choose the val-
ues γ = 2, γ = 5 and γ = 10 for our research.
Next, we will look at the parameter horizon H which is the amount of periods for which
we will construct a strategy. As already said in the previous sections, we will take espe-
cially strategies for long horizons into account. For this reason we will look at the values
H = 4, H = 8 and H = 20. This comes down to strategies for 1-year, 2-year and 5-year
horizon.
The last parameter on which will be focussed are different combinations of state variables.
This will be done by making combinations of 1, 3 and 6 randomly chosen state variables.
We choose the sets of state variables about randomly because we did not investigated
variable selection. This because this topic is beyond the scope of our research.

2.2.2 Performance measures

In order to find how well our JV-method performs for investors with a long investment
horizon, we need to focus on the performance of this method in the long run. In this
section we will explain in detail the performance measures which we will consider.

Utility
The utility is a measure to decide the performance of the model because the weights are
computed by optimizing a utility function. To make some results easy to interpret, we
will also look at the certainty equivalent of utility. The certainty equivalent of utility
can be interpreted as the risk-free return an investor needs to receive in order to obtain
the same utility. The certainty equivalent for the JV-method, which assumes a power
utility, is defined as:

1

1− γ
(CEU )1−γ = E

[
1

1− γ
W 1−γ
t+H

]
, (8)
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where we replace the expectation by the sample mean to come to

1

1− γ
(CEU )1−γ =

T−H∑
t=0

(
1

1− γ
W 1−γ
t+H

)
, (9)

thus

CEU =
[

(1− γ)U
] 1

1−γ
(10)

Interpetation of the weights
In this research we will look at the JV-method for long investment horizons. So it is
very important to see how the portfolio weights behave in this case. In order to do this
we will look at the mean stock weights for long horizons.

Improvement in relation to static weights
To see if it is important to include predictors when an investor has a long investment
horizon, we will compare the certainty equivalents of utility where we include state vari-
ables to the certainty equivalents of utility where no predictors are included. This will be
done by computing percentage improvements of the dynamic strategies over the static
strategies. From the percentage improvements we can see if there is added value when
including predictors.

Out-of-sample performance
The out-of-sample performance of the JV-method is also a benchmark to see how well
the JV-method performs. This means that we use only a part of our data to estimate
the weights out-of-sample. This because by looking at the out-of-sample performance,
we can see how efficient the portfolio weights are for longer horizons. Here we will also
focus on the certainty equivalent of utility.

We will also try to improve the initial out-of-sample performances. This will be done
by imposing zero-coefficient constraints on the VAR model. A VAR model with zero co-
efficient restrictions is formulated as a Seemingly Unrelated Regressions (SUR) model.
This algorithm is used to choose a subset of the most statistically-significant variables
of a VAR model. We will continue by explaining the SUR-model.

The VAR(1)-model in (1) can be written in the compact form

Y = XB + U (11)

where Y is the vector of observations on the dependent variable, X is the lagged exoge-
nous data matrix, B is the coefficient matrix and U is the error term.
Now let B = (b1 . . . bG) and Si denote a selection matrix such that βi = STi bi corre-
sponds to the non-zero coefficients of bi (i = 1, . . . , G & G = 1 + n + m) .
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Further, let Xi = XSi which are the columns of X that correspond to the non-zero
coefficients of bi. Then the SUR-model is defined as


y1
y2
...
yG

 =


XS1

XS2
. . .

XS2



ST1 b1
ST2 b2

...
STGbG

+


u1
u2
...
uG

 (12)

where the error term has mean zero and the variance matrix is given by var(U) = Σ ⊗
IM . It is important to note that the regression equations in a SUR-model need to be
estimated simultaneously in order to obtain effcient estimates.

3 Data

This section explains the data that we will use in this research for the empirical work.
This research is about constructing portfolio weights and as a portfolio consists of a
certain amount of assets there is data needed for this. The data is in line with Goyal and
Welch (2008) and Rapach, Strauss and Zhou (2010). The data consist of 332 quarterly
observations of 3 assets and 15 predictors from 1926 to 2008.

3.1 Assets

Real risk-free rate: The risk-free rate is the Treasury bill rate. The real risk-free rate
is modeled as ln(1 + Rf )− ln(1 + INFL), where Rf is the risk-free rate and INFL is
the Consumer Price Index from the Bureau of Labor Statistics.

Excess stock return: S&P 500 index returns from the Center for Research in Se-
curity Press (CRSP) month end values is used. As Goyal and Welch (2008) mention, the
stock returns are the continuously compounded returns on the S&P 500 index including
dividends. The excess stock return is modeled as ln(1 + Rs)− ln(1 + Rf ), where Rs is
the stock return and Rf is the risk-free rate.

Excess bond return: long-term government bond returns Rb is used to model the
excess bond return as ln(1 +Rb)− ln(1 +Rf ).

3.2 State variables

Dividend-price ratio: The dividend-price ratio is the difference between the log of
dividends and the log of prices. In order to compute the dividend-price ratio dividends
that are 12-month moving sums of dividends paid on the S&P 500 index is used. Fur-
thermore the price of the S&P 500 index is used. Then the dividend-price ratio can be
computed, which has the following form: ln(D/P ). Here, D is the dividend and P is
the price.
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Dividend-yield ratio: The dividend-yield ratio is the difference between the log of
dividends and the log of lagged prices of the S&P Index. The dividend-yield ratio has
the following form: ln(D/P ∗), where P ∗ is the lagged price of the S&P 500 Index.

Earnings-price ratio: The earnings-price ratio is the difference between the log of
earnings and the log of prices. Earnings are 12-month moving sums of earnings on the
S&P 500 index. The earnings-price ratio has the following form: ln(E/P ). Here, E is
the earning and P is the price.

Dividend-payout ratio: The Dividend-payout ratio is the difference between the log
of dividends and the log of earnings. It has the following form: ln(D/E), where D is
the dividend and E represents the earnings.

Stock variance: Stock variance is computed as the log of the sum of squared daily re-
turns on the S&P 500. These daily returns are from The Center for Research in Security
Press (CRSP). The stock variance has the following form: ln(SV AR), where SV AR is
the sum of squared daily returns.

Book-to-Market ratio: The book-to-market ratio is the ratio of book value to market
value for the Dow Jones Industrial Average. It has the following form: ln(B/M). B
represents the book value of Dow Jones, whereas M represents the market value of the
Dow Jones.

Net Equity Expansions: The Net Equity Expansion is the ratio of 12-month moving
sums of net issues by NYSE listed stocks divided by the total end-of-year market capi-
talization of NYSE stocks. It has the following form: NTIS.

Treasury Bill Rate: The Treasury bill rate has the following form:
ln(1 + TBL), where TBL is the annualized interest on 3-month Treasury bill rate.

Long Term Yield: The Long term yield has the following form:
ln(1 + LTY ). Here, LTY is the annualized long-term government bond yield.

Long Term Return: The Long term return has the following form:
ln(1 + LTR), where LTR is the annualized long-term government bond return.

Term Spread: The Term Spread is the difference between the log of long term yield
on government bonds and the log of Treasury-bills. The Term Spread is modeled as
ln(1 + LTY )− ln(1 + TBL). LTY represents the long term yield and TBL represents
the treasury bill rate.

Default Yield Spread: The Default Yield Spread is the difference between the log of
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BAA and the log of AAA-rated bond yields, which is modeled as ln(1 +BAA)− ln(1 +
AAA).

Default Return Spread: The Default Return Spread is the difference between long-
term corporate bond and long-term government bond returns. This is represented as
−ln(1 + LTCR) − ln(1 + LTR), where LTCR is the long-term corporate bond return
and LTR is the long-term government bond return.

Inflation: Inflation is the Consumer Price Index from the Bureau of Labor Statis-
tics. It has the following form: ln(1 + INFL), where INFL is the inflation.

Investment-to-Capital ratio: The Investment-to-Capital ratio is the ratio of aggre-
gate (private nonresidential fixed) investment to aggregate capital for the whole econ-
omy,which has the following form: I/K. This is the variable proposed in Cochrane
(1991), who provided the updated data to Goyal and Welch.

4 Application of weights

In this section we will describe how the JV-method in order to construct portfolio weights
is applied. In the section ’Methods’ we have already explained how to construct the port-
folio weights.

We will only explain one-period ahead weights because our goal is only to describe
how the method is applied. We first discuss the VAR-model describing the evolution of
the risky asset returns and the state variables used to forecast them, specified in (1).
Our risky assets are the familiar stock index and bond index returns and we use DP as
the state-variable. As the risky returns are excess returns, we naturally choose the real
return on the T-bill as the benchmark asset.
With these parameter values, (3) is in this case defined as

zt+1 =


rtbill,t+1

rst+1

rbt+1

DPt

 . (13)

After estimation, the VAR-model yields us φ0, φ1 and Σv as defined in (4). At this

point, we have obtained all the information we need to calculate A
(1)
0 and A

(1)
1 . These

two elements in combination with zt+1 are sufficient for calculating the weights which
are defined in (7).

5 Results

Using our methods, performance measures and data, we managed to obtain our empirical
results which are necessary for this research to answer our research question. In this
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section we will provide these results. First, we will give a briefly interpretation of the
portfolio weights constructed by our JV-method. Then we will investigate the utilities.
And in the final part of this section we will evaluate the out-of-sample performance of
our method.

5.1 Portfolio weights for the Long Run

We start with portfolio allocation exercises by clearly looking at the optimal portfolio
weights for longer horizons, namely H = 4, 8 and 20. The exercise is repeated for three
alternative values of the coefficient of relative risk aversion, namely γ = 2, 5, and 10.
And 3 combinations of state-variables, namely DP, DFY DFR LTR and EP BM SVAR
DE LTY DFY.

Figures 1, 2 and 3 graphically shows us the mean optimal percentage allocated to the
stock index for a 5-year en 1-year horizon with only DP as state variable. The figures
are respectively based on a risk-aversion of γ = 2, 5 and 10.

Figure 1: portfolio weights with H = 20 and 4, γ = 2 and DP as state-variable
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Figure 2: portfolio weights with H = 20 and 4, γ = 5 and DP as state-variable

Figure 3: portfolio weights with H = 20 and 4, γ = 10 and DP as state-variable
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From this figures we can make several observations. Interestingly, figures 1, 2 and 3
shows us that in this cases the stock allocation rises as the investment horizon increases.
We also see that an investor with a horizon of 5 years allocates significantly more to
stocks (than bonds) than someone with a 1-year horizon.
We conclude that a long-horizon investor allocate his wealth differently from a short-
horizon investor, namely that investors with long investment horizons allocate more
heavily to stocks. So when using the JV-method to estimate portfolio weights a long-
horizon investor may overallocate to stocks.
In figure A.1 we can see the optimal mean percentage allocated to the stock index for
the 2-year horizon, these figures also confirm this conclusion.

In the preceding we graphically saw the mean optimal percentage allocated to the stock
index for a 5-year en 1-year horizon with only DP as state variable. Now we will discuss
the mean weights on the stock index and on the bond index with all combinations state
variables. Table 1 shows us the mean optimal portfolio weights for 5-year horizon with
γ = 5. From this table we can see that the mean weights on the stock index and on
the bond index are fairly constant over time, but not over the different combinations of
state variables. Particularly we see that when the state variable combination EP BM
SVAR DE LTY DFY is included, the weights become extremely high compared to the
other state variables combinations. For example, if we look at the mean weights on the
bond index when there are 11 periods remaining, we see that when we include only the
state variable DP the mean weight equals 0.405. But when we include the state variable
combination EP BM SVAR DE LTY DFY the mean weight equals 0.626. This means
that the mean weights increases as the number of state variables increases.
In Table A.1 we can see the same results for γ = 10.

Table 1: mean 5-year weights with γ = 5
H=20 γ = 5

Stocks
State variables τ=1 τ=2 τ=3 τ=4 τ=5 τ=6 τ=7 τ=8 τ=9 τ=10

No state variables 0.225 0.370 0.379 0.383 0.385 0.386 0.387 0.387 0.388 0.388
DP 0.227 0.375 0.388 0.398 0.406 0.413 0.419 0.424 0.430 0.436

DFY DFR LTR 0.227 0.373 0.385 0.395 0.404 0.410 0.416 0.422 0.427 0.431
EP BM SVAR DE LTY DFY 0.237 0.396 0.421 0.444 0.465 0.487 0.508 0.529 0.549 0.569

τ=11 τ=12 τ=13 τ=14 τ=15 τ=16 τ=17 τ=18 τ=19 τ=20

No state variables 0.388 0.388 0.388 0.388 0.388 0.388 0.388 0.388 0.388 0.388
DP 0.442 0.447 0.453 0.459 0.465 0.471 0.477 0.483 0.489 0.494

DFY DFR LTR 0.435 0.438 0.441 0.444 0.447 0.449 0.451 0.452 0.454 0.455
EP BM SVAR DE LTY DFY 0.589 0.609 0.628 0.647 0.666 0.685 0.703 0.721 0.738 0.756

Bonds
τ=1 τ=2 τ=3 τ=4 τ=5 τ=6 τ=7 τ=8 τ=9 τ=10

No state variables 0.458 0.430 0.417 0.409 0.405 0.403 0.402 0.402 0.401 0.401
DP 0.456 0.427 0.414 0.407 0.404 0.403 0.403 0.403 0.403 0.404

DFY DFR LTR 0.456 0.431 0.413 0.406 0.402 0.401 0.400 0.400 0.400 0.400
EP BM SVAR DE LTY DFY 0.481 0.503 0.508 0.520 0.534 0.550 0.566 0.582 0.597 0.612

τ=11 τ=12 τ=13 τ=14 τ=15 τ=16 τ=17 τ=18 τ=19 τ=20

No state variables 0.401 0.401 0.401 0.401 0.401 0.401 0.401 0.401 0.401 0.401
DP 0.405 0.405 0.406 0.407 0.408 0.409 0.409 0.410 0.411 0.412

DFY DFR LTR 0.401 0.402 0.403 0.405 0.406 0.408 0.409 0.411 0.413 0.414
EP BM SVAR DE LTY DFY 0.626 0.640 0.654 0.668 0.681 0.694 0.707 0.719 0.731 0.743
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5.2 Utility for the Long Run

In this section we will first investigate what happens to the utility for the long run
when varying the different parameters. Here we will directly look at the utility values.
Secondly, we will look what happens to the performance of our JV-method when includ-
ing predictors. We will especially look if there is improvement when adding predictors
to the model. For this we will compare the utility when including state variables in
the model with the utilities when not including any state variable at all in the model.
For this we will use the percentage improvement in the certainty equivalent of the utility.

We start by looking at mean utilities for the different state variable combinations, hori-
zons and values of γ. The results are given in table 2. For all combinations of state

Table 2: mean utility

State variables H γ = 2 γ = 5 γ = 10

No state variables 4 -0.935 -0.234 -0.114
8 -0.860 -0.222 -0.246

20 -0.662 -0.484 -637.266

DP 4 -0.959 -0.267 -0.129
8 -0.889 -0.288 -0.268

20 -0.631 -0.351 -247.961

DFY DFR LTR 4 -0.933 -0.237 -0.115
8 -0.860 -0.233 -0.251

20 -0.612 -0.437 -560.572

EP BM SVAR DE LTY DFY 4 -0.804 -0.191 -0.094
8 -0.621 -0.136 -0.176

20 -0.304 -0.127 -139.060

variables when γ = 2 the utility rises as the horizon increases. And for this γ the util-
ities are strikingly high when H = 20 . This is not the case for γ = 5 and γ = 10,
in this case the utility clearly falls as the horizon increases. So we can easily conclude
that according to the JV-method the utilities of more risk-averse investors falls as the
investment horizon increases.

We continue by discussing whether the performance of our JV-method improves when
including predictors. In table 3 we can see results of the improvements when including
predictors.
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Out of the results we can clearly see that for these predictor combinations, it does make

Table 3: CEU percentage improvement in relation to static weights

State variables H γ = 2 γ = 5 γ = 10

DP 4 -2,49% -3,28% -1,37%
8 -3,32% -6,24% -0,93%

20 5,01% 8,34% 11,06%
DFY DFR LTR 4 0,20% -0,34% -0,13%

8 0,04% -1,20% -0,22%
20 8,23% 2,55% 1,43%

EP BM SVAR DE LTY DFY 4 16,25% 5,25% 2,22%
8 38,47% 13,04% 3,76%

20 118,14% 39,69% 18,43%

sense to add predictors. When there are six predictors added, the method performs
much better than when there are no predictors added for all horizons and values of γ.
This is reflected from the positive values for this combination of predictors.
When adding only one predictor (in this case DP), the method performs worser than
the other predictor combinations for all γ. But this is only the case when H = 4 and
H = 8. Further on, we see a striking result, namely for H = 20 when adding one or
more predictors for all γ the method performs always better than when there are no
predictors added. So when predictors are added in the model for long term investors,
the method performs very optimal.

5.3 Out-of-sample performance evaluation

In this section we will evaluate the out-of-sample performance of our JV-method. The set
up of our out-of-sample experiment is as follows. We examine out-of-sample performance
for the in-sample period 1926Q1-1965Q4 containing 160 observations (40 years) and the
out-of-sample period 1966Q1-1995Q4 containing 120 observations (30 years). Our start-
ing date is equal to 1966Q1 in order to have enough initial observations (40 years) to
estimate the model and to have a relative long out-of-sample period. As already said, we
will use the certainty equivalent of utility (CEU ) as performance criterium. Furthermore,
we use an expanding in-sample window for generating the out-of-sample estimates.
In the first part of this section we will provide the out-of-sample performance results
of the method and will discuss it. In the second part of this section we will try to im-
prove these out-of-sample performances and will supply the percentages of improvement.

The out-of-sample performance result are given in table 4. We have done the out-
of-sample experiment with γ = 2, 5 and 10, H = 4, 8 and 20 and different combinations
of state variables.
We can clearly see that the most out-of-sample performances for γ = 10 are higher than
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Table 4: CEU performance of in-sample period 1926Q1-1965Q4 and out-of-sample period
1966Q1-1995Q4

γ = 2 γ = 5 γ = 10

State variables H In-sample Out-sample In-sample Out-sample In-sample Out-sample
No state variables 4 1,085 0,915 1,030 0,950 1,017 0,971

8 1,226 0,873 1,079 0,921 1,039 0,945
20 1,694 0,677 1,198 0,819 1,060 0,864

DP 4 1,105 0,952 1,038 0,957 1,021 0,972
8 1,301 0,988 1,109 0,964 1,055 0,965

20 2,148 1,019 1,330 0,954 1,119 0,935
DFY DFR LTR 4 1,105 0,605 1,041 0,701 1,023 0,825

8 1,277 0,493 1,102 0,635 1,052 0,784
20 2,037 0,300 1,303 0,551 1,101 0,759

EP BM SVAR DE LTY DFY 4 1,196 0,706 1,056 0,786 1,027 0,876
8 1,634 0,579 1,198 0,713 1,091 0,830

20 3,595 0,402 1,585 0,639 1,212 0,757

the performances of γ = 5, and the most out-of-sample performances for γ = 5 are
higher than the performances of γ = 2. We conclude that the out-of-sample perfor-
mance is better for higher γ values and that this method is recommended to risk-averse
investors. But only the DP-model concludes the reverse. For example, when we look at
the DP-model with H = 20, we can see that the out-of-sample performance for γ = 10
(0,935) is lower than the performance of γ = 5 (0,954), and the out-of-sample perfor-
mance for γ = 5 is lower than the performance of γ = 2 (1,019).
Further we observe that for every state variable combination with the corresponding
γ, except the DP-model, the longest investment horizon (in this case H = 20) has the
lowest out-of-sample performance. This means that the out-of-sample performance for
short investment horizons are generally better than for very long investment horizons.
The malfunctioning of the DP-model is also stated by Goyal and Welch (2008).

Table 5: CEU improved performance of in-sample period 1926Q1-1965Q4 and out-of-
sample period 1966Q1-1995Q4

γ = 2 γ = 5 γ = 10

State variables H In-sample Out-sample In-sample Out-sample In-sample Out-sample
No state variables 4 1,085 0,943 1,030 0,957 1,017 0,975

8 1,229 0,927 1,080 0,933 1,039 0,960
20 1,717 1,079 1,203 0,996 1,061 0,968

DP 4 1,105 0,934 1,038 0,950 1,021 0,971
8 1,303 0,911 1,110 0,922 1,055 0,954

20 2,172 1,058 1,335 0,986 1,120 0,963
DFY DFR LTR 4 1,106 4,316 1,041 1,136 1,023 0,978

8 1,281 1,929 1,103 0,818 1,052 0,809
20 2,068 3,034 1,311 1,129 1,103 0,892

EP BM SVAR DE LTY DFY 4 1,197 0,919 1,056 0,954 1,027 0,975
8 1,632 0,805 1,197 0,873 1,091 0,921

20 3,611 0,564 1,586 0,714 1,212 0,795

We will continue with investigating whether the initial out-of-sample performance of
above can be improved.
We do this by using the SUR-model as described in the section ’Methods’. The resulting
out-of-sample performances are given in table 5. The improvement percentages are given
in table 6. We draw several conclusions out if these tables.
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From table 5 we can see that also after improvement the longest investment horizon has
a lower out-of-sample performance than the shortest investment horizon for the most
cases. But fortunately, we can see from table 6 that there are much out-of-sample per-
formance improvements. For most state variable combinations, except the DP-model,
there are performance improvements for all γ and all horizons. For the DP-model again
there is no performance improvement when H = 4 and H = 8. We can also see that in
most of the cases the improvement increases as the horizon increases. A very important
result is that for the longest horizon, H = 20 (5-year horizon), there is improvement for
all cases. With all these results we can definitely say that we managed to improve the
initial out-of-sample performance, especially for the longest investment horizon.

Table 6: CEU percentage improvement out-of-sample performances

State variables H γ = 2 γ = 5 γ = 10

No state variables 4 3,10% 0,74% 0,42%
8 6,23% 1,29% 1,59%

20 59,35% 21,69% 12,10%
DP 4 -1,85% -0,73% -0,17%

8 -7,85% -4,36% -1,17%
20 3,87% 3,36% 2,97%

DFY DFR LTR 4 613,26% 62,10% 18,50%
8 291,28% 28,81% 3,25%

20 910,26% 104,93% 17,56%
EP BM SVAR DE LTY DFY 4 30,28% 21,38% 11,20%

8 39,05% 22,45% 11,01%
20 40,28% 11,87% 5,00%

6 Conclusion

In this paper a portfolio policy creating method named the Jurek & Viceira method is
fully researched. In this section we will draw our conclusions of this research. In order to
do this we will first repeat the main research question which we mentioned early in the
section ’Introduction’: Is the JV-method an optimal method to solve long-term portfolio
problems?

The method of Jurek & Viceira is basically an extension of the classical approach for
creating portfolio policies. The main feature of this classical approach is that it assumes
an econometric model for assets and state-variables. That is why the JV-method uses
a VAR(1)-model. The JV-method computes the optimal portfolio weights by first opti-
mizing the power utility function. Finally, we managed to develop a general recursive
solution for horizons with arbitrary lengths.
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We described the several outcomes of different parameters and different performance
measures in order to investigate how optimal our JV-method performs for long invest-
ment horizons. The parameters are the investment horizon and the relative risk-aversion.
We have also described the outcomes of different combinations of state variables.

As mentioned, we investigated different performance measures. First we investigated
the resulting optimal portfolio weights for longer horizons. These showed that when
using the JV-method to estimate portfolio weights, a long-horizon investor may over-
allocate to stocks by a sizeable amount. We also found that the mean weights on the
stock index and on the bond index are not constant over the different combinations of
state variables. Secondly, we looked at the performance of our JV-method in terms of
utility and its certainty equivalent. While looking straight to the mean utility values we
concluded that the utilities of more risk-averse investors falls as the investment horizon
increases. And the utilities of investors with a lower coefficient of risk-aversion rises as
the horizon increases.
Further on, we investigated whether it makes sense at all to include state variables to
increase performance. We found that it does make sense to add predictors to increase
performance. We also found that when predictors are added in the model, the method
performs optimal especially for long investment horizons.
We also investigated the out-of-sample performance of the JV-method and tried to im-
prove these out-of-sample performances. The results showed that the initial and im-
proved out-of-sample performances for short horizons were generally better than for
very long horizons.
The out-of-sample improvement percentages showed that for most state variable com-
binations there were performance improvements for all levels of risk-aversion and all
horizons. And in most cases the improvement increased as the horizon increased.

Now that we have investigated our results of our research thoroughly, we are finally able
to answer our main research question. As said before, our goal is to find whether the
JV-method is a optimal method to solve long term portfolio problems. From the results
we conclude that the JV-method is not a optimal method to solve long-term portfolio
problems. Summarizing, we draw this conclusion because for long investment horizons:
this method overallocate to stocks, investors which are not very risk-averse have higher
utilities while there are much investors who are risk-averse, the out-of-sample perfor-
mance is worser than for short investment horizons. Only after the improvement, the
out-of-sample performance for long investment horizon became better.
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A Appendix

Figure A.1: portfolio weights with H=8, γ=2, 5 and 10 and DP as state-variable
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Table A.1: mean 5-year weights with γ = 10
H=20 γ = 10

Stocks
State variables τ=1 τ=2 τ=3 τ=4 τ=5 τ=6 τ=7 τ=8 τ=9 τ=10

No state variables 0.113 0.201 0.210 0.214 0.217 0.218 0.218 0.219 0.219 0.219
DP 0.114 0.203 0.215 0.222 0.228 0.232 0.235 0.239 0.242 0.245

DFY DFR LTR 0.114 0.201 0.212 0.221 0.228 0.233 0.238 0.242 0.246 0.249
EP BM SVAR DE LTY DFY 0.119 0.211 0.228 0.243 0.256 0.270 0.283 0.295 0.308 0.320

τ=11 τ=12 τ=13 τ=14 τ=15 τ=16 τ=17 τ=18 τ=19 τ=20

No state variables 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219
DP 0.249 0.252 0.255 0.259 0.262 0.266 0.269 0.273 0.277 0.280

DFY DFR LTR 0.252 0.254 0.256 0.258 0.259 0.261 0.262 0.263 0.264 0.264
EP BM SVAR DE LTY DFY 0.332 0.344 0.355 0.367 0.378 0.389 0.400 0.410 0.421 0.432

Bonds
τ=1 τ=2 τ=3 τ=4 τ=5 τ=6 τ=7 τ=8 τ=9 τ=10

No state variables 0.229 0.165 0.150 0.141 0.137 0.135 0.134 0.133 0.133 0.133
DP 0.228 0.164 0.148 0.140 0.136 0.135 0.134 0.134 0.134 0.134

DFY DFR LTR 0.228 0.167 0.152 0.147 0.147 0.148 0.150 0.153 0.156 0.159
EP BM SVAR DE LTY DFY 0.240 0.214 0.215 0.226 0.240 0.255 0.271 0.286 0.302 0.317

τ=11 τ=12 τ=13 τ=14 τ=15 τ=16 τ=17 τ=18 τ=19 τ=20

No state variables 0.133 0.133 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132
DP 0.134 0.134 0.135 0.135 0.136 0.136 0.136 0.137 0.137 0.138

DFY DFR LTR 0.163 0.166 0.170 0.174 0.178 0.181 0.185 0.189 0.193 0.197
EP BM SVAR DE LTY DFY 0.333 0.348 0.362 0.377 0.391 0.405 0.419 0.432 0.445 0.458
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