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Abstract

This report considers a repairable item inventory system with two
item types and a single repair shop. Failures occur according to two
Poisson processes with rates λ1 and λ2. Repair times are exponentially
distributed with identical mean µ and items are managed according to
a (s-1,s) policy. Costs are incurred for backordering items and may
differ between both product types. We search for priority policies that
lead to minimal backordering costs. We find that policies that include
failure rates, backordering costs, stock levels and the variability of the
failure process lead to the lowest costs and outperform simplistic rules
by percentages up to 20 %.
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1 Introduction

Studies of inventory systems often concern the minimization of the total
costs associated with these systems. These costs mainly consist of hold-
ing costs and backordering costs. Holding costs are costs required to keep
and maintain items in storage and include space rent, materials, insurance,
opportunity costs, and etcetera. Backordering costs are costs incurred by
businesses when they are unable to fill and order and must complete it later.
In this research, we consider an inventory system that consists of repairable
products of two different types with base stock levels s1 and s2. We as-
sume that broken items are returned according to two Poisson processes
with rates λ1and λ2. When a broken item is returned, the customer imme-
diately receives a new one, if available. If not, the item is backordered with
backordering costs per time unit equal to b1 and b2. In a system like this,
the total amount of products in inventory, either broken or repaired, is con-
stant. We assume that the initial stock levels, and therefore holding costs,
are fixed, so that only backordering costs can vary. The items are managed
according to a (S-1, S)-policy. This means that when an item is given to
a customer, an order is issued to the repair shop for an item of the same
type. Our system consists of a single repair shop, which implies that only
one order a time can be fulfilled. The total amount of backordering costs
depends on the sequence with which orders to the repair shop are fulfilled.
Our goal is to design a priority scheme for repairing items that will result
in minimal backordering costs.

Where most papers on inventory control deal with optimizing stock lev-
els, also repair priorities have been studied in a variety of settings. Most of
these settings include failure times that are Poisson distributed (and thus
inter-failure times that are exponentially distributed) and repair times that
follow an exponential distribution. Hausman and Scudder (1982) examine
a large amount of priority policies by means of simulation in an indentured
product structure. They find that dynamic rules, which use work-in-process
inventory information, outperform static rules that are based on fixed char-
acteristics of the product types. Perez and Zipkin (1997) develop an effective
dynamic heuristic policy in a Make-To-Stock inventory system, where several
products share a single processor of limited capacity. Numerical experiments
in a two-product environment suggest that their dynamic heuristic performs
better than static heuristics and is close to optimality. Dynamic priorities
are also proposed by Caggiano et al. (2006), in a two-echelon repairable
item system with a single repair shop. Adan et al. (2006) evaluate the
performance of static priority rules in a single-echelon, single repair shop
repairable item system, not only by means of simulation, but also analyt-
ically. They simultaneously optimize base stock levels and find that with
static priorities, large costs savings can be made compared to a First Come
First Served policy. Tiemessen and van Houtum (2010) consider the same
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problem as Adan et al. and use the same optimized base stock levels, but
plug in dynamic policies to evaluate their performance compared to static
policies. They show that dynamic scheduling rules often reduce total costs
by more than 10%.

Our work is most closely related to the last reference. Our system set up
is similar to that of Tiemessen and van Houtum in most aspects, limited to
a situation with two product types. That is, we deal with a single-echelon
single-repair shop system in which failures are modeled according to two
Poisson processes and repair times are exponentially distributed with equal
mean repair times for both types. However, we include the possibility that
backordering costs differ for both product types, which has important policy
implications. Inclusion of different backordering costs has been done before
in a Make-To-Stock environment, but not in a repairable item system. Since
repairable item systems in which different products have different backorder-
ing costs are common, low-cost priority policies for these systems have many
practical applications. Therefore, the goal of this research is to design pri-
ority repair schemes in a single-repair shop inventory system consisting of
two asymmetric-cost products that lead to minimal backordering costs.

To achieve this goal, we will first state our assumptions and describe the
system as a Markov decision process (Puterman (1994)). Thereafter, sev-
eral priority policies will be proposed and their rationales will be explained.
Evaluation of these policies will be done by means of simulation. The sim-
ulation results are reported in chapter 4. The performance of the different
policies will be evaluated and conclusions will be given in chapter 5.
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2 System description

In this section, our assumptions will be stated and the system will be de-
scribed as a Markov decision process. This will help us obtain a better
understanding of the problem and its possible solutions.

2.1 System description

We consider a system with two types of repairable items. Both types fail
(and are returned) according to Poisson processes with rates λ1 and λ2
respectively. Repair times of both types follow the same distribution with
mean parameter µ. Backordering costs are defined per product per time
unit and are denoted by b1 and b2. Initial stock levels are given and denoted
by s1 and s2. Because of the fact that no new products can be produced
and broken items are always replaced if possible, the stock level can never
exceed these initial levels. As mentioned in the introduction, only one item
a time can be repaired in the single repair shop that we consider. When
a repair has started, it will not be interrupted by another repair, which
is called non pre-emption. If broken items are present, the repair shop is
always occupied. This assumption is based on the assumption that holding
costs are the same for either broken or repaired items. Second, it is based
on the assumption that with equal mean repair times it is (almost) never
beneficial to keep the repair shop free in case a broken product of the other
type comes in. Therefore, the priority rules that are considered, only decide
which item to repair and not if an item should be repaired. Allowing the
repair shop to be empty during certain states, would require more complex
priority rules. A schematic overview of the system can be found in figure 1.

Assume that initially, an amount of M products is operative and S products
are in stock. Then:

• The total number of products in the system equals M+S;

• The maximum number of operative products is M;

• The maximum number of products in the stock base is S, otherwise
there would be non-operative products that are not replaced;

• The maximum number of products in the repair queue is M+S-1, since
repair is always performed if possible;

• The maximum number of items in the repair shop is 1, and equals zero
only if the number of items in the repair queue is zero.

Further, we assume that the number of operative products is infinite, such
that M = ∞. As described in the introduction, our goal is to design pri-
ority repair schemes that lead to minimal backordering costs. This is an
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Figure 1: Schematic overview of the system.

optimization problem that is mathematically formulated as follows:

min
π

2∑
n=1

bn · EBn (π) (1)

In which π indicates the priority policy that is implemented, bn stands for
the backordering costs per time unit for product type n and EBn stands for
the expected backordering costs for policy π. In the steady state, assuming
that it exists, the probabilities to arrive at a certain state, equal the limiting
probabilities when time goes to infinity. The expected number of backorders
depends on the rates at which parts fail, on the mean repair time, on the
initial stock levels and on the repair policy.

2.2 Analysis

The system that is described above can be modeled as a Markov decision
process. A rigourous treatment of this kind of processes is given by Puter-
man (1994). A Markov decision process is similar to a Markov chain, except
that transition probabilities depend on the actions of the decision maker
and that for each state, the decision maker receives a reward. Just as with
Markov chains, the system undergoes transitions from one state to another
in a chainlike manner. The state in which the system will be next, is only
influenced by the current state and action, but is independent of previous
states and actions, which is called the Markov property. The general goal of
a Markov decision process is to find a policy, that is, a specification of which
action to take in each state, that maximizes some function (in our case the
mean) of the sequence of rewards. We will start by giving a description of
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the states that are present in the system of study. Since the system consists
of only two types of products, we deal with a two-dimensional state space.
We define the state x = [x1 x2] as a two-dimensional vector that holds the
net stock level for both products. A negative net stock level means that
backorders are standing out for the concerning product type. Since we as-
sume that the number of operative products is unbounded, the same holds
for the possible number of outstanding backorders, implying that x1 and x2
range from −∞ to s1 and s2 respectively. The steady state probabilities to
go from one state to another by one product less in stock, will, irrespective
of the priority policy, be smaller than one, since we always have the pos-
sibility that an item will be repaired before another item fails. Therefore,
the probability to arrive at a state with a very large number of backorders
is only small. So, unless failure rates are high and repair times low enough,
the vast majority of time the system is in states that do not exceed a certain
amount of backorders. The next step in describing the Markov decision pro-
cess, is defining the action space A, and the set of admissible actions A(x).
We only have two products, and thus the action space in our model consists
of A = {a0, a1, a2}, with a0, a1 and a2 the possible actions. Assuming non
pre-emption, which means that we do not interrupt current repairs, we only
need to make a scheduling decision when a repair job is finished. Action
a0 is only performed if there are no broken items, which is the case when
x1 = s1 and x2 = s2, where s1 and s2 are the initial stock levels. Since the
repair shop is never empty when broken items are present, action a1 will
only be performed with certainty if there are broken items of type 1 and
none of type 2. Action a2 will only be performed with certainty if there
are broken items of type 2 and none of type 1. If we can only say with
certainty which action should be performed if there are no broken items or
broken items of one type only, how should we find the optimal action for
every state x that leads to the lowest costs per time unit? One method
that is often used for calculating the optimal action for every state x, is by
solving the Bellman equations for an optimal policy for a Continuous Time
MDP. A Bellman equation (Bellman (1953)), writes the value of a decision
problem at a certain point in time in terms of the payoff from initial choices
and the value of the remaining decision problem that results from the initial
choices. The value of our decision problem, coincides with the height of the
backordering costs. These should be minimized over all actions, leading to
the following recursive equation, called the Bellman optimality equation:
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B∗ (x) = min
a∈A(x)

 (−b1 ·min (0,x1)− b2 ·min (0,x2)) · τ (x,a)

+
∑
y∈S

pxy (a)B∗ (y)

∀x (2)

In this equation, y is the state to which a transition from x is possible. B∗(x)
represents the lowest costs possible, when the initial state is x. That the
Bellman equation is a recursive one, can be seen from the fact that B∗(y),
present on the right hand side, represents the lowest cost possible when the
initial state is state y. Since there are several possible transitions from state
x to state y, we multiply the values of B∗(y) with the probabilities that state
x transits into state y, given action a is performed, denoted by px,y(a). For
all states x, only a limited number of transitions has a probability higher
than zero. To specify the transition probabilities we introduce the transition
operators T+

1 , T−1 , T+
2 and T−2 , that stand for respectively the transition in

which one product of type 1 is repaired, the transition in which one product
of type 1 fails, the transition in which one product of type 2 is repaired
and the transition in which one product of type 2 fails. If we assume that
mean repair times are different for both product types, this results in the
transition probabilities that are specified in figure 2.
After the values of V ∗(y) have been multiplied with the transition proba-
bilities, we sum over all y. The first part of the Bellman equation, (−b1 ·
min(0,x1)− b2 ·min(0,x2) · τ(x,a)), consists of the backordering costs per
time unit that result from the system being in state x multiplied by the time
the system is in state x, given action a is performed. τ(x, a) are specified in
figure 3.
As described above, the system of study counts a large number of states, an
infinite number to be precise. Since this number is infinite, it is impossible
to define an optimal action for every possible state. However, as mentioned
before, the vast majority of time, the system is in states that do not exceed
a certain amount of backorders. Therefore we could truncate the state space
by ignoring the states with a large number of backorders. For a truncated
state space, we could solve the Bellman equations and consequently give the
optimal action for every evaluated state. However, this does not provide us
with the real optimal solution, which would require evaluation of all states
and not only those after truncation. Instead of searching for the optimal
solution, we study general policies that are applicable to every problem
instance.

In this section we gave a detailed description of our system and problem.
In the next chapter we will first examine some possible general priority
policies and thereafter explain how to evaluate their performance by means
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Figure 2: transition probabilities

of simulation. For the simulation we use the assumptions, state space and
events as described in this chapter.

3 Methods

In this section, we introduce different priority policies and explain the ratio-
nale behind them. First, a general overview of all policies will be given, after
which they will be explained separately. The second part of this chapter will
be about the method we use to test our policies.

3.1 Policies

From previous section, we know that the system of interest can be described
as a Markov decision process, possessing the Markov, or memoryless prop-
erty. This means that, given the current state x, and the current action a,
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Figure 3: Time lengths the system is in state x, given action a is performed

the next state is conditionally independent of all previous states and actions.
Therefore, we only have to take into account the current state of the system
when we make a priority decision. Further, we know from previous chapters
that mean repair times are assumed to be equal for both types. This leaves
us with three remaining factors on which we can base our repair policies.
These are the backordering costs bn, the failure intensity λn and the current
stock level sn. When we consider those factors in isolation, we prioritize
types with high backordering costs over types with low backordering costs,
types with high failure rates over types with low failure rates, and types with
low stock levels over types with high stock levels. To get a clearer picture
of the problem, we will first examine some hypothetical states in which the
system can be.

Imagine a state in which the only difference between both product types
is the height of the backordering costs (i.e. equal stock levels, equal failure
rates and equal mean repair times). In that case, we act optimally by
repairing a product of the type for which backordering costs are highest. In
case a backorder occurs, this is worse for the high-cost type, whereas there
is no reason, like a higher stock-out probability or longer occupation time
of the repair shop, to choose for the low-cost type. This kind of states,
however, in which the only difference between both product types are the
backordering costs, will only seldom occur. So what should we do when the
type with higher backordering costs, also has a higher stock level? Should
we repair the type with the lower stock level, since it has a higher probability
of reaching a negative stock level (and thus of causing backordering costs),
or still the type with the higher backordering costs per time unit, since
the consequences of reaching a negative net stock level for this type are
more costly? Obviously, we need more information about stock levels and
backordering costs than just the statements ’higher’ and ’lower’. But even
then, if we were to make a decision based on a trade-off between backordering
costs and stock levels, how important should each factor be? By similar
reasoning, we should always repair an item of the type with the lowest
stock level when we consider a state in which the only difference between
both product types is the current stock level. Because then, the low-stock-
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Name of policy Incorporated factors Static/Dynamic

Random none neither
B b static
S s dynamic
Lab λ static
Diff s dynamic
Blab b, λ static
EBT s, λ dynamic
Myopic s, λ dynamic
SB b, s dynamic
EBT+B b, s, λ dynamic
Myopic+B b, s, λ dynamic
Myopic+B approximation b, s, λ dynamic
Presbyobic(p) b, s, λ dynamic

Table 1: overview of policies; b=backordering costs, λ = failure rates, s =
stock levels.

type is more likely to reach a negative net stock level than the high-stock-
type. Situation changes when we also have different failure rates. If one
type has a smaller current stock level, but the other type has a higher
mean number of failures per time unit, we have an incentive to repair the
type with the higher failure rate instead of the type with the lower stock
level. But then again, how much should the difference in failure rates be,
compared to the difference in stock levels, to prioritize the high-failure-rate-
type over the low-stock-type? It looks as if policies that include all three
factors (bn, λn, and sn), are more likely to lead to low costs than policies
that include only one, two or zero of these factors. Priority policies that
include dynamic information about the current state of the system, like
the current net stock level, are called dynamic policies. Policies that only
include factors that are unchanging over time, like backordering costs or
failure rates, are called static policies. Earlier work in the area of priority
policies in inventory models has shown that dynamic policies outperform
static policies. Therefore, our focus is on dynamic policies. However, we
also investigate some static policies as a comparison. An overview of the
policies that are investigated is shown in table 1. Especially the first few
policies speak for themselves, but still, we will shortly explain them and
state expectations about their quality.

Random-policy
The Random-policy randomly prioritizes either type 1 or type 2. This policy
does not take into account backordering costs, failure rates or stock levels.
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Therefore we do not expect this policy to provide good results.

B-policy
The B-policy always repairs the item with highest backordering costs, but
does not take into account failure rates or stock levels. So according to
the B-policy, products of the low-cost type are repaired only if there are no
broken items of the high-cost type. We expect this rule to provide good
results only in case cost differences are high enough and the utilization rate
((λ1 + λ2)/µ) is low enough, so that sometimes the repair shop is free to
repair the low-cost-type.

S-policy
The S-rule repairs the item of which stock is lowest, but does not take into
account failure rates or backordering costs. Despite of the fact that this is
a dynamic rule, we only expect it to yield good results when backordering
costs and failure rates of both types are equal. Imagine the case in which
there are 3 products left in stock of type 1, with a failure rate of 0.7 and
backordering costs of 10 per time unit, and there are 2 products left in stock
of type 2, with a failure rate of 0.2 and backordering costs of 1 per time unit.
Whereas the S-rule would prioritize type 2, it seems much more rational to
prioritize type 1, since it has a higher probability of reaching a negative
stock level (0.0058 versus 0.0011). Another reason to prioritize type 1, is
that reaching a negative stock level is more costly for type 1, due to the high
backordering costs per time unit.

Lab-policy
The Lab-rule repairs the item which has the highest failure rate, but does
not take into account the stock level or the backordering costs. The low-
failure-type is repaired only if there are no broken high-failure-types. We
expect this rule to provide good results only if backordering costs are equal
for both types or when the utilization rate is sufficiently low, such that in
some periods the repair shop is empty to repair the low-failure-type.

Diff-policy
The Diff-rule repairs the item of which the difference between initial stock
and current stock is highest. We expect this rule to provide good results only
in cases as described by the S-rule and is expected to outperform the S-rule
only in case the initial stock level is chosen by an optimization procedure.
Otherwise, aiming at the initial stock level has no function.

Blab-policy
The Blab-rule prioritizes the item which has the highest product bn ·λn. This
rule is expected to lead to lower costs than both the B-rule as the lab-rule
in cases in which the B-rule and lab-rule lead to opposite decisions. In case
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that one type has higher costs as well as a higher failure rate than the other
type, the B-,lab- and Blab-rule lead to exactly the same priority decisions.

EBT-policy
The EBT rule (Equalization of Backorder Times rule), was proposed by
Tiemessen and van Houtum (2010) and turned out to be a good rule in case
of equal backordering costs. It tries to maximize the expected time until the
next backorder by computing the prioritized item as follows:

prioritized item = arg min

{
sn + 1

λn

}
(3)

We add +1 to the current stock level, to incorporate for the fact that backo-
rdering costs only occur from the moment the number of failures exceeds the
current stock level with one. If we would apply this rule in case net stock
levels are negative, we would obtain inadequate results, since high failure
rates would then imply a low priority, which is the adverse of what we want.
Therefore, in case of negative stock levels, priority is given as follows:

prioritized item = arg min {sn · λn} (4)

The EBT- rule does not take into account the severity of stock-out in terms
of backordering costs, and is therefore expected to provide bad results as
the difference in backordering costs between both product types gets larger.
A second shortcoming of this method is that it prioritizes the type with the
highest expected run-out time, whereas at the same time, this type might
have a much larger probability of running out. So, this rule does not take
into account the variability of the process.

Myopic policy
Just as the EBT-policy, the myopic policy is based on the failure rate and
the current stock level. However, unlike the EBT-policy, the myopic policy
takes into account the variability of the failure process. The myopic rule
tries to minimize the expected number of backorders in the near future.
As ’near future’ we choose the expected future time period in which we
can not influence the system by making a priority decision. Assuming non
pre-emption, that is, we do not interrupt repair for another repair, this
period equals the expected repair time. Minimizing the expected number of
backorders during the next repair time is equivalent with choosing the type
which has the largest probability of reaching a negative next stock level,
during the next service time. Therefore, in this rule, priority is given as
follows:

prioritized item = arg max {1− Pλnµn(Nn ≤ sn)} (5)

In which Nn denotes the number of failures for type n and sn denotes the
stock level of type n at the beginning of the repair time. Pz(Y < y) denotes
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the probability that Y ≥ y, where Y follows a Poisson distribution with
mean z.

SB-policy
The SB-rule prioritizes the item with the lowest ratio sn/bn in case of pos-
itive stock levels, and the item with the lowest sn · bn in case of negative
stock levels. This rule implies that getting priority is more likely the lower
the stock level and the higher the backordering costs. The measure sn/bn as
’the backordering costs per item in stock’ in itself has no practical meaning,
since items present in stock do not impose backordering costs. The SB-rule
does not take into account failures rate and is therefore expected to provide
good results only in case of equal failure rates.

All of the priority rules described above ignore one or more aspects of the
repairable item inventory system, and therefore we assign most credit to
rules that incorporate as well bn, λn as sn, as the ones described below.

EBT+B-policy
The EBT+B-policy, can be seen as an extension of the EBT rule with backo-
rdering costs (or as an extension of Blab with stock levels, or as an extension
of SB with failure rates). In this rule, the prioritized item is computed as:

prioritized item = arg min

{
sn + 1

λn · bn

}
(6)

Whereas (sn + 1)/(λn) denotes the expected run-out time, division by the
backordering costs does not have a real meaning, since costs per item in
stock do not exist. What division by backordering costs only does, is as-
signing a higher priority to high-cost types. When backordering costs of
type 1 are four times as high as those of type 2, item 1 is prioritized unless
the run-out time for item 2 is more than four times as low as the run-out
time for item 1. Or, another example: When type 1 has a run-out time of
8 time units, and type 2 has a run-out time of 2 time units, and costs per
time unit are 4 and 1 respectively, the EBT+B rule gives both items equal
priority. Starting from the moment of the priority decision, table 2 shows an
overview of the backordering costs per item, t time units after the moment
of decision. From this table, we see that whether giving both types equal
priority is a good decision depends on the time interval we consider. If we
consider a time interval of 5 seconds after the priority decision, we might
have performed better by giving priority to type 2. If we consider a time
interval of 11 seconds after the moment of decision we might have acted
better by prioritizing type 1. So, besides the expected run out time, also
the probability of stock out during a certain interval is important, which
leads us to our second three-factor policy, the myopic+B policy.
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Time units af-
ter priority de-
cision

costs type
1

costs type
2

1 0 0
2 0 0
3 0 1
4 0 2
5 0 3
6 0 4
7 0 5
8 0 6
9 4 7
10 8 8
11 12 9

Table 2: Costs for both types, during the next 11 time units, assuming only
one item fails, and no item is repaired.

Myopic+B-policy
The Myopic+B policy is an extension of the myopic policy that includes
backordering costs. It tries to minimize the expected backordering costs,
instead of the expected number of backorders in the myopic rule, during the
next repair time. This rule is based on the myopic rule in Perez and Zipkin
where it is used in a Make-To-Stock environment, with different backordering
and holding costs for each type. The prioritized type is the type with the
highest expected costs during the next repair. To compute these costs, we
need to know the expected number of backorders during one repair time.
This can be expressed as follows:

E[NB] =

∞∑
n=s

(n− s) · P (N = n) (7)

in which NB denotes the number of backorders, N denotes the number of
failures and s the number of items in stock at the beginning of the repair.
The probability P (N = n) of having n failures during one repair time can
be computed conditioning on the repair time. This leads to the following
expression (see Appendix 1):

P (N = n) =
(λµ)n

(λµ+ 1)n+1
(8)

in which λ is the failure rate and µ is the mean service time. Using geometric
series, we find that the expected costs during one repair time (eq. 7) can be
computed as follows:

E[NB] =
1

λµ+ 1
· r
−s+1 · (1 + s(r − 1))

(r − 1)2
− s · r

−s

r − 1
(9)
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with r =
λµ+ 1

λµ

After we have incorporated the backordering costs, we prioritize the type
with the highest expected backordering costs during one repair time. We
expect the myopic+B policy to provide better results than the EBT+B
policy, since it incorporates the backordering costs in a more meaningful
manner and since it takes into account the variability of the failure process.

Myopic+B approximation policy
In the myopic policy (without backordering costs), we use a measure that
is equivalent to choosing the type with the highest expected number of
backorders during one repair time. Namely, choosing the type with the
highest probability of reaching a negative net stock level during one repair
time. In case of the myopic+B-policy, there is no such equivalent, since a
higher probability of reaching a negative net stock level for one type does
not necessarily lead to higher expected backordering costs if those costs
per time unit are higher for the other type. However, it is still possible
to use an approximation, that leads to (almost) equivalent results. In this
approximation we choose the prioritized item in the following way:

Prioritized item = arg max {(1− Pλnµn(Nn ≤ sn)) · bn} (10)

In which Nn denotes the number of failures for type n, sn denotes the stock
level of type n at the beginning of the repair time, and bn denotes the back-
ordering costs per time unit for type n. Pz(Y < y) denotes the probability
that Y ≥ y, where Y follows a Poisson distribution with mean z. The rule
prescribes to prioritize the item with the highest probability of reaching a
negative net stock multiplied with the backordering costs per item per time
unit. For this approximation to be a valid tool in reaching our goal (that
is, prioritizing the item with the highest expected backordering costs during
one repair time), we have to assume the following: The probability of stock-
out multiplied by the backordering costs, can for one type never be higher
or lower than for the other type, when the expectation of the backordering
costs during one repair time is not higher or lower than for the other type.
This assumption holds for (almost) all states that we consider. Even the
ratio measuretype1/measuretype2 is close to the one obtained by computing
the exact expectations.

Presbyopic(p)-policy
The myopic+B (approximation) policy makes priority decisions based on
changes in the system during one repair time ahead. However, it might be
beneficial to look more than one repair time ahead. That is why we intro-
duce the presbyopic rule. This rule prioritizes the item with the highest
expected costs during the horizon of p expected repair times. Since the ap-
proximation as used in the previous rule is easier to compute and probably
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leads to the same priority decisions, we use it again in this rule. Therefore,
the presbyopic policy comes down to the following:

prioritized item = arg max {(1− Pλnp·µn(Nn ≤ sn)) · bn} (11)

in which Nn denotes the number of failures for type n, sn denotes the stock
level of type n at the beginning of the repair time, bn denotes the backo-
rdering costs per time unit for type n and p denotes number of repair times
that is evaluated. Note that for a horizon (p) of 1, the presbyopic policy
coincides with the myopic+B policy. Pz(Y ≤ y) denotes the probability
that Y ≤ y, where Y follows a Poisson distribution with mean z. Whereas
the myopic+B(approximation) policy only tries to minimize the expected
costs during the next repair time, the presbyopic rule takes into account the
fact that also during later repair times, costs should be kept low. Therefore,
we expect this rule to lead to better results than the Myopic+B rule.

3.2 Simulation

To evaluate the performance of different policies we use discrete event sim-
ulation. Possible events are a failure of type 1, a failure of type 2, a repair
of type 1 and a repair of type 2. Every time an event occurs, a vector
with net stock levels is updated and the backordering costs of the previous
state are added to the total backordering costs. To obtain a measure of the
variability of the results and to consider the system in its steady state, we
use the method of batch means. According to this method, we simulate a
large number of failures and split them in equal parts. Since the first batch
starts with an empty system (and thus is not an adequate representation
of the steady state), we ignore the results from this first batch. The num-
ber of failures used for each simulation instance, ranges from 200.000 to
300.000. For each test instance, we use the same failure and repair times
to drive the simulation for all policies. This gives us an accurate approxi-
mation of the cost-differences between methods. The test bed consists of a
single mean repair time µ, equal to 1. We use four different utilization rates
(ρ = (λ1 + λ2)/µ), ranging from heavy to low traffic, of respectively 0.99,
0.95, 0.8 and 0.7. Failure rates are chosen such that the ratio λ2/λ1 equals
1 or 4. Further, we use minimum base stock levels s1 and s2 as obtained
by Adan et al. that lead to a target fill rate of 0.8, 0.8 assuming that a
FCFS policy is used. This choice of parameters allows us to compare our
results with those from earlier research and prevents us from choosing an
unreasonable/unrealistic number of items in stock to begin with. Since the
most important contribution of our policies is that they take into account
differences in backordering costs, that is where we apply most variation.
The backordering costs ratio’s b2/b1, range from 8 to 0.5. We will inves-
tigate what the different priority policies imply for the average number of
backorders in the system and compare the policies based on the average
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costs per time unit. We will use multiple comparisons to test the statistical
significance of the difference between policies.
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4 Results

This section reports the results obtained by simulation using the parameters
as defined in section 3.2. Table 3 and 4 in Appendix 2 contain the average
costs per time unit for every method. Table 4 and 5 in Appendix 2 contain
the average number of backorders per time unit for every method and type.
Our estimates are reasonably accurate, but not perfect, due to variation.
However, we are not directly interested in the exact policy costs, but more
in the cost differences between policies. The estimates of the costs differences
are considerably more accurate, since we used the same failure and repair
times for each method.

4.1 Comparison

The first four columns of tables 3,4,5 and 6 contain the system parame-
ters. The subsequent columns contain the average costs per time unit for
14 methods. Estimates from the myopic+B policy are omitted, since they
are equal to those of the myopic+B approximation policy. We notice several
things:

• The simplistic random-, S-, diff-, EBT-, myopic- and SB-policy are
never (among the) best. This is in accordance with our expectations,
since these policies all lack one or more of the three factors (λ,b and
s) that we could use. However, also the simplistic B-, lab- and Blab-
policy lack one or more factors, but sometimes they do belong to the
best policies. This leads to the following remark;

• The B-, lab- and Blab-policy are sometimes (among the) best. This is
not in accordance with our expectations, since these policies all lack
one of the three factors (λ,b and s) that we could use. An explanation
is found after a closer inspection of the results. We see that the B-,lab-
and Blab-policies lead to good results only in highly asymmetric-cost
instances with a high utilization rate. Due to the high utilization rate,
the total amount of backorders is large (see table 5 and 6), and due
to the high difference in backordering costs per time unit, it is cost
effective to repair only the high-cost-type, unless there are no broken
items of this type. The reason that sometimes the lab-rule performs
well, is that in those cases, it equals the B-rule. This happens if a
type has a high failure rate as well as high backordering costs. The
lab-rule in itself does not lead to good results, which can be seen for
example in case of a utilization rate of 0.99, a failure-rate-ratio of 1 and
a cost-ratio of 0.125. The policies mentioned in this remark, are not
the only good performers in the described instances (asymmetric-cost
instances with a high utilization rate). Also the more refined policies
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that incorporate all three factors lead to the same good results. This
leads to the next remark;

• Three-factor policies (EBT+B, myopic+B, presbyopic(2), presbyopic(4)
and presbyopic(6)) belong to the best performers in every instance.
The last column of table 3 and the last column of table 4, display the
percentage difference between the best ’simplistic’ rule (lacking one or
more factors) and the best rule incorporating all three factors. In the
highly asymmetric cost instances with high failure rates, they perform
identically to the B-policy (% difference = 0), which means that the
high-cost type is in all states prioritized unless there are no broken
products of that type. Whereas the B-policy works well by ’coinci-
dence’, the myopic+B or presbyopic rule prioritize the high-cost type
based on a more weighted decision, namely after comparison of the
expected costs for both types. Due to this weighted decision, these
policies also perform well in case the cost differences are low and in
case the high-cost type also has a high failure rate. Another remark
regarding the three-factor policies, is that the EBT+B performs least
well. The bad performance compared to the other three-factor poli-
cies becomes more pronounced when both types have different failure
rates. This confirms our expectation that policies should include the
variability of the failure process.

• At last, we examine the effect of the length of the time period for
which we compute the expected backordering costs. This we do by
comparing the myopic+B- and presbyopic-rules with each other. We
conclude that in most cases, choosing p = 4 leads to the lowest cost.
The few instances in which it might be beneficial to choose a larger p,
are the highly asymmetric cases in which one type has a higher failure
rate and higher backordering costs, in combination with a high uti-
lization rate. These are the same instances as in remark two, in which
the B-rule performs well and prioritizing the high-cost-type in every
state of the system is optimal. However, the difference between the
presbyopic(4) and presbyopic(6) rule might not be significant, which
we will investigate next.

4.2 Statistical significance of the differences

To examine the statistical significance of the cost differences we use multiple
comparisons as used in Koning et al. (2005). After we have rejected the
null-hypothesis that the effects of every method are equal, by means of the
Friedman test, we want to know which components of these hypothesis can
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also be rejected. The component hypotheses take the following form:

H0, k1k2 : τk1 = τk2 ,

where k1 = 1, 2, ..., k2 − 1 and k2 = 1, 2, ..., 14,, k are the methods and τ
stands for the policy effect. Each component hypothesis H0,k1k2 is rejected
if and only if:

|Rk1 −Rk2 | ≥ rα,14,100,

in which 14 is the number of methods, 100 the number of simulations and Rk
is the mean rank of policy k. For α = 0.05, r equals 4.743 (see Harter(1960)).
A visualization of the multiple comparisons can be found in figure 4, in which
for every method an interval is drawn of length r, around the mean rank.
Methods for which these lines do not overlap, significantly differ from each
other. A bold line is drawn at the upper bound of the best method, such
that all policies for which the interval lies above the bold line, perform
significantly worse than the best method. We distinguish three cases:

The upper figure displays an example of the pattern that is found in
the highly asymmetric cases, in which product 2 has high costs as well as a
high failure rate in combination with a high utilization rate. We see that, as
explained in remark 2, the B-, lab-, Blab-, presbyopic(4) and presbyopic(6)
rule perform equally well, and that every other method performs significantly
worse.

The mid figure represents the typical pattern we find in case of highly
asymmetric product types in combination with a low utilization rate. Here,
the presbyopic(4)- and presbyopic(6)-policy perform significantly best, where
now the B-, lab- and Blab-policies perform significantly worse. This can be
explained by the fact that the utilization rate is now low enough, such that
there is more room to prevent backorders, instead of choosing the lowest
backordering costs.

The bottom figure represents a typical example of a case in which prod-
uct 1 has a low failure rate but high costs. A balanced decision has to be
made, which leads to the three-factor policies, EBT+B, myopic+B, presby-
opic(2) and presbyopic(4), being significantly better than the other methods.
The presbyopic(4) policy never performed significantly worse than the best
policy, which makes presbyopic(4) the best policy to choose in every evalu-
ated instance.

In this section we evaluated the performance of all policies and examined
the statistical significance of the differences between policies. In the next
section we will summarize the conclusions following from these results and
give recommendations for further research.
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Figure 4: Average ranks of 14 methods over 100 simulations, intervals com-
pare with the best method

22



5 Conclusion

We studied the use of priority policies in a repairable item inventory system
with two product types. Products fail according to two Poisson processes
with rates λ1 and λ2, and repair times are exponentially distributed with
mean µ. We assume that both product types have different backordering
costs, b1 and b2 and that products can be repaired in a single repair shop. We
searched for a priority policy that leads to minimal costs. Differing back-
ordering costs and repairable item inventory systems have been included
in studies of priority policies before. However, they were never examined
in combination. Since repairable item systems with different backordering
costs are common, good priority policies for these systems have many prac-
tical applications. We proposed 14 different policies based on one or more
factors describing the current state of the system (s,b and λ). We evaluated
the quality of those policies by means of simulation in 36 problem instances.
Simulation showed that policies that include all three factors, significantly
lead to better results than policies that include zero, one or two factors.
Their superior quality becomes more pronounced when the utilization rate
is low, with percentage improvements around 15 %. The presbyopic(4) pol-
icy, that prioritizes the type with the highest probability of stock-out during
the next 4 repair times, multiplied by the backordering costs per time unit,
leads in every problem instance to the lowest costs.

Possibilities for further research
Our results and recommendations are based on simulations. It would be
good to examine whether the same results can be derived analytically. Also,
the Bellman equations from section 2 could be solved to evaluate how far our
best results (obtained by presbyopic(4)) are from optimality. Also analytical
proof could be given for the equivalence between the myopic+B-policy and
the myopic+B-approximation-policy. A last, but certainly not unimportant
recommendation for further research is to make less strict assumptions re-
garding the distribution and mean of the repair times. In this research, we
assumed that repair times are exponentially distributed with equal mean
repair times. The assumption of equal mean repair times might not be very
realistic if we deal with unequal product types and consequently unequal fail-
ure types. Incorporating different mean repair times, would require small
adjustments in our simulation, since our best policies already incorporate
the effect of different mean repair times. Second, the assumption of expo-
nentially distributed repair times is somewhat too strict. Whereas it is likely
that failures can be modeled according to a Poisson process, the distribu-
tion of repair times is less secure. Instead of an exponential distribution, a
Gamma distribution could be used to model repair times. In this case, we
would probably need new policies leading to optimal results, that not only
include mean repair times, but also the variance of the repair times.
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6 Appendix

6.1 Derivation

Expected number of backorders during one repair time.
NB is the number of backorders during one repair time, N is the number of
failures, s is the stock level, P (N = n) is the probability of n failures during
1 repair time. N follows a poisson distribution with rate λ, repair times are
exponentially distributed with mean µ.

E[NB] =
∞∑
n=s

(n− s) · P (N = n)

P (N = n) =

∫
P (N = n|T = t) · fT (t)dt

=

∫
e−λt(λt)n

n!
· 1

µ
e
− t
µdt

=

∫
tn · e

−(λ+ 1
µ
)t · λn

n!µ
dt

Write as gamma distribution with k = n+ 1 and θ = 1
λ+ 1

µ

=

∫
tn · e

−(λ+ 1
µ
)

( 1
λ+ 1

µ

)n+1
· 1

(λ+ 1
µ)n+1

· λ
n

µ
dt

=

∫
1 · 1

(λ+ 1
µ)n+1

· λ
n

µ
dt

=
(λµ)n

(λµ+ 1)n+1

E[NB] =
∞∑
n=s

(n− s) · P (N = n)

This is a known series (Wolfram Mathematica) of which the result is as
follows:

=
1

λµ+ 1
·
∞∑
n=s

n · ( λµ

λµ+ 1
)n − s

∞∑
n=s

(
λµ

λµ+ 1
)n

Say, λµ+1
λµ = r,

=
1

λµ+ 1
· r
−s+1(1 + s(r − 1))

(r − 1)2
− s( r

−s

r − 1
)

6.2 Tables of average costs and average number of backo-
rders
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r l1/l2 b1/b2 s1 s2 Random B S lab diff Blab EBT Myopic SB EBT+B myopic+B myopic+B pres2 pres4 pres6 % difference  

approx

0.99 1.00 0.500 4 4 34.08 24.25 33.18 33.58 33.18 24.25 33.37 33.37 30.07 23.01 25.35 23.23 23.01 23.18 23.63 5.11%

0.250 51.01 22.90 51.41 51.14 51.40 22.90 51.96 51.96 35.58 22.68 23.10 22.73 22.33 22.46 22.90 2.46%

0.125 104.69 25.59 102.41 107.59 102.41 25.59 103.78 103.78 48.72 27.48 33.37 27.53 25.99 25.59 25.59 0.00%

0.25 0.500 2 6 32.57 18.16 24.19 18.16 22.89 18.16 20.88 20.91 22.34 18.06 33.12 18.12 18.09 17.70 17.90 2.55%

0.250 63.74 19.99 40.77 19.99 36.69 19.99 31.41 31.50 31.41 23.11 64.78 23.22 22.02 20.49 19.99 0.00%

0.125 158.44 30.11 85.89 30.11 85.91 30.11 59.29 59.37 51.92 36.96 159.50 34.17 31.85 30.11 30.11 0.00%

2.000 18.62 18.94 23.51 32.47 23.51 32.47 26.90 26.90 21.39 16.82 18.94 16.60 16.60 16.82 16.82 10.85%

4.000 20.05 20.32 41.18 68.45 41.17 20.32 52.48 52.45 28.35 18.39 20.32 18.58 18.37 18.37 18.83 8.39%

8.000 17.93 18.14 62.62 118.25 62.63 18.14 84.77 84.72 29.46 16.54 18.14 16.49 16.48 16.72 16.73 8.08%

0.95 1.00 0.500 4 4 15.49 11.51 14.66 15.42 14.66 11.51 14.81 14.81 13.46 10.46 11.40 10.60 10.46 10.61 10.99 9.13%

0.250 27.91 12.30 26.09 27.61 26.10 12.30 26.53 26.53 18.70 12.03 12.79 12.08 12.04 11.92 12.30 3.10%

0.125 45.21 12.00 44.05 48.06 44.05 12.00 45.07 45.07 23.34 13.18 12.75 13.25 12.20 12.00 12.00 0.00%

0.25 0.500 2 6 18.69 9.34 12.09 9.34 12.09 9.34 10.73 10.75 11.31 9.41 19.23 9.45 9.42 9.25 9.34 0.95%

0.250 36.87 11.61 21.03 11.61 21.03 11.61 17.06 17.10 17.06 13.07 37.36 13.13 12.39 11.61 11.61 0.00%

0.125 79.76 17.07 42.17 17.07 42.18 17.07 31.60 31.70 28.85 21.23 79.54 19.50 18.06 17.07 17.07 0.00%

2.000 10.21 10.47 11.74 16.71 11.74 16.71 13.18 13.17 10.84 8.72 10.47 8.54 8.54 8.72 8.72 16.38%

4.000 11.68 11.92 21.76 37.36 21.77 11.92 27.12 27.09 15.54 10.27 11.92 10.39 10.24 10.24 10.62 12.33%

8.000 9.64 9.82 29.81 58.51 29.79 9.82 39.29 39.23 15.07 8.59 9.82 8.50 8.50 8.68 8.69 11.80%
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Simulation parameters (m = 1)

Table 3: Average costs per policy; l = failure rate r = utilization rate b = backordering costs per time unit, s = stock level, 1 = type 1 and 2 = type 2.

% difference = difference between best policy including 0,1 or 2 factors and presbyopic(4) policy.

average costs of policies

The lowest average costs per instance are marked. 



r l1/l2 b1/b2 s1 s2 Random B S lab diff Blab EBT Myopic SB EBT+B myopic+B myopic+B pres2 pres4 pres6 % difference  

approx

0.80 1.00 0.500 4 4 1.36 1.23 1.10 1.36 1.10 1.23 1.14 1.14 1.07 0.89 1.01 0.90 0.89 0.89 0.94 16.75%

0.250 2.38 1.29 1.86 2.35 1.86 1.29 1.98 1.98 1.58 1.10 1.26 1.12 1.11 1.08 1.15 16.37%

0.125 3.93 1.35 3.04 4.04 3.04 1.35 3.28 3.28 2.33 1.39 1.35 1.43 1.28 1.25 1.35 7.02%

0.250 0.500 2 6 1.54 1.16 1.15 1.16 0.97 1.16 1.04 1.07 1.09 0.92 1.65 0.98 0.92 0.90 0.97 7.04%

0.250 3.30 1.49 2.27 1.49 1.67 1.49 1.97 2.05 1.97 1.52 3.28 1.62 1.52 1.39 1.42 6.45%

0.125 6.73 2.16 4.50 2.16 2.87 2.16 3.90 4.11 3.79 2.76 5.71 2.73 2.42 2.20 2.16 0.00%

2.000 0.99 1.00 1.00 2.22 1.30 2.22 1.06 1.04 0.97 0.86 1.00 0.82 0.82 0.82 0.86 18.23%

4.000 0.95 0.89 1.19 3.89 1.98 0.89 1.35 1.28 1.02 0.79 0.89 0.80 0.79 0.79 0.81 11.15%

8.000 1.12 0.95 1.90 7.54 3.68 0.95 2.29 2.14 1.39 0.89 0.95 0.89 0.89 0.95 0.95 6.67%

0.700 1.000 0.500 4 4 0.37 0.34 0.26 0.37 0.26 0.34 0.27 0.27 0.25 0.22 0.27 0.22 0.22 0.22 0.24 14.46%

0.250 0.62 0.38 0.41 0.62 0.41 0.38 0.45 0.45 0.38 0.29 0.36 0.29 0.29 0.28 0.32 24.17%

0.125 1.09 0.42 0.71 1.11 0.71 0.42 0.80 0.80 0.60 0.40 0.42 0.42 0.37 0.37 0.42 11.39%

0.250 0.500 2 6 0.42 0.37 0.32 0.37 0.27 0.37 0.29 0.30 0.30 0.26 0.46 0.28 0.27 0.26 0.26 10.20%

0.250 0.77 0.45 0.57 0.45 0.39 0.45 0.49 0.53 0.49 0.39 0.69 0.42 0.40 0.38 0.38 16.48%

0.125 1.52 0.63 1.13 0.63 0.66 0.63 0.94 1.04 0.92 0.67 1.04 0.75 0.68 0.59 0.60 6.62%

2.000 0.24 0.23 0.21 0.59 0.30 0.59 0.21 0.20 0.21 0.19 0.23 0.18 0.18 0.18 0.19 12.92%

4.000 0.29 0.25 0.26 1.11 0.52 0.25 0.30 0.26 0.25 0.22 0.25 0.22 0.22 0.22 0.22 14.25%

8.000 0.39 0.29 0.41 2.22 1.01 0.29 0.52 0.43 0.36 0.27 0.29 0.27 0.27 0.26 0.29 7.58%
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The lowest average costs per instance are marked.

% difference = difference between best policy including 0,1 or 2 factors and presbyopic(4) policy.

Table 4: Average costs per policy; l = failure rate r = utilization rate b = backordering costs per time unit, s = stock level, 1 = type 1 and 2 = type 2.

Simulation parameters (m = 1) average costs of policies



r l1/l2 b1/b2 s1 s2 Random B S lab diff Blab EBT Myopic SB

type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2

0.99 1.00 0.500 4 4 10.91 11.58 24.04 0.11 11.06 11.06 11.42 11.08 11.06 11.06 24.04 0.11 10.87 11.25 10.87 11.25 14.19 7.94

0.250 10.93 10.02 22.45 0.11 10.28 10.28 10.88 10.06 10.28 10.28 22.45 0.11 10.09 10.47 10.09 10.47 15.59 5.00

0.125 11.49 11.65 24.72 0.11 11.39 11.38 11.06 12.07 11.39 11.38 24.72 0.11 11.20 11.57 11.20 11.57 19.10 3.70

0.25 0.500 2 6 0.13 16.22 16.16 1.00 6.83 8.68 16.16 1.00 8.20 7.35 16.16 1.00 10.10 5.39 10.08 5.42 8.65 6.85

0.250 0.13 15.90 15.82 1.04 6.63 8.54 15.82 1.04 8.03 7.16 15.82 1.04 9.72 5.42 9.70 5.45 9.72 5.42

0.125 0.02 19.80 16.59 1.69 7.76 9.77 16.59 1.69 7.75 9.77 16.59 1.69 11.52 5.97 11.51 5.98 12.57 4.92

2.000 0.02 18.59 0.00 18.93 7.18 9.16 15.39 1.69 7.18 9.16 15.39 1.69 10.60 5.70 10.59 5.71 4.97 11.45

4.000 0.02 19.96 0.00 20.32 7.83 9.85 16.67 1.78 7.83 9.86 0.00 20.32 11.61 6.04 11.60 6.05 3.51 14.29

8.000 0.02 17.79 0.00 18.13 6.73 8.75 14.57 1.67 6.74 8.75 0.00 18.13 9.90 5.55 9.90 5.56 1.98 13.64

0.95 1.00 0.500 4 6 4.93 5.28 11.32 0.09 4.88 4.89 4.99 5.21 4.88 4.89 11.32 0.09 4.73 5.04 4.73 5.04 6.09 3.69

0.250 5.17 5.69 11.98 0.08 5.22 5.22 5.27 5.59 5.22 5.22 11.98 0.08 5.08 5.36 5.08 5.36 7.74 2.74

0.125 5.19 5.00 11.31 0.09 4.88 4.90 4.79 5.41 4.88 4.90 11.31 0.09 4.74 5.04 4.74 5.04 7.90 1.93

0.25 0.500 4 6 0.01 9.34 6.92 1.21 3.01 4.54 6.92 1.21 3.01 4.54 6.92 1.21 4.28 3.23 4.27 3.24 3.71 3.80

0.250 0.01 9.21 6.86 1.19 3.00 4.51 6.86 1.19 3.00 4.51 6.86 1.19 4.26 3.20 4.26 3.21 4.26 3.20

0.125 0.02 9.97 7.58 1.19 3.34 4.85 7.58 1.19 3.34 4.85 7.58 1.19 4.80 3.35 4.79 3.36 5.20 2.96

2.000 0.02 10.17 0.00 10.47 3.39 4.96 7.76 1.19 3.39 4.95 7.76 1.19 4.87 3.43 4.86 3.45 2.39 6.07

4.000 0.02 11.60 0.00 11.91 4.02 5.68 9.01 1.31 4.02 5.68 0.00 11.91 5.82 3.84 5.81 3.85 1.89 7.98

8.000 0.01 9.53 0.00 9.81 3.14 4.66 7.17 1.18 3.14 4.66 0.00 9.81 4.50 3.25 4.50 3.26 1.01 6.97
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Table 5: average number of backorders per policy; ; l = failure rate r = utilization rate b = backordering costs per time unit, s = stock level, 1 = type 1 and 2 = type 2.

Simulation parameters (m = 1) average number of backorders per type for every policy 



r l1/l2 b1/b2 s1 s2 EBT+B Myopic+B Myopic+B pres2 Pres4 pres6

approx

type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2

0.99 1.00 0.500 4 4 21.73 0.64 22.51 1.42 21.01 1.11 21.71 0.65 22.47 0.36 23.24 0.20

0.250 20.22 0.62 22.38 0.18 20.16 0.64 20.90 0.36 21.66 0.20 22.45 0.11

0.125 22.43 0.63 23.61 1.22 22.39 0.64 23.14 0.36 24.72 0.11 24.72 0.11

0.25 0.500 2 6 13.06 2.50 0.03 16.55 12.97 2.57 13.00 2.55 14.21 1.75 15.48 1.21

0.250 12.58 2.63 0.03 16.19 12.53 2.67 13.14 2.22 14.47 1.50 15.82 1.04

0.125 14.78 2.77 0.03 19.93 15.36 2.35 15.97 1.98 16.59 1.69 16.59 1.69

2.000 0.09 16.65 0.00 18.93 0.31 15.99 0.31 15.99 0.09 16.65 0.09 16.65

4.000 0.08 18.06 0.00 20.32 0.31 17.35 0.09 18.02 0.09 18.02 0.02 18.74

8.000 0.08 15.94 0.00 18.13 0.08 15.83 0.08 15.84 0.02 16.55 0.02 16.56

0.95 1.00 0.500 4 6 9.48 0.49 10.82 0.29 8.93 0.84 9.46 0.50 10.05 0.28 10.67 0.16

0.250 10.22 0.45 11.80 0.25 10.14 0.49 10.18 0.46 11.33 0.15 11.98 0.08

0.125 9.58 0.45 11.20 0.19 9.51 0.47 10.06 0.27 11.31 0.09 11.31 0.09

0.25 0.500 4 6 5.69 1.86 0.00 9.62 5.65 1.90 5.68 1.87 6.50 1.37 6.92 1.21

0.250 5.65 1.85 0.01 9.34 5.62 1.88 6.03 1.59 6.86 1.19 6.86 1.19

0.125 6.33 1.86 0.05 9.94 6.72 1.60 7.15 1.36 7.58 1.19 7.58 1.19

2.000 0.07 8.58 0.00 10.47 0.24 8.06 0.24 8.06 0.07 8.57 0.07 8.57

4.000 0.07 10.00 0.00 11.91 0.24 9.43 0.07 9.95 0.07 9.95 0.02 10.55

8.000 0.05 8.18 0.00 9.81 0.06 8.03 0.06 8.04 0.02 8.55 0.01 8.57
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Simulation parameters (m = 1) average number of backorders per type for every policy

Table 5: average number of backorders per policy; ; l = failure rate r = utilization rate b = backordering costs per time unit, 

s = stock level, 1 = type 1 and 2 = type 2.



r l1/l2 b1/b2 s1 s2 Random B S lab diff Blab EBT Myopic SB

type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2

0.80 1.00 0.500 4 4 0.49 0.43 1.18 0.03 0.37 0.37 0.49 0.44 0.37 0.37 1.18 0.03 0.33 0.40 0.33 0.40 0.43 0.32

0.250 0.46 0.48 1.17 0.03 0.37 0.37 0.46 0.47 0.37 0.37 1.17 0.03 0.33 0.41 0.33 0.41 0.52 0.27

0.125 0.41 0.44 1.08 0.03 0.33 0.34 0.41 0.45 0.33 0.34 1.08 0.03 0.30 0.37 0.30 0.37 0.50 0.23

0.25 0.500 2 6 0.04 0.75 0.89 0.13 0.18 0.49 0.89 0.13 0.41 0.28 0.89 0.13 0.24 0.40 0.22 0.43 0.20 0.45

0.250 0.04 0.81 0.96 0.13 0.21 0.52 0.96 0.13 0.44 0.31 0.96 0.13 0.28 0.42 0.26 0.45 0.28 0.42

0.125 0.05 0.84 0.99 0.15 0.19 0.54 0.99 0.15 0.46 0.30 0.99 0.15 0.25 0.46 0.23 0.48 0.29 0.44

2.000 0.04 0.90 0.01 0.98 0.21 0.58 1.03 0.16 0.48 0.34 1.03 0.16 0.29 0.48 0.26 0.51 0.16 0.64

4.000 0.05 0.76 0.01 0.84 0.17 0.49 0.94 0.13 0.43 0.28 0.01 0.84 0.23 0.42 0.21 0.45 0.11 0.57

8.000 0.04 0.78 0.01 0.85 0.17 0.51 0.93 0.14 0.42 0.29 0.01 0.85 0.23 0.42 0.21 0.45 0.10 0.60

0.70 1.00 0.500 4 4 0.12 0.12 0.31 0.02 0.08 0.09 0.12 0.12 0.08 0.09 0.31 0.02 0.07 0.10 0.07 0.10 0.10 0.08

0.250 0.12 0.13 0.31 0.02 0.08 0.08 0.12 0.12 0.08 0.08 0.31 0.02 0.07 0.10 0.07 0.10 0.12 0.06

0.125 0.11 0.12 0.30 0.01 0.08 0.08 0.11 0.13 0.08 0.08 0.30 0.01 0.07 0.09 0.07 0.09 0.13 0.06

0.25 0.500 2 6 0.02 0.20 0.26 0.05 0.03 0.14 0.26 0.05 0.11 0.08 0.26 0.05 0.05 0.12 0.04 0.13 0.04 0.13

0.250 0.02 0.19 0.27 0.05 0.03 0.14 0.27 0.05 0.11 0.07 0.27 0.05 0.05 0.11 0.04 0.12 0.05 0.11

0.125 0.03 0.19 0.28 0.04 0.03 0.14 0.28 0.04 0.12 0.07 0.28 0.04 0.05 0.11 0.04 0.12 0.07 0.11

2.000 0.02 0.19 0.01 0.22 0.03 0.14 0.27 0.04 0.12 0.07 0.27 0.04 0.05 0.11 0.04 0.12 0.03 0.15

4.000 0.03 0.19 0.01 0.22 0.03 0.14 0.27 0.05 0.11 0.07 0.01 0.22 0.05 0.12 0.03 0.13 0.02 0.15

8.000 0.02 0.20 0.01 0.22 0.03 0.14 0.27 0.05 0.12 0.07 0.01 0.22 0.05 0.12 0.04 0.13 0.03 0.16
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average number of backorders per type for every policy

Table 5: average number of backorders per policy; ; l = failure rate r = utilization rate b = backordering costs per time unit, s = stock level, 1 = type 1 and 2 = type 2.

Simulation parameters (m = 1)



r l1/l2 b1/b2 s1 s2 EBT+B Myopic+B Myopic+B pres2 Pres4 pres6

approx

type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2 type 1 type 2

0.99 1.00 0.500 4 4 0.68 0.10 0.86 0.07 0.57 0.16 0.66 0.11 0.68 0.10 0.81 0.06

0.250 0.74 0.09 1.13 0.03 0.67 0.11 0.69 0.10 0.84 0.06 0.99 0.04

0.125 0.69 0.09 1.08 0.03 0.62 0.10 0.74 0.07 0.90 0.04 1.08 0.03

0.25 0.500 2 6 0.41 0.25 0.01 0.82 0.29 0.34 0.36 0.28 0.44 0.23 0.64 0.16

0.250 0.46 0.26 0.02 0.81 0.39 0.31 0.47 0.26 0.67 0.18 0.83 0.15

0.125 0.44 0.29 0.12 0.70 0.45 0.29 0.57 0.23 0.71 0.19 0.99 0.15

2.000 0.02 0.81 0.01 0.98 0.05 0.71 0.05 0.71 0.05 0.72 0.03 0.81

4.000 0.02 0.71 0.01 0.84 0.04 0.62 0.02 0.70 0.02 0.70 0.02 0.73

8.000 0.02 0.75 0.01 0.85 0.02 0.71 0.02 0.71 0.01 0.85 0.01 0.85

0.95 1.00 0.500 4 6 0.15 0.04 0.21 0.03 0.12 0.05 0.14 0.04 0.15 0.04 0.18 0.03

0.250 0.17 0.03 0.29 0.02 0.13 0.04 0.14 0.04 0.18 0.03 0.24 0.02

0.125 0.18 0.03 0.30 0.01 0.14 0.04 0.18 0.02 0.23 0.02 0.30 0.01

0.25 0.500 4 6 0.10 0.08 0.01 0.23 0.05 0.11 0.07 0.10 0.09 0.08 0.12 0.07

0.250 0.10 0.07 0.02 0.17 0.07 0.09 0.09 0.08 0.12 0.06 0.17 0.05

0.125 0.11 0.07 0.06 0.12 0.07 0.09 0.10 0.07 0.18 0.05 0.23 0.05

2.000 0.01 0.17 0.01 0.22 0.02 0.14 0.02 0.14 0.02 0.14 0.01 0.16

4.000 0.01 0.18 0.01 0.22 0.02 0.15 0.02 0.15 0.01 0.17 0.01 0.17

8.000 0.01 0.19 0.01 0.22 0.01 0.18 0.01 0.18 0.01 0.18 0.01 0.22
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average number of backorders per type for every policy

s = stock level, 1 = type 1 and 2 = type 2.

Simulation parameters (m = 1)

Table 5: average number of backorders per policy; ; l = failure rate r = utilization rate b = backordering costs per time unit, 


